RANKIN-COHEN TYPE OPERATORS FOR HILBERT-JACOBI FORMS

MONI KUMARI AND BRUNDABAN SAHU

Abstract

We construct Rankin-Cohen type differential operators on the space of HilbertJacobi forms. This generalizes a result of Choie and Eholzer (J. Number Theory, 68, 160-177 [1998]) in the case of Jacobi forms to Hilbert-Jacobi forms.

1. Introduction

There are many interesting connections between differential operators and modular forms and many interesting results have been studied. In particular, Rankin [7, 8] gave a general description of the differential operators which send modular forms to modular forms. Cohen [5] constructed certain covariant bilinear operators and obtained modular forms with interesting Fourier coefficients. Zagier $[10,11]$ called these covariant bilinear operators as Rankin-Cohen operators and studied their algebraic properties.

Rankin-Cohen type operators for Jacobi forms on $\mathbb{H} \times \mathbb{C}$ have been studied using heat operators in [2, 3]. Using Maass operator Böcherer [1] showed that the space of bilinear holomorphic differential operators raising the weight ν is in general of dimension $1+[\nu / 2]$ for Jacobi forms on $\mathbb{H} \times \mathbb{C}$. In [4], Choie and Eholzer explicitly give a family of bilinear holomorphic differential operators using Rankin-Cohen type operators of right dimension $1+[\nu / 2]$ and also remark (in section 8) that it would be interesting to understand how their construction can be generalized to higher Jacobi forms.

Skogman [9] extended the theory of Jacobi forms over a totally real number field, known as Hilbert-Jacobi forms. In this paper, we study differential operators of Rankin-Cohen type on the space of Hilbert-Jacobi forms which give an answer to the question posed by Choie and Eholzer in [4].

The paper is organized as follows. In section 2 we recall basic facts about Hilbert-Jacobi forms and define Rankin-Cohen type operators for the Hilbert-Jacobi forms and state the main result. We develop certain tools for our proof in section 3 and give a proof of the main result in section 4 . We follow the same exposition as given in [4].

2. Preliminaries and Statement of Result

Let K be a totally real number field of degree $g:=[K, \mathbb{Q}]$ over \mathbb{Q} with ring of its algebraic integers \mathcal{O}_{K} and we denote its g real embedding by $\sigma_{1}, \cdots, \sigma_{g}$. We denote i-th embedding of an element $\alpha \in K$ by $\alpha^{(i)}:=\sigma_{i}(\alpha)$ for any $1 \leqslant i \leqslant g$. An element $\alpha \in K$ is said to be

[^0]totally positive, $\alpha>0$, if all its embeddings $\alpha^{(i)}$ into \mathbb{R} are positive. The trace and norm of $\alpha \in K$ are defined by $\operatorname{tr}(\alpha)=\sum_{i=1}^{g} \alpha^{(i)}$ and $N(\alpha)=\prod_{i=1}^{g} \alpha^{(i)}$, respectively. The trace and norm of an element $\alpha \in \mathbb{C}^{g}$ are given by the sum and by the product of its components, respectively. More generally, for $c=\left(c_{1}, \ldots, c_{g}\right), d=\left(d_{1}, \ldots, d_{g}\right), k=\left(k_{1}, \ldots, k_{g}\right)$ and $m=$ $\left(m_{1}, \ldots, m_{g}\right) \in \mathbb{C}^{g}$, we define the following:
$$
\operatorname{tr}(m z):=\sum_{i=1}^{g} m_{i} z_{i} \text { and }(c z+d)^{k}:=\prod_{i=1}^{g}\left(c_{i} z_{i}+d_{i}\right)^{k_{i}} .
$$

Let $\Gamma_{K}:=S L_{2}\left(\mathcal{O}_{K}\right)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathcal{O}_{K}, a d-b c=1\right\}$. We denote the HilbertJacobi group as $\Gamma^{J}(K)$ defined by

$$
\Gamma^{J}(K):=S L_{2}\left(\mathcal{O}_{K}\right) \rtimes\left(\mathcal{O}_{K} \times \mathcal{O}_{K}\right)
$$

with the group multiplication

$$
\gamma_{1} \cdot \gamma_{2}:=\left(\left(\begin{array}{cc}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right),\left(\lambda_{1}, \mu_{1}\right)\left(\begin{array}{cc}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)+\left(\lambda_{2}, \mu_{2}\right)\right)
$$

where $\gamma_{i}:=\left(\left(\begin{array}{ll}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right),\left(\lambda_{i}, \mu_{i}\right)\right)$ for $i=1,2$. The Hilbert-Jacobi group $\Gamma^{J}(K)$ acts on the space $\mathbb{H}^{g} \times \mathbb{C}^{g}$ by

$$
\begin{aligned}
& \left(\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right),(\lambda, \mu)\right) \circ\left(\tau_{1}, \ldots, \tau_{g}, z_{1}, \ldots, z_{g}\right) \\
& =\left(\frac{a^{(1)} \tau_{1}+b^{(1)}}{c^{(1)} \tau_{1}+d^{(1)}}, \ldots, \frac{a^{(g)} \tau_{g}+b^{(g)}}{c^{(g)} \tau_{g}+d^{(g)}}, \frac{z_{1}+\lambda^{(1)} \tau_{1}+\mu^{(1)}}{c^{(1)} \tau_{1}+d^{(1)}}, \ldots, \frac{z_{g}+\lambda^{(g)} \tau_{g}+\mu^{(g)}}{c^{(g)} \tau_{g}+d^{(g)}}\right)
\end{aligned}
$$

where $\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),(\lambda, \mu)\right) \in \Gamma^{J}(K)$ and $\left(\tau_{1}, \ldots, \tau_{g}, z_{1}, \ldots, z_{g}\right) \in \mathbb{H}^{g} \times \mathbb{C}^{g}$.
For an integer $x \in \mathbb{N}_{0}$, we denote $\vec{x}:=(x, \ldots, x) \in \mathbb{N}_{0}^{g}$. For $\nu=\left(\nu_{1}, \ldots, \nu_{g}\right) \in \mathbb{N}_{0}^{g}$, $l=\left(l_{1}, \ldots, l_{g}\right) \in \mathbb{N}_{0}^{g}$ and $z=\left(z_{1}, \ldots, z_{g}\right) \in \mathbb{C}^{g}$, we denote

$$
|\nu|=\sum_{i=1}^{g} \nu_{i}, \nu!=\prod_{i=1}^{g} \nu_{i}!\text { and } z^{\nu}=\prod_{i=1}^{g} z_{i}^{\nu_{i}} .
$$

