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MONI KUMARI AND BRUNDABAN SAHU

Abstract. We construct Rankin-Cohen type differential operators on the space of Hilbert-
Jacobi forms. This generalizes a result of Choie and Eholzer (J. Number Theory, 68, 160–177
[1998]) in the case of Jacobi forms to Hilbert-Jacobi forms.

1. Introduction

There are many interesting connections between differential operators and modular forms
and many interesting results have been studied. In particular, Rankin [7, 8] gave a general
description of the differential operators which send modular forms to modular forms. Co-
hen [5] constructed certain covariant bilinear operators and obtained modular forms with
interesting Fourier coefficients. Zagier [10, 11] called these covariant bilinear operators as
Rankin–Cohen operators and studied their algebraic properties.

Rankin-Cohen type operators for Jacobi forms on H × C have been studied using heat
operators in [2, 3]. Using Maass operator Böcherer [1] showed that the space of bilinear
holomorphic differential operators raising the weight ν is in general of dimension 1 + [ν/2]
for Jacobi forms on H × C. In [4], Choie and Eholzer explicitly give a family of bilinear
holomorphic differential operators using Rankin-Cohen type operators of right dimension
1 + [ν/2] and also remark (in section 8) that it would be interesting to understand how their
construction can be generalized to higher Jacobi forms.

Skogman [9] extended the theory of Jacobi forms over a totally real number field, known
as Hilbert-Jacobi forms. In this paper, we study differential operators of Rankin-Cohen type
on the space of Hilbert-Jacobi forms which give an answer to the question posed by Choie
and Eholzer in [4].

The paper is organized as follows. In section 2 we recall basic facts about Hilbert-Jacobi
forms and define Rankin-Cohen type operators for the Hilbert-Jacobi forms and state the
main result. We develop certain tools for our proof in section 3 and give a proof of the main
result in section 4. We follow the same exposition as given in [4].

2. Preliminaries and Statement of Result

Let K be a totally real number field of degree g := [K,Q] over Q with ring of its algebraic
integers OK and we denote its g real embedding by σ1, · · · , σg. We denote i-th embedding
of an element α ∈ K by α(i) := σi(α) for any 1 6 i 6 g. An element α ∈ K is said to be
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totally positive, α > 0, if all its embeddings α(i) into R are positive. The trace and norm
of α ∈ K are defined by tr(α) =

∑g
i=1 α

(i) and N(α) =
∏g

i=1 α
(i), respectively. The trace

and norm of an element α ∈ Cg are given by the sum and by the product of its components,
respectively. More generally, for c = (c1, . . . , cg), d = (d1, . . . , dg), k = (k1, . . . , kg) and m =
(m1, . . . ,mg) ∈ Cg, we define the following:

tr(mz) :=

g∑
i=1

mizi and (cz + d)k :=

g∏
i=1

(cizi + di)
ki .

Let ΓK := SL2(OK) =

{(
a b
c d

)
: a, b, c, d ∈ OK , ad− bc = 1

}
. We denote the Hilbert-

Jacobi group as ΓJ(K) defined by

ΓJ(K) := SL2(OK) o (OK ×OK),

with the group multiplication

γ1.γ2 :=

((
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
, (λ1, µ1)

(
a2 b2
c2 d2

)
+ (λ2, µ2)

)
,

where γi :=

((
ai bi
ci di

)
, (λi, µi)

)
for i = 1, 2. The Hilbert-Jacobi group ΓJ(K) acts on the

space Hg × Cg by((
a b
c d

)
, (λ, µ)

)
◦ (τ1, . . . , τg, z1, . . . , zg)

=

(
a(1)τ1 + b(1)

c(1)τ1 + d(1)
, . . . ,

a(g)τg + b(g)

c(g)τg + d(g)
,
z1 + λ(1)τ1 + µ(1)

c(1)τ1 + d(1)
, . . . ,

zg + λ(g)τg + µ(g)

c(g)τg + d(g)

)
where

((
a b
c d

)
, (λ, µ)

)
∈ ΓJ(K) and (τ1, ..., τg, z1, ..., zg) ∈ Hg × Cg.

For an integer x ∈ N0, we denote −→x := (x, . . . , x) ∈ Ng
0. For ν = (ν1, . . . , νg) ∈ Ng

0,
l = (l1, . . . , lg) ∈ Ng

0 and z = (z1, . . . , zg) ∈ Cg, we denote

|ν| =
g∑
i=1

νi, ν! =

g∏
i=1

νi! and zν =

g∏
i=1

zνii .