Also we denote $\nu \leqslant l$ if $\nu_{j} \leqslant l_{j}$ for all $1 \leqslant j \leqslant g$ and $e[z]$ for $e^{2 \pi i z}$ for $z \in \mathbb{C}$.
For a holomorphic function $\phi: \mathbb{H}^{g} \times \mathbb{C}^{g} \rightarrow \mathbb{C}$, we define the following two slash operators. For a fixed $k \in \mathbb{N}_{0}^{g}$ and $m \in \mathcal{O}_{K}$,

$$
\left(\left.\phi\right|_{k, m} M\right)(\tau, z):=(c z+d)^{-k} e\left[\operatorname{tr}\left(-\frac{m c z^{2}}{c \tau+d}\right)\right] \phi\left(\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right) \circ(\tau, z)\right)
$$

for $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}\left(\mathcal{O}_{K}\right)$ and

$$
\begin{equation*}
\left(\left.\phi\right|_{m}(\lambda, \mu)\right)(\tau, z):=e\left[\operatorname{tr}\left(m\left(\lambda^{2} \tau+2 \lambda z\right)\right)\right] \phi((\lambda, \mu) \circ(\tau, z)) \text { for }(\lambda, \mu) \in \mathcal{O}_{K} \times \mathcal{O}_{K} \tag{2}
\end{equation*}
$$

Definition 2.1. A Hilbert-Jacobi form of weight k and index m for a totally real field K is a holomorphic function $\phi: \mathbb{H}^{g} \times \mathbb{C}^{g} \rightarrow \mathbb{C}$ which satisfies the following conditions:
(1) $\left.\phi\right|_{k, m} \gamma=\phi$, for all $\gamma \in \Gamma_{K}$,
(2) $\left.\phi\right|_{m}(\lambda, \mu)=\phi$, for all $(\lambda, \mu) \in \mathcal{O}_{K} \times \mathcal{O}_{K}$,
(3) ϕ has a Fourier expansion of the form,

$$
\phi(\tau, z)=\sum_{\substack{n, r \in \mathcal{O}_{K}^{*} \\ 4 n m-r^{2} \geqslant 0}} c_{\phi}(n, r) e[\operatorname{tr}(n \tau+r z)],
$$

where $\mathcal{O}_{K}^{*}=\left\{\mu \in K \mid \operatorname{tr}(\mu \lambda) \in \mathbb{Z}\right.$ for all $\left.\lambda \in \mathcal{O}_{K}\right\}$.
We note that \mathcal{O}_{K}^{*} is δ_{K}^{-1}, the inverse of the different ideal of the number field K. Moreover, such a form ϕ is called Hilbert-Jacobi cusp form if $c_{\phi}(n, r)=0$ whenever $4 n m-r^{2}=0$. Let $J_{k, m}^{K}\left(J_{k, m}^{K, \text { cusp }}\right)$ denote the space of Hilbert-Jacobi forms (Hilbert-Jacobi cusp forms) of weight k and index m for the field K. For more details on the theory of Hilbert-Jacobi forms we refer to [9]. Now we define the heat operators.
Definition 2.2. For $1 \leqslant j \leqslant g$, let e_{j} be j-th unit vector in \mathbb{R}^{g}. For a given $m \in \mathcal{O}_{K}$, we define the m-th heat operator,

$$
\begin{equation*}
L_{m}:=\prod_{j=1}^{g}\left(8 \pi i m \frac{\partial}{\partial \tau}-\frac{\partial^{2}}{\partial z^{2}}\right)^{e_{j}} \tag{3}
\end{equation*}
$$

In the above definition, we denote " \prod " for the composition of operators. Now we state some properties of these operators which can be proved as in the case of Jacobi forms [2].
Lemma 2.3. Let $\phi(\tau, z)$ be a holomorphic function on the space $\mathbb{H}^{g} \times \mathbb{C}^{g}$, $k \in \mathbb{Z}^{g}$ and $m \in \mathcal{O}_{K}$. Then
(1) for $X \in \mathcal{O}_{K} \times \mathcal{O}_{K}$,

$$
\begin{equation*}
\left.\left(L_{m} \phi\right)\right|_{m} X=L_{m}\left(\left.\phi\right|_{m} X\right) \tag{4}
\end{equation*}
$$

(2) for any $\nu \in \mathbb{N}_{0}^{g}$ and $M \in S L_{2}\left(\mathcal{O}_{K}\right)$, we have

$$
\begin{equation*}
\left.L_{m}^{\nu}(\phi)\right|_{k+2 \nu, m} M=\sum_{\substack{l \in \mathbb{N}_{\sigma_{0}^{g}}^{g} \\ l \leqslant \nu}}\binom{\nu}{l} \frac{(8 \pi i m c)^{\nu-l}(\alpha+\nu-1)!}{(c \tau+d)^{\nu-l}(\alpha+l-1)!} L_{m}^{l}\left(\left.\phi\right|_{k, m} M\right), \tag{5}
\end{equation*}
$$

where $\alpha=k-\frac{1}{2}$.
We define Rankin-Cohen type differential operators on the space of Hilbert-Jacobi forms using the heat operators.
Definition 2.4. Let $\phi, \phi^{\prime}: \mathbb{H}^{g} \times \mathbb{C}^{g} \rightarrow \mathbb{C}$ be two holomorphic functions and let $k, k^{\prime}, m, m^{\prime}$ be complex numbers. Then for any $X \in \mathbb{C}^{g}, \nu \in \mathbb{N}_{0}^{g}$ and $l \in \mathbb{N}_{0}^{g}$ with $l_{i} \in\{0,1\}$ for all $1 \leqslant i \leqslant g$, define

$$
\begin{equation*}
\left[\phi, \phi^{\prime}\right]_{X, 2 \nu+l}^{k, k^{\prime}, m, m^{\prime}}=\sum_{\substack{j \in \mathbb{N}_{0}^{g} \\ j \leqslant l}}(-1)^{j} m^{l-j} m^{\prime j}\left[\partial_{z}^{j} \phi, \partial_{z}^{l-j} \phi^{\prime}\right]_{X, 2 \nu}^{k, k^{\prime}, m, m^{\prime}, l} \tag{6}
\end{equation*}
$$

where for any two holomorphic functions f and f^{\prime} on $\mathbb{H}^{g} \times \mathbb{C}^{g}$

$$
\left[f, f^{\prime}\right]_{X, 2 \nu}^{k, k^{\prime}, m, m^{\prime}, l}:=\sum_{\substack{r, s, p \in \mathbb{N}_{0}^{g}, r+s+p=\nu}} A_{r, s, p}\left(k, k^{\prime}, l\right)(1+m X)^{s}\left(1-m^{\prime} X\right)^{r} L_{m+m^{\prime}}^{p}\left(L_{m}^{r}(f) L_{m^{\prime}}^{s}\left(f^{\prime}\right)\right),
$$

with

$$
A_{r, s, p}\left(k, k^{\prime}, l\right)=\frac{\left(-\left(k+k^{\prime}+l-3 / 2+r+s+p\right)\right)_{r+s}}{r!s!p!(k-3 / 2+r)!\left(k^{\prime}-3 / 2+s\right)!}
$$

Here $(x)_{n}=\prod_{0 \leqslant i \leqslant n-1}(x-i)$.
Remark 2.1. In the above definition we have the following convention.

$$
\left[\phi, \phi^{\prime}\right]_{X, 2 \nu}^{k, k^{\prime}, m, m^{\prime}, 0}=\left[\phi, \phi^{\prime}\right]_{X, 2 \nu}^{k, k^{\prime}, m, m^{\prime}}
$$

Remark 2.2. Note that constants $A_{r, s, p}\left(k, k^{\prime}, l\right)$ are different than $C_{r, s, p}\left(k, k^{\prime}\right)$, which appeared in [4] for the field $K=\mathbb{Q}$.
Now we state the main result.
Theorem 2.5. Let ϕ, ϕ^{\prime} be Hilbert-Jacobi forms of weight and index k, m and k^{\prime}, m^{\prime} respectively. Then for any $X \in \mathbb{C}^{g}, \nu \in \mathbb{N}_{0}^{g}$ and $l \in \mathbb{N}_{0}^{g}$ with $l_{i} \in\{0,1\}$ for all $1 \leqslant i \leqslant g$,

$$
\begin{equation*}
\left[\phi, \phi^{\prime}\right]_{X, 2 \nu+l}^{k, k^{\prime}, m, m^{\prime}} \tag{7}
\end{equation*}
$$

is a Hilbert-Jacobi form of weight $k+k^{\prime}+2 \nu+l$ and index $m+m^{\prime}$.
There are two known methods to prove result like Theorem 2.5. First one, by showing that $\left[\phi, \phi^{\prime}\right]_{X, 2 \nu+l}^{k, k^{\prime}, m, m^{\prime}}$ satisfy all the required conditions to be a Hilbert-Jacobi form (see, $[4$, section 4]) and second one, by using generating series (see, [6, Theorem 3.2], [4, section 5]). We prove our result by using generating series. In the next section we shall develop some tools for the proof of Theorem 2.5.

3. Intermediate results

Proposition 3.1. Let $\phi(\tau, z) \in J_{k, m}^{K}$ and $\alpha=k-\frac{1}{2}$. Then the formal power series associated with the Jacobi form ϕ defined by

$$
\begin{equation*}
\widetilde{\phi}(\tau, z ; W):=\sum_{\nu \in \mathbb{N}_{0}^{g}} \frac{L_{m}^{\nu}(\phi)(\tau, z)}{\nu!(\alpha+\nu-1)!} W^{\nu}, \tag{8}
\end{equation*}
$$

satisfies the following functional equation,

$$
\begin{equation*}
\widetilde{\phi}\left(M \tau, \frac{z}{c \tau+d} ; \frac{W}{(c \tau+d)^{2}}\right)=(c z+d)^{k} e\left[\operatorname{tr}\left(\frac{m c z^{2}}{c \tau+d}\right)\right] e\left[4 \operatorname{tr}\left(\frac{m c W}{c \tau+d}\right)\right] \widetilde{\phi}(\tau, z ; W) \tag{9}
\end{equation*}
$$

for all $M=\left(\begin{array}{ll}* & * \\ c & d\end{array}\right) \in S L_{2}\left(\mathcal{O}_{K}\right)$.
Proof. From the definition of $\widetilde{\phi}$, we have

$$
\begin{aligned}
\widetilde{\phi}\left(M \tau, \frac{z}{c \tau+d} ; \frac{W}{(c \tau+d)^{2}}\right) & =\sum_{\nu \in \mathbb{N}_{0}^{g}} \frac{L_{m}^{\nu}(\phi)\left(M \tau, \frac{z}{c \tau+d}\right)}{\nu!(\alpha+\nu-1)!} \frac{W^{\nu}}{(c \tau+d)^{2 \nu}} \\
& =\sum_{\nu \in \mathbb{N}_{0}^{g}} \frac{\left.(c \tau+d)^{k} e\left[\operatorname{tr}\left(\frac{m c z^{2}}{c \tau+d}\right)\right]\left(L_{m}^{\nu} \phi\right)\right|_{k+2 \nu, m} M(\tau, z)}{\nu!(\alpha+\nu-1)!} W^{\nu} .
\end{aligned}
$$

Using (5) and the assumption that $\phi \in J_{k, m}^{K}$, the right hand side of the above equation is equal to

$$
\begin{aligned}
& (c \tau+d)^{k} e\left[\operatorname{tr}\left(\frac{m c z^{2}}{c \tau+d}\right)\right] \sum_{\nu \in \mathbb{N}_{0}^{g}} \frac{1}{\nu!(\alpha+\nu-1)!}\left(\sum_{\substack{l \in \mathbb{N}_{0}^{g} \\
l \leqslant \nu}}\binom{\nu}{l} \frac{(8 \pi i m c)^{\nu-l}(\alpha+\nu-1)!}{(c \tau+d)^{\nu-l}(\alpha+l-1)!} L^{l}{ }_{m}\left(\left.\phi\right|_{k, m} M\right)\right) W^{\nu} \\
& =(c \tau+d)^{k} e\left[\operatorname{tr}\left(\frac{m c z^{2}}{c \tau+d}\right)\right] \sum_{\nu \in \mathbb{N}_{0}^{g}}\left(\sum_{\substack{l \in \mathbb{N}_{0}^{g} \\
l \leqslant \nu}} \frac{1}{l!(\nu-l)!(\alpha+l-1)!} \frac{(8 \pi i m c)^{\nu-l}}{(c \tau+d)^{\nu-l}} L^{l}{ }_{m}(\phi)\right) W^{\nu} \\
& =(c z+d)^{k} e\left[\operatorname{tr}\left(\frac{m c z^{2}}{c \tau+d}\right)\right] e\left[4 \operatorname{tr}\left(\frac{m c W}{c \tau+z}\right)\right] \widetilde{\phi}(\tau, z, W) .
\end{aligned}
$$

This completes the proof.
Let $\widetilde{f}(\tau, z ; W)$ be a power series in W whose coefficients are holomorphic functions on $\mathbb{H}^{g} \times \mathbb{C}^{g}$ i.e., $\widetilde{f}(\tau, z ; W)=\sum_{\nu \in \mathbb{N}_{0}^{g}} \chi_{\nu}(\tau, z) W^{\nu}$. For $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}\left(\mathcal{O}_{K}\right)$, we define

$$
\begin{aligned}
\left(\left.\widetilde{f}\right|_{k, m} M\right)(\tau, z ; W):= & (c \tau+d)^{-k} e\left[-\operatorname{tr}\left(\frac{m c z^{2}}{c \tau+d}\right)\right] e\left[-4 \operatorname{tr}\left(\frac{m c W}{c \tau+d}\right)\right] \\
& \times \widetilde{f}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d} ; \frac{W}{(c \tau+d)^{2}}\right)
\end{aligned}
$$

Next we show that for a given formal power series satisfying certain conditions, one can construct a family of Hilbert-Jacobi forms like in the case of Jacobi forms [Theorem 5.1, [4]].