Also we denote ν 6 l if νj 6 lj for all 1 6 j 6 g and e[z] for e2πiz for z ∈ C.
For a holomorphic function φ : Hg ×Cg → C, we define the following two slash operators.

For a fixed k ∈ Ng
0 and m ∈ OK ,(

φ|k,mM
)
(τ, z) := (cz + d)−ke

[
tr

(
− mcz2

cτ + d

)]
φ

((
a b
c d

)
◦ (τ, z)

)
, (1)

for M =

(
a b
c d

)
∈ SL2(OK) and(

φ|m(λ, µ)
)
(τ, z) := e[tr

(
m(λ2τ + 2λz)

)
]φ ((λ, µ) ◦ (τ, z)) for (λ, µ) ∈ OK ×OK . (2)

Definition 2.1. A Hilbert-Jacobi form of weight k and index m for a totally real field K is
a holomorphic function φ : Hg × Cg → C which satisfies the following conditions:
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(1) φ|k,mγ = φ, for all γ ∈ ΓK ,
(2) φ|m(λ, µ) = φ, for all (λ, µ) ∈ OK ×OK ,
(3) φ has a Fourier expansion of the form,

φ(τ, z) =
∑

n,r∈O∗K
4nm−r2>0

cφ(n, r)e[tr(nτ + rz)],

where O∗K = {µ ∈ K | tr(µλ) ∈ Z for all λ ∈ OK}.
We note that O∗K is δ−1K , the inverse of the different ideal of the number field K. Moreover,

such a form φ is called Hilbert-Jacobi cusp form if cφ(n, r) = 0 whenever 4nm− r2 = 0. Let

JKk,m (JK,cuspk,m ) denote the space of Hilbert-Jacobi forms (Hilbert-Jacobi cusp forms) of weight
k and index m for the field K. For more details on the theory of Hilbert-Jacobi forms we
refer to [9]. Now we define the heat operators.

Definition 2.2. For 1 6 j 6 g, let ej be j-th unit vector in Rg. For a given m ∈ OK , we
define the m-th heat operator,

Lm :=

g∏
j=1

(
8πim

∂

∂τ
− ∂2

∂z2

)ej
. (3)

In the above definition, we denote “
∏

” for the composition of operators. Now we state
some properties of these operators which can be proved as in the case of Jacobi forms [2].

Lemma 2.3. Let φ(τ, z) be a holomorphic function on the space Hg × Cg, k ∈ Zg and
m ∈ OK. Then

(1) for X ∈ OK ×OK ,
(Lmφ)|mX = Lm(φ|mX), (4)

(2) for any ν ∈ Ng
0 and M ∈ SL2(OK), we have

Lm
ν(φ)|k+2ν,mM =

∑
l∈Ng0
l6ν

(
ν

l

)
(8πimc)ν−l(α + ν − 1)!

(cτ + d)ν−l(α + l − 1)!
Llm(φ|k,mM), (5)

where α = k − 1
2
.

We define Rankin-Cohen type differential operators on the space of Hilbert-Jacobi forms
using the heat operators.

Definition 2.4. Let φ, φ′ : Hg × Cg → C be two holomorphic functions and let k, k′,m,m′

be complex numbers. Then for any X ∈ Cg, ν ∈ Ng
0 and l ∈ Ng

0 with li ∈ {0, 1} for all
1 6 i 6 g, define

[φ, φ′]k,k
′,m,m′

X,2ν+l =
∑
j∈Ng0
j6l

(−1)jml−jm′j[∂jzφ, ∂
l−j
z φ′]k,k

′,m,m′,l
X,2ν , (6)

where for any two holomorphic functions f and f ′ on Hg × Cg

[f, f ′]k,k
′,m,m′,l

X,2ν :=
∑

r,s,p∈Ng0,
r+s+p=ν

Ar,s,p(k, k
′, l)(1 +mX)s(1−m′X)rLpm+m′(L

r
m(f)Lsm′(f

′)),
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with

Ar,s,p(k, k
′, l) =

(−(k + k′ + l − 3/2 + r + s+ p))r+s
r! s! p! (k − 3/2 + r)! (k′ − 3/2 + s)!

.

Here (x)n =
∏

06i6n−1(x− i).

Remark 2.1. In the above definition we have the following convention.

[φ, φ′]k,k
′,m,m′,0

X,2ν = [φ, φ′]k,k
′,m,m′

X,2ν .