Theorem 3.2. Let $\widetilde{\phi}(\tau, z ; W)$ be a formal power series in W, i.e.,

$$
\begin{equation*}
\widetilde{\phi}(\tau, z ; W)=\sum_{\nu \in \mathbb{N}_{0}^{g}} \chi_{\nu}(\tau, z) W^{\nu} \tag{10}
\end{equation*}
$$

satisfying the functional equation

$$
\left(\left.\widetilde{\phi}\right|_{k, m} M\right)(\tau, z ; W)=\widetilde{\phi}(\tau, z ; W), \quad \text { for all } M=\left(\begin{array}{ll}
a & b \tag{11}\\
c & d
\end{array}\right) \in S L_{2}\left(\mathcal{O}_{K}\right)
$$

for some $k \in \mathbb{N}_{0}^{g}$ and $m \in \mathcal{O}_{K}$. Furthermore, assume that the coefficients $\chi_{\nu}(\tau, z)$ are holomorphic functions on $\mathbb{H}^{g} \times \mathbb{C}^{g}$ with Fourier expansion of the form,

$$
\begin{equation*}
\chi_{\nu}(\tau, z)=\sum_{\substack{n, r \in \mathcal{O}_{K}^{*} \\ 4 n m-r^{2} \geqslant 0}} c(n, r) e[\operatorname{tr}(n \tau+r z)], \tag{12}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\left.\chi_{\nu}\right|_{m} Y=\chi_{\nu} \quad \text { for all } Y \in \mathcal{O}_{K} \times \mathcal{O}_{K} . \tag{13}
\end{equation*}
$$

Then for each $\nu \in \mathbb{N}_{0}^{g}$, the function $\xi_{\nu}(\tau, z)$ defined by

$$
\begin{equation*}
\xi_{\nu}(\tau, z):=\sum_{\substack{j \in \mathbb{N}_{0}^{g} \\ j \leqslant \nu}} \frac{(-(k-3 / 2+\nu))_{\nu-j}}{j!} L_{m}^{j}\left(\chi_{\nu-j}\right), \tag{14}
\end{equation*}
$$

is a Hilbert-Jacobi form of weight $k+2 \nu$ and index m.

Remark 3.1. We call k and m appeared in the equation (11) is the weight and index of the power series $\widetilde{\phi}$ respectively.
Proof. We show that $\xi_{\nu}(\tau, z)$, defined by (14) is invariant under $S L_{2}\left(\mathcal{O}_{K}\right)$ action. For $1 \leqslant$ $j \leqslant g$, let e_{j} be the j-th unit vector in \mathbb{R}^{g}. Define the j-th differential operator

$$
\widetilde{L}_{k, m}^{e_{j}}:=8 \pi i m^{(j)} \frac{\partial}{\partial \tau_{j}}-\frac{\partial^{2}}{\partial z_{j}^{2}}-\left(k_{j}-1 / 2\right) \frac{\partial}{\partial W_{j}}-W_{j} \frac{\partial^{2}}{\partial W_{j}^{2}}
$$

where $k=\left(k_{1}, k_{2}, \ldots, k_{g}\right)$ and $m \in \mathcal{O}_{K}$. Let $\widetilde{\mathcal{M}}_{k, m}$ be the collection of all functions $\widetilde{f}(\tau, z ; W)=\sum_{\nu \in \mathbb{N}_{0}^{g}} \chi_{\nu}^{\prime}(\tau, z) W^{\nu}$ which satisfy the condition:

$$
\left(\left.\widetilde{f}\right|_{k, m} M\right)(\tau, z ; W)=\widetilde{f}(\tau, z ; W), \quad \text { for all } M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}\left(\mathcal{O}_{K}\right)
$$

We note that the constant term $\chi_{0}^{\prime}(\tau, z)$ in the power series expansion of $\widetilde{f}(\tau, z ; W) \in \widetilde{\mathcal{M}}_{k, m}$ satisfy the following:

$$
\left(\left.\chi_{0}^{\prime}\right|_{k, m} M\right)(\tau, z)=\chi_{0}^{\prime}(\tau, z), \quad \text { for all } M=\left(\begin{array}{ll}
a & b \tag{15}\\
c & d
\end{array}\right) \in S L_{2}\left(\mathcal{O}_{K}\right)
$$

Then using the definition of slash operator (11) one can show that

$$
\widetilde{L}_{k, m}^{e_{j}}\left(\left.\widetilde{\phi}\right|_{k, m} M\right)=\left.\left(\widetilde{L}_{k, m}^{e_{j}} \widetilde{\phi}\right)\right|_{k+2 e_{j}, m} M,
$$

for all $M \in S L_{2}\left(\mathcal{O}_{K}\right)$. We note that $\prod_{j=1}^{g} \widetilde{L}_{k, m}^{e_{j}}$ (the composition of all $\widetilde{L}_{k, m}^{e_{j}}$ for $1 \leqslant j \leqslant g$), denoted by $\widetilde{L}_{k, m}$ satisfy

$$
\widetilde{L}_{k, m}\left(\left.\widetilde{\phi}\right|_{k, m} M\right)=\left.\left(\widetilde{L}_{k, m} \widetilde{\phi}\right)\right|_{k+2, m} M, \quad \text { for all } M \in S L_{2}\left(\mathcal{O}_{K}\right)
$$

In other word, $\widetilde{L}_{k, m}$ is a map from $\widetilde{\mathcal{M}}_{k, m}$ to $\widetilde{\mathcal{M}}_{k+2, m}$ which is given in terms of power series by

$$
\widetilde{L}_{k, m}: \sum_{\lambda \in \mathbb{N}_{0}^{g}} \chi_{\lambda}(\tau, z) W^{\lambda} \rightarrow \sum_{\lambda \in \mathbb{N}_{0}^{g}}\left(\sum_{\substack{j \in \mathbb{N}_{0}^{g} \\ j \leqslant 1}} \frac{(-1)^{1+j}\binom{1}{j}(\lambda+1-j)!(\lambda+\alpha-j)!L_{m}^{j}\left(\chi_{\lambda+1-j}\right)}{\lambda!(\lambda+\alpha-1)!}\right) W^{\lambda},
$$

with $\alpha=k-1 / 2$. Composing the maps $\widetilde{L}_{k+i, m}$ for $1 \leqslant i \leqslant \nu-1$,

$$
\widetilde{\mathcal{M}}_{k, m} \xrightarrow{\widetilde{L}_{k, m}} \widetilde{\mathcal{M}}_{k+2, m} \xrightarrow{\widetilde{L}_{k+2, m}} \cdots \xrightarrow{\widetilde{L}_{k+2 \nu-2, m}} \widetilde{\mathcal{M}}_{k+2 \nu, m}
$$

then it maps $\sum_{\lambda \in \mathbb{N}_{0}^{g}} \chi_{\lambda}(\tau, z) W^{\lambda}$ to

$$
\sum_{\lambda \in \mathbb{N}_{0}^{g}}\left(\sum_{\substack{j \in \mathbb{N}^{g} g \\ j \leqslant \nu}} \frac{(-1)^{\nu+j}\binom{\nu}{j}(\lambda+\nu-j)!(\lambda+2 \nu+\alpha-j-2)!L_{m}^{j}\left(\chi_{\lambda+\nu-j}\right)}{\lambda!(\lambda+\alpha+\nu-2)!}\right) W^{\lambda}
$$

We note that the constant term i.e., $\lambda=\overrightarrow{0}$ in the above series is ν ! times ξ_{ν}. Hence from (15), ξ_{ν} is invariant under $S L_{2}\left(\mathcal{O}_{K}\right)$ action. The other conditions hold easily from given hypothesis on function $\chi_{\nu}(\tau, z)$.

In the next two lemmas we show how the operator ∂_{z} behaves under the group and lattice actions.

Lemma 3.3. Let ϕ be a Hilbert-Jacobi form of weight k and index m. For $j \in \mathbb{N}_{0}^{g}$ with $j_{i} \in\{0,1\}$ for all $1 \leqslant i \leqslant g$, we have

$$
\begin{align*}
& \partial_{z / c \tau+d}^{j} \widetilde{\phi}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d} ; \frac{W}{(c \tau+d)^{2}}\right) \\
& =(c \tau+d)^{k+j} e\left[\operatorname{tr}\left(\frac{m c z^{2}}{c \tau+d}\right)\right] e\left[4 \operatorname{tr}\left(\frac{m c W}{c \tau+d}\right)\right] \sum_{\substack{a \in \mathbb{N}_{0}^{g} \\
a \leqslant j}}\left(\frac{4 \pi i m c z}{c \tau+d}\right)^{a} \partial_{z}^{j-a} \widetilde{\phi}(\tau, z ; W) . \tag{16}
\end{align*}
$$

Proof. This Lemma is an easy consequence of Proposition 3.1.
Lemma 3.4. Suppose $f(z)$ is a holomorphic function on the space \mathbb{H}^{g} and $Y=(\lambda, \mu) \in$ $\mathcal{O}_{K} \times \mathcal{O}_{K}$. Then for $j \in \mathbb{N}_{0}^{g}$ with $j_{i} \in\{0,1\}$ for all $1 \leqslant i \leqslant g$, we have

$$
\begin{equation*}
\left.\left(\partial_{z}^{j} f\right)\right|_{m} Y=\sum_{\substack{a \in \mathbb{N}_{0}^{g} \\ a \leqslant j}}(-4 \pi i m \lambda)^{a} \partial_{z}^{j-a}\left(\left.f\right|_{m} Y\right) \tag{17}
\end{equation*}
$$

Proof. One can prove this result using the definition of the action " ${ }_{m} Y$ ".

4. Proof of Theorem 2.5

First we prove for case $l=\overrightarrow{0}$ and then for general case $l \neq \overrightarrow{0}$.
Case I: $l=\overrightarrow{0}$. For a fixed $X \in \mathbb{C}^{g}$, consider the series $F_{X}(\tau, z ; W)$ defined by

$$
F_{X}(\tau, z ; W)=\widetilde{\phi}\left(\tau, z ;\left(1+m^{\prime} X\right) W\right) \widetilde{\phi^{\prime}}(\tau, z ;(1-m X) W)
$$

where $\widetilde{\phi}$ and $\widetilde{\phi^{\prime}}$ are defined by the equation (8). We shall show that the function $F_{X}(\tau, z ; W)$ satisfy all the necessary conditions for Theorem 3.2 and consequently deduce the result.

Using the corresponding functional equation for $\widetilde{\phi}$ and $\widetilde{\phi^{\prime}}$ given in the Proposition 3.1, one can easily show that the function $F_{X}(\tau, z ; W)$ also satisfy the same functional equation as (11) with weight $k+k^{\prime}$ and index $m+m^{\prime}$.

Now we shall look the power series expansion of F_{X}. Replacing $\widetilde{\phi}$ and $\widetilde{\phi^{\prime}}$ with their corresponding expressions (8) in F_{X}, we get

$$
\begin{aligned}
F_{X}(\tau, z ; W) & =\left(\sum_{\nu \in \mathbb{N}_{0}^{g}} \frac{\left(1+m^{\prime} X\right)^{\nu} L_{m}^{\nu}(\phi)}{\nu!(k-3 / 2+\nu)!} W^{\nu}\right)\left(\sum_{\nu \in \mathbb{N}_{0}^{g}} \frac{(1-m X)^{\nu} L_{m}^{\nu}\left(\phi^{\prime}\right)}{\nu!\left(k^{\prime}-3 / 2+\nu\right)!} W^{\nu}\right) \\
& =\sum_{\nu \in \mathbb{N}_{0}^{g}}\left(\sum_{\substack{a \in \mathbb{N}_{0}^{g} \\
a \leqslant \nu}} \frac{\left(1+m^{\prime} X\right)^{a}(1-m X)^{\nu-a}}{a!(\nu-a)!(k-3 / 2+a)!\left(k^{\prime}-3 / 2+\nu-a\right)!} L_{m}^{a}(\phi) L_{m^{\prime}}^{\nu-a}\left(\phi^{\prime}\right)\right) W^{\nu} \\
& =\sum_{\nu \in \mathbb{N}_{0}^{g}} \chi_{\nu, F}(\tau, z) W^{\nu}
\end{aligned}
$$

where

$$
\begin{equation*}
\chi_{\nu, F}(\tau, z):=\sum_{\substack{a \in \mathbb{N}_{\begin{subarray}{c}{a} }}^{a}} \\
{a \leqslant \nu}\end{subarray}} \frac{\left(1+m^{\prime} X\right)^{a}(1-m X)^{\nu-a}}{a!(\nu-a)!(k-3 / 2+a)!\left(k^{\prime}-3 / 2+\nu-a\right)!} L_{m}^{a}(\phi) L_{m^{\prime}}^{\nu-a}\left(\phi^{\prime}\right) . \tag{18}
\end{equation*}
$$