Remark 2.2. Note that constants Ar,s,p(k, k
′, l) are different than Cr,s,p(k, k

′), which appeared
in [4] for the field K = Q.

Now we state the main result.

Theorem 2.5. Let φ, φ′ be Hilbert-Jacobi forms of weight and index k,m and k′,m′ respec-
tively. Then for any X ∈ Cg, ν ∈ Ng

0 and l ∈ Ng
0 with li ∈ {0, 1} for all 1 6 i 6 g,

[φ, φ′]k,k
′,m,m′

X,2ν+l (7)

is a Hilbert-Jacobi form of weight k + k′ + 2ν + l and index m+m′.

There are two known methods to prove result like Theorem 2.5. First one, by showing

that [φ, φ′]k,k
′,m,m′

X,2ν+l satisfy all the required conditions to be a Hilbert-Jacobi form (see, [4,
section 4]) and second one, by using generating series (see, [6, Theorem 3.2], [4, section 5]).
We prove our result by using generating series. In the next section we shall develop some
tools for the proof of Theorem 2.5.

3. Intermediate results

Proposition 3.1. Let φ(τ, z) ∈ JKk,m and α = k− 1
2
. Then the formal power series associated

with the Jacobi form φ defined by

φ̃(τ, z;W ) :=
∑
ν∈Ng0

Lνm(φ)(τ, z)

ν!(α + ν − 1)!
W ν , (8)

satisfies the following functional equation,

φ̃

(
Mτ,

z

cτ + d
;

W

(cτ + d)2

)
= (cz + d)ke

[
tr

(
mcz2

cτ + d

)]
e

[
4tr

(
mcW

cτ + d

)]
φ̃(τ, z;W ), (9)

for all M =
(∗ ∗
c d

)
∈ SL2(OK).

Proof. From the definition of φ̃, we have

φ̃

(
Mτ,

z

cτ + d
;

W

(cτ + d)2

)
=

∑
ν∈Ng0

Lνm(φ)

(
Mτ,

z

cτ + d

)
ν!(α + ν − 1)!

W ν

(cτ + d)2ν

=
∑
ν∈Ng0

(cτ + d)ke

[
tr

(
mcz2

cτ + d

)]
(Lνmφ)|k+2ν,mM(τ, z)

ν!(α + ν − 1)!
W ν .
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Using (5) and the assumption that φ ∈ JKk,m, the right hand side of the above equation is
equal to

(cτ + d)ke

[
tr

(
mcz2

cτ + d

)]∑
ν∈Ng0

1

ν!(α + ν − 1)!

(∑
l∈Ng0
l6ν

(
ν

l

)
(8πimc)ν−l(α + ν − 1)!

(cτ + d)ν−l(α + l − 1)!
Llm(φ|k,mM)

)
W ν

= (cτ + d)ke

[
tr

(
mcz2

cτ + d

)]∑
ν∈Ng0

(∑
l∈Ng0
l6ν

1

l!(ν − l)!(α + l − 1)!

(8πimc)ν−l

(cτ + d)ν−l
Llm(φ)

)
W ν

= (cz + d)ke

[
tr

(
mcz2

cτ + d

)]
e

[
4tr

(
mcW

cτ + z

)]
φ̃(τ, z,W ).

This completes the proof. �

Let f̃(τ, z;W ) be a power series in W whose coefficients are holomorphic functions on

Hg × Cg i.e., f̃(τ, z;W ) =
∑

ν∈Ng0
χν(τ, z)W ν . For M =

(
a b
c d

)
∈ SL2(OK), we define

(
f̃ |k,mM

)
(τ, z;W ) := (cτ + d)−ke

[
−tr

(
mcz2

cτ + d

)]
e

[
−4tr

(
mcW

cτ + d

)]
× f̃

(
aτ + b

cτ + d
,

z

cτ + d
;

W

(cτ + d)2

)
.

Next we show that for a given formal power series satisfying certain conditions, one can
construct a family of Hilbert-Jacobi forms like in the case of Jacobi forms [Theorem 5.1, [4]].