Clearly $\chi_{\nu, F}(\tau, z)$ is holomorphic on $\mathbb{H}^{g} \times \mathbb{C}^{g}$ for all $\nu \in \mathbb{N}_{0}^{g}$. We note that if ϕ has the Fourier expansion $\phi(\tau, z)=\sum_{\substack{n, r \in \mathcal{O}_{K}^{*} \\ 4 n m-r^{2} \geqslant 0}} c_{\phi}(n, r) e[\operatorname{tr}(n \tau+r z)]$, then for any $t \in \mathbb{N}$, the function $L_{m}^{t}(\phi)$ has the Fourier expansion

$$
\begin{equation*}
L_{m}^{t}(\phi)(\tau, z)=\sum_{\substack{n, r \in \mathcal{O}_{K}^{*} \\ 4 n m-r^{2} \geqslant 0}} c_{\phi}(n, r)\left(4 n m-r^{2}\right)^{t} e[\operatorname{tr}(n \tau+r z)] . \tag{19}
\end{equation*}
$$

Replacing ϕ and ϕ^{\prime} by their Fourier expansions and using the repeated action of the heat operator from (19), we have

$$
\begin{aligned}
\chi_{\nu, F}(\tau, z)= & \sum_{\substack{a \in \mathbb{N}_{0}^{g} \\
a \leqslant \nu}} \frac{\left(1+m^{\prime} X\right)^{a}(1-m X)^{\nu-a}}{a!(\nu-a)!(k-3 / 2+a)!\left(k^{\prime}-3 / 2+\nu-a\right)!} \\
& \times\left(\sum_{\substack{n, r \in \mathcal{O}_{K}^{*} \\
4 n m-r^{2} \geqslant 0}}\left(4 n m-r^{2}\right)^{a} c_{\phi}(n, r) e[\operatorname{tr}(n \tau+r z)]\right) \\
& \times\left(\sum_{\substack{n^{\prime}, r^{\prime} \in \mathcal{O}_{K}^{*} \\
4 n^{\prime} m^{\prime}-r^{\prime} \geqslant 0}}\left(4 n^{\prime} m^{\prime}-r^{\prime 2}\right)^{\nu-a} c_{\phi^{\prime}}\left(n^{\prime}, r^{\prime}\right) e\left[\operatorname{tr}\left(n^{\prime} \tau+r^{\prime} z\right)\right]\right) \\
= & \sum_{\substack{N, R \in \mathcal{O}_{K}^{*} \\
4 N\left(m+m^{\prime}\right)-R^{2} \geqslant 0}}\left(\sum_{\substack{a \in \mathbb{N}_{0}^{g} \\
a \leqslant \nu}} \frac{\left(1+m^{\prime} X\right)^{a}(1-m X)^{\nu-a}}{a!(\nu-a)!(k-3 / 2+a)!\left(k^{\prime}-3 / 2+\nu-a\right)!}\right. \\
& \left.\times \sum_{\substack{n, n^{\prime}, r, r^{\prime} \in \mathcal{O}_{K}^{*} \\
n+n^{\prime} \\
r+r^{\prime}=R, 4 n m-r^{2}, 0, 4 n^{\prime} m^{\prime}-r^{\prime 2} \geqslant 0}}\left(4 n m-r^{2}\right)^{a}\left(4 n^{\prime} m^{\prime}-r^{\prime 2}\right)^{\nu-a} c_{\phi}(n, r) c_{\phi^{\prime}}\left(n^{\prime}, r^{\prime}\right)\right) e[\operatorname{tr}(N \tau+R z)] .
\end{aligned}
$$

One can check that $4 N\left(m+m^{\prime}\right)-R^{2} \geqslant 0$ for the above choices of N and R and the last sum is a finite sum for a given N and R. From (4), it is clear that $\left.\chi_{\nu, F}\right|_{m+m^{\prime}} Y=\chi_{\nu, F}$ for all $Y \in$ $\mathcal{O}_{K} \times \mathcal{O}_{K}$. Hence from Theorem 3.2, $\xi_{\nu, F}(\tau, z)$ is a Hilbert-Jacobi form of weight $k+k^{\prime}+2 \nu$ and index $m+m^{\prime}$. This completes the proof in this case because $\left[\phi, \phi^{\prime}\right]_{X, 2 \nu}^{k, k^{\prime}, m, m^{\prime}}(\tau, z)=\xi_{\nu, F}(\tau, z)$.

Case II: $l \neq \overrightarrow{0}$. For a fixed $X \in \mathbb{C}^{g}$, consider the function $G_{X}(\tau, z ; W)$ defined by

$$
\begin{equation*}
G_{X}(\tau, z ; W)=\sum_{\substack{j \in \mathbb{N}_{0}^{g} \\ j \leqslant l}}(-1)^{j} m^{l-j} m^{\prime j} \partial_{z}^{j} \widetilde{\phi}\left(\tau, z ;\left(1+m^{\prime} X\right) W\right) \partial_{z}^{l-j} \widetilde{\phi^{\prime}}(\tau, z ;(1-m X) W) \tag{20}
\end{equation*}
$$

We show that the function G_{X} satisfy the same functional equation as (11) with weight $k+k^{\prime}+l$ and index $m+m^{\prime}$. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}\left(\mathcal{O}_{K}\right)$. Using (20), we have

$$
\begin{aligned}
G_{X}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d} ; \frac{W}{(c \tau+d)^{2}}\right)=\sum_{\substack{j \in \mathbb{N}_{l}^{g} \\
j \leqslant l}}(& -1)^{j} m^{l-j} m^{\prime j} \partial_{z / c \tau+d}^{j} \tilde{\phi}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d} ; \frac{\left(1+m^{\prime} X\right) W}{(c \tau+d)^{2}}\right) \\
& \times \partial_{z / c \tau+d}^{l-j} \widetilde{\phi}^{\prime}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d} ; \frac{(1-m X) W}{(c \tau+d)^{2}}\right) .
\end{aligned}
$$

Using Lemma 3.3, the above equation becomes

$$
\begin{aligned}
& G_{X}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d} ; \frac{W}{(c \tau+d)^{2}}\right) \\
& =(c \tau+d)^{k+k^{\prime}+l} e\left[\operatorname{tr}\left(\left(m+m^{\prime}\right) \frac{c z^{2}}{c \tau+d}\right)\right] e\left[4 \operatorname{tr}\left(\left(m+m^{\prime}\right) \frac{c W}{c \tau+d}\right)\right] \\
& \times \sum_{\substack{j \in \mathbb{N}^{g} g \\
j \leqslant l}}(-1)^{j} m^{l-j} m^{\prime j}\left(\sum_{\substack{a \in \mathbb{N}^{g} g \\
a \leqslant j}}\left(\frac{4 \pi i m c z}{c \tau+d}\right)^{a} \partial_{z}^{j-a} \widetilde{\phi}\left(\tau, z ;\left(1+m^{\prime} X\right) W\right)\right. \\
& \left.\times \sum_{\substack{b \in \mathbb{N}_{0}^{g} \\
b \leqslant l-j}}\left(\frac{4 \pi i m^{\prime} c z}{c \tau+d}\right)^{b} \partial_{z}^{l-j-b} \widetilde{\phi^{\prime}}(\tau, z ;(1-m X) W)\right) .
\end{aligned}
$$

Now we split the above sum into two parts,

$$
\begin{aligned}
& G_{X}\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d} ; \frac{W}{(c \tau+d)^{2}}\right) \\
& =(c \tau+d)^{k+k^{\prime}+l} e\left[\operatorname{tr}\left(\left(m+m^{\prime}\right) \frac{c z^{2}}{c \tau+d}\right)\right] e\left[4 \operatorname{tr}\left(\left(m+m^{\prime}\right) \frac{c W}{c \tau+d}\right)\right] \\
& \times\left(\sum_{\substack{j \in \mathbb{N}_{0}^{g} \\
j \leqslant l}}(-1)^{j} m^{l-j} m^{\prime j} \partial_{z}^{j} \widetilde{\phi}\left(\tau, z ;\left(1+m^{\prime} X\right) W\right) \partial_{z}^{l-j} \widetilde{\phi^{\prime}}(\tau, z ;(1-m X) W)\right. \\
& +\sum_{\substack{\alpha, \beta \in \mathbb{N}_{0}^{g} \\
\alpha+\beta<l}}\left(\sum_{\substack{j \in \mathbb{N}_{0}^{g} \\
\alpha \leqslant j \leqslant l-\beta}}(-1)^{j} m^{l-j} m^{\prime j}\left(\frac{4 \pi i m c z}{c \tau+d}\right)^{j-\alpha}\left(\frac{4 \pi i m^{\prime} c z}{c \tau+d}\right)^{l-j-\beta}\right) \\
& \left.\quad \times \partial_{z}^{\alpha} \widetilde{\phi}\left(\tau, z ;\left(1+m^{\prime} X\right) W\right) \partial_{z}^{\beta} \widetilde{\phi^{\prime}}(\tau, z ;(1-m X) W)\right) .
\end{aligned}
$$

An easy computation shows that for any pair of $\alpha, \beta \in \mathbb{N}_{0}^{g}$ with $\alpha+\beta<l$, the coefficient of $\partial_{z}^{\alpha} \widetilde{\phi} \partial_{z}^{\beta} \widetilde{\phi^{\prime}}$ in the second sum of the above equation is zero, which prove our claim. Now replacing the corresponding power series expression for $\widetilde{\phi}$ and $\widetilde{\phi}^{\prime}$ from (8) in (20), we note
that the function G_{X} has power series expansion of the form

$$
G_{X}(\tau, z ; W)=\sum_{\nu \in \mathbb{N}_{0}^{g}} \chi_{\nu, G}(\tau, z) W^{\nu}
$$

where $\chi_{\nu, G}(\tau, z)$ is given by

$$
\begin{equation*}
\sum_{\substack{a \in \mathbb{N}_{V_{0}^{g}}^{g} \\ a \leqslant \nu}} \frac{\left(1+m^{\prime} X\right)^{a}(1-m X)^{\nu-a}}{a!(\nu-a)!(k-3 / 2+a)!\left(k^{\prime}-3 / 2+\nu-a\right)!} \sum_{\substack{j \in \mathbb{N}_{0}^{g} \\ j \leqslant l}}(-1)^{j} m^{l-j} m^{\prime j} L_{m}^{a}\left(\partial_{z}^{j} \phi\right) L_{m^{\prime}}^{\nu-a}\left(\partial_{z}^{l-j} \phi^{\prime}\right) . \tag{21}
\end{equation*}
$$

As mentioned in the previous case one can show that for each $\nu \in \mathbb{N}_{0}^{g}$, the corresponding function $\chi_{\nu, G}(\tau, z)$ has the following Fourier expansion.

$$
\begin{aligned}
\chi_{\nu, G}(\tau, z) & =\sum_{\substack{N, R \in \mathcal{O}_{K}^{*}, 4 N\left(m+m^{\prime}\right)-R^{2} \geqslant 0}}\left(\sum_{\substack{a \in \mathbb{N}^{g} \\
a \leqslant \nu}} \frac{\left(1+m^{\prime} X\right)^{a}(1-m X)^{\nu-a}}{a!(\nu-a)!(k-3 / 2+a)!\left(k^{\prime}-3 / 2+\nu-a\right)!} \sum_{\substack{ \\
j \in \mathbb{N}_{g}^{g} \\
j \leqslant l}}(-1)^{j} m^{l-j} m^{\prime j}\right. \\
& \left.\times \sum_{\substack{n, n^{\prime}, r, r^{\prime} \in \mathcal{O}_{K}^{*} \\
n+\prime^{\prime}=N, r+r^{\prime}=R, 4 n m-r^{2} \geqslant 0, 4 n^{\prime} m^{\prime}-r^{\prime 2} \geqslant 0}}\left(4 n m-r^{2}\right)^{a}\left(4 n^{\prime} m^{\prime}-r^{\prime 2}\right)^{\nu-a} r^{j} r^{\prime l-j} c_{\phi}(n, r) c_{\phi^{\prime}}\left(n^{\prime}, r^{\prime}\right)\right) e[\operatorname{tr}(N \tau+R z)] .
\end{aligned}
$$

Using Theorem 3.2 one can deduce that $\left[\phi, \phi^{\prime}\right]_{X, 2 \nu+l}^{k, k^{\prime}, m, m^{\prime}} \in J_{k+k^{\prime}+2 \nu+l, m+m^{\prime}}^{K}$ as $\left[\phi, \phi^{\prime}\right]_{X, 2 \nu+l}^{k, k^{\prime}, m, m^{\prime}}=$ $\xi_{\nu, G}(\tau, z)$ once we prove $\left.\chi_{\nu, G}(\tau, z)\right|_{m+m^{\prime}} Y=\chi_{\nu, G}(\tau, z)$ for all $\nu \in \mathbb{N}_{0}^{g}$ and $Y \in \mathcal{O}_{K} \times \mathcal{O}_{K}$. From (21) we have

$$
\begin{aligned}
\left.\chi_{\nu, G}(\tau, z)\right|_{m+m^{\prime}} Y & =\sum_{\substack{a \in \mathbb{N}^{g} \\
a \leqslant \nu}} \frac{\left(1+m^{\prime} X\right)^{a}(1-m X)^{\nu-a}}{a!(\nu-a)!(k-3 / 2+a)!\left(k^{\prime}-3 / 2+\nu-a\right)!} \\
& \times\left.\left.\sum_{\substack{j \in \mathbb{N}^{g} \\
j \leqslant l}}(-1)^{j} m^{l-j} m^{\prime j}\left(\partial_{z}^{j}\left(L_{m}^{a} \phi\right)\right)\right|_{m} Y\left(\partial_{z}^{l-j}\left(L_{m^{\prime}}^{\nu-a} \phi^{\prime}\right)\right)\right|_{m^{\prime}} Y .
\end{aligned}
$$