Theorem 3.2. Let φ̃(τ, z;W ) be a formal power series in W, i.e.,

φ̃(τ, z;W ) =
∑
ν∈Ng0

χν(τ, z)W ν , (10)

satisfying the functional equation(
φ̃|k,mM

)
(τ, z;W ) = φ̃(τ, z;W ), for all M =

(
a b
c d

)
∈ SL2(OK), (11)

for some k ∈ Ng
0 and m ∈ OK. Furthermore, assume that the coefficients χν(τ, z) are

holomorphic functions on Hg × Cg with Fourier expansion of the form,

χν(τ, z) =
∑

n,r∈O∗K
4nm−r2>0

c(n, r)e[tr(nτ + rz)], (12)

satisfying
χν |mY = χν for all Y ∈ OK ×OK . (13)

Then for each ν ∈ Ng
0, the function ξν(τ, z) defined by

ξν(τ, z) :=
∑
j∈Ng0
j6ν

(−(k − 3/2 + ν))ν−j
j!

Ljm(χν−j), (14)

is a Hilbert-Jacobi form of weight k + 2ν and index m.
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Remark 3.1. We call k and m appeared in the equation (11) is the weight and index of the

power series φ̃ respectively.

Proof. We show that ξν(τ, z), defined by (14) is invariant under SL2(OK) action. For 1 6
j 6 g, let ej be the j-th unit vector in Rg. Define the j-th differential operator

L̃
ej
k,m := 8πim(j) ∂

∂τj
− ∂2

∂z2j
− (kj − 1/2)

∂

∂Wj

−Wj
∂2

∂W 2
j

,

where k = (k1, k2, . . . , kg) and m ∈ OK . Let M̃k,m be the collection of all functions

f̃(τ, z;W )=
∑

ν∈Ng0
χ′ν(τ, z)W ν which satisfy the condition:(

f̃ |k,mM
)
(τ, z;W ) = f̃(τ, z;W ), for all M =

(
a b
c d

)
∈ SL2(OK).

We note that the constant term χ′0(τ, z) in the power series expansion of f̃(τ, z;W ) ∈ M̃k,m

satisfy the following:(
χ′0|k,mM

)
(τ, z) = χ′0(τ, z), for all M =

(
a b
c d

)
∈ SL2(OK). (15)

Then using the definition of slash operator (11) one can show that

L̃
ej
k,m(φ̃|k,mM) = (L̃

ej
k,mφ̃)|k+2ej ,mM,

for all M ∈ SL2(OK). We note that
∏g

j=1 L̃
ej
k,m (the composition of all L̃

ej
k,m for 1 6 j 6 g),

denoted by L̃k,m satisfy

L̃k,m(φ̃|k,mM) = (L̃k,mφ̃)|k+2,mM, for all M ∈ SL2(OK).

In other word, L̃k,m is a map from M̃k,m to M̃k+2,m which is given in terms of power series
by

L̃k,m :
∑
λ∈Ng0

χλ(τ, z)W λ →
∑
λ∈Ng0

(∑
j∈Ng0
j61

(−1)1+j
(
1
j

)
(λ+ 1− j)!(λ+ α− j)!Ljm(χλ+1−j)

λ!(λ+ α− 1)!

)
W λ,

with α = k − 1/2. Composing the maps L̃k+i,m for 1 6 i 6 ν − 1,

M̃k,m

L̃k,m−−−→ M̃k+2,m

L̃k+2,m−−−−→ · · ·
L̃k+2ν−2,m−−−−−−→ M̃k+2ν,m

then it maps
∑

λ∈Ng0
χλ(τ, z)W λ to∑

λ∈Ng0

(∑
j∈Ng0
j6ν

(−1)ν+j
(
ν
j

)
(λ+ ν − j)!(λ+ 2ν + α− j − 2)!Ljm(χλ+ν−j)

λ!(λ+ α + ν − 2)!

)
W λ.

We note that the constant term i.e., λ =
−→
0 in the above series is ν! times ξν . Hence from

(15), ξν is invariant under SL2(OK) action. The other conditions hold easily from given
hypothesis on function χν(τ, z). �

In the next two lemmas we show how the operator ∂z behaves under the group and lattice
actions.
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Lemma 3.3. Let φ be a Hilbert-Jacobi form of weight k and index m. For j ∈ Ng
0 with

ji ∈ {0, 1} for all 1 6 i 6 g, we have

∂jz/cτ+dφ̃

(
aτ + b

cτ + d
,

z

cτ + d
;

W

(cτ + d)2

)
= (cτ + d)k+je

[
tr

(
mcz2

cτ + d

)]
e

[
4tr

(
mcW

cτ + d

)]∑
a∈Ng0
a6j

(
4πimcz

cτ + d

)a
∂j−az φ̃(τ, z;W ). (16)

Proof. This Lemma is an easy consequence of Proposition 3.1. �

Lemma 3.4. Suppose f(z) is a holomorphic function on the space Hg and Y = (λ, µ) ∈
OK ×OK. Then for j ∈ Ng

0 with ji ∈ {0, 1} for all 1 6 i 6 g, we have

(∂jzf)|mY =
∑
a∈Ng0
a6j

(−4πimλ)a∂j−az (f |mY ). (17)

Proof. One can prove this result using the definition of the action “|mY ”. �

4. Proof of Theorem 2.5

First we prove for case l =
−→
0 and then for general case l 6= −→0 .