From Lemma 3.4 the right hand side of the above equation is equal to

$$
\begin{aligned}
& \sum_{\substack{a \in \mathbb{N}_{\begin{subarray}{c}{0} }}^{a \leqslant \nu}}\end{subarray}} \frac{\left(1+m^{\prime} X\right)^{a}(1-m X)^{\nu-a}}{a!(\nu-a)!(k-3 / 2+a)!\left(k^{\prime}-3 / 2+\nu-a\right)!} \sum_{\substack{j \in \mathbb{N}_{0}^{g} \\
j \leqslant l}}(-1)^{j} m^{l-j} m^{\prime j} \\
& \times\left(\sum_{\substack{t \in \mathbb{N}_{0}^{g} \\
t \leqslant j}}(-4 \pi i m \lambda)^{t} \partial_{z}^{j-t}\left(\left.\left(L_{m}^{a} \phi\right)\right|_{m} Y\right)\right)\left(\sum_{\substack{s \in \mathbb{N}_{0}^{g} \\
s \leqslant l-j}}\left(-4 \pi i m^{\prime} \lambda\right)^{s} \partial_{z}^{l-j-s}\left(\left.\left(L_{m^{\prime}}^{\nu-a} \phi^{\prime}\right)\right|_{m^{\prime}} Y\right)\right) .
\end{aligned}
$$

Now using the assumption that ϕ and ϕ^{\prime} are Hilbert-Jacobi forms and $\left.\left(L_{m} \phi\right)\right|_{m} Y=L_{m}\left(\left.\phi\right|_{m} Y\right)$, the above expression is equal to

$$
\begin{aligned}
& =\sum_{\substack{a \in \mathbb{N}_{0}^{g} \\
a \leqslant \nu}} \frac{\left(1+m^{\prime} X\right)^{a}(1-m X)^{\nu-a}}{a!(\nu-a)!(k-3 / 2+a)!\left(k^{\prime}-3 / 2+\nu-a\right)!} \sum_{\substack{j \in \mathbb{N}_{0}^{g} \\
j \leqslant l}}(-1)^{j} m^{l-j} m^{j} \\
& \times\left(\sum_{\substack{t \in \mathbb{N}_{0}^{g} \\
t \leqslant j}}(-4 \pi i m \lambda)^{t} \partial_{z}^{j-t} L_{m}^{a} \phi\right)\left(\sum_{\substack{s \in \mathbb{N}_{0}^{g} \\
s \leqslant l-j}}\left(-4 \pi i m^{\prime} \lambda\right)^{s} \partial_{z}^{l-j-s} L_{m^{\prime}}^{\nu-a} \phi^{\prime}\right) .
\end{aligned}
$$

For a fixed $a \in \mathbb{N}_{0}^{g}$ we note the following. For $\alpha, \beta \in \mathbb{N}_{0}^{g}$ with $\alpha+\beta<l$, the coefficient of $\partial_{z}^{\alpha}\left(L_{m}^{a} \phi\right) \partial_{z}^{\beta}\left(L_{m}^{\nu-a} \phi^{\prime}\right)$ in the above expression is zero. Thus $\chi_{\nu, G}$ is invariant under the lattice action and this completes the proof.

5. Concluding Remark

Theorem 2.5 gives justification to expect that the space of bilinear holomorphic differential operators raising the weight $\nu=\left(\nu_{1}, \ldots, \nu_{g}\right) \in \mathbb{N}_{0}^{g}$ is at least $\prod_{i=1}^{g}\left(1+\left[\nu_{i} / 2\right]\right)$ for the space of Hilbert-Jacobi forms over a totally real number field of degree g over \mathbb{Q} on $\mathbb{H}^{g} \times \mathbb{C}^{g}$. It would be of interest to prove the generalization of the result of Böcherer [1] in case of Hilbert-Jacobi forms that the dimension is exactly equal to $\prod_{i=1}^{g}\left(1+\left[\nu_{i} / 2\right]\right)$.

Acknowledgements. Most of the work was carried out when the first author was a graduate student at the National Institute of Science Education and Research (NISER), Bhubaneswar. She thanks NISER for all the support. The second author is partially funded by grant MTR/2017/000228. The authors would like to thank the referee for the helpful corrections, which improved the paper.

References

[1] S. Böcherer, Bilinear holomorphic differential operators for the Jacobi group, Comment. Math. Univ. St. Pauli 47 (1998), 135-154.
[2] Y. Choie, Jacobi forms and the heat operator, Math. Z. 1 (1997), 95-101.
[3] Y. Choie, Jacobi forms and the heat operator II, Illinois J. Math. 42 (1998), 179-186.
[4] Y. Choie and W. Eholzer, Rankin-Cohen operators for Jacobi and Siegel forms, J. Number Theory 68 (1998), 160-177.
[5] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), 271-285.
[6] M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in Mathematics, 55 Birkhäuser Boston, Inc., Boston, MA, 1985.
[7] R. A. Rankin, The construction of automorphic forms from the derivatives of a given form, J. Indian Math. Soc. 20 (1956), 103-116.
[8] R. A. Rankin, The construction of automorphic forms from the derivatives of a given forms, Michigan Math. J. 4 (1957), 181-186.
[9] H. Skogman, Jacobi forms over totally real number fields, Result. Math. 39 (2001), 169-182.
[10] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 57-75.
[11] D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, in: Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 105-169. Lecture Notes in Math., Vol. 627 (Springer, Berlin, 1977).

Moni Kumari, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai400005 , India.

E-mail address: moni@math.tifr.res.in
Brundaban Sahu, National institute of science education and Research, Bhubaneswar, HBNI, Via- Jatni, Khurda, Odisha-752050, India.

E-mail address: brundaban.sahu@niser.ac.in

[^0]: Date: January 10, 2020.
 2010 Mathematics Subject Classification. Primary 11F41, 11F50, 11F60.
 Key words and phrases. Hilbert-Jacobi forms, Rankin-Cohen brackets.