Case I: l =
−→
0 . For a fixed X ∈ Cg, consider the series FX(τ, z;W ) defined by

FX(τ, z;W ) = φ̃
(
τ, z; (1 +m′X)W

)
φ̃′
(
τ, z; (1−mX)W

)
,

where φ̃ and φ̃′ are defined by the equation (8). We shall show that the function FX(τ, z;W )
satisfy all the necessary conditions for Theorem 3.2 and consequently deduce the result.

Using the corresponding functional equation for φ̃ and φ̃′ given in the Proposition 3.1, one
can easily show that the function FX(τ, z;W ) also satisfy the same functional equation as
(11) with weight k + k′ and index m+m′.

Now we shall look the power series expansion of FX . Replacing φ̃ and φ̃′ with their corre-
sponding expressions (8) in FX , we get

FX(τ, z;W ) =

(∑
ν∈Ng0

(1 +m′X)νLνm(φ)

ν! (k − 3/2 + ν)!
W ν

) (∑
ν∈Ng0

(1−mX)νLνm(φ′)

ν! (k′ − 3/2 + ν)!
W ν

)

=
∑
ν∈Ng0

(∑
a∈Ng0
a6ν

(1 +m′X)a(1−mX)ν−a

a! (ν − a)! (k − 3/2 + a)! (k′ − 3/2 + ν − a)!
Lam(φ)Lν−am′ (φ′)

)
W ν

=
∑
ν∈Ng0

χν,F (τ, z)W ν

where

χν,F (τ, z) :=
∑
a∈Ng0
a6ν

(1 +m′X)a(1−mX)ν−a

a! (ν − a)! (k − 3/2 + a)! (k′ − 3/2 + ν − a)!
Lam(φ)Lν−am′ (φ′). (18)
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Clearly χν,F (τ, z) is holomorphic on Hg×Cg for all ν ∈ Ng
0. We note that if φ has the Fourier

expansion φ(τ, z) =
∑

n,r∈O∗K
4nm−r2>0

cφ(n, r)e[tr(nτ + rz)], then for any t ∈ N, the function Ltm(φ)

has the Fourier expansion

Ltm(φ)(τ, z) =
∑

n,r∈O∗K
4nm−r2>0

cφ(n, r)(4nm− r2)te[tr(nτ + rz)]. (19)

Replacing φ and φ′ by their Fourier expansions and using the repeated action of the heat
operator from (19), we have

χν,F (τ, z) =
∑
a∈Ng0
a6ν

(1 +m′X)a(1−mX)ν−a

a! (ν − a)! (k − 3/2 + a)! (k′ − 3/2 + ν − a)!

×
( ∑

n,r∈O∗K
4nm−r2>0

(4nm− r2)acφ(n, r)e[tr(nτ + rz)]

)

×
( ∑

n′,r′∈O∗K
4n′m′−r′2>0

(4n′m′ − r′2)ν−acφ′(n′, r′)e[tr(n′τ + r′z)]

)

=
∑

N,R∈O∗K
4N(m+m′)−R2>0

(∑
a∈Ng0
a6ν

(1 +m′X)a(1−mX)ν−a

a! (ν − a)! (k − 3/2 + a)! (k′ − 3/2 + ν − a)!

×
∑

n,n′,r,r′∈O∗K
n+n′=N,
r+r′=R,

4nm−r2>0,
4n′m′−r′2>0

(4nm− r2)a(4n′m′ − r′2)ν−acφ(n, r)cφ′(n
′, r′)

)
e[tr(Nτ +Rz)].

One can check that 4N(m+m′)−R2 > 0 for the above choices of N and R and the last sum
is a finite sum for a given N and R. From (4), it is clear that χν,F |m+m′Y = χν,F for all Y ∈
OK×OK . Hence from Theorem 3.2, ξν,F (τ, z) is a Hilbert-Jacobi form of weight k+k′+2ν and

index m+m′. This completes the proof in this case because [φ, φ′]k,k
′,m,m′

X,2ν (τ, z) = ξν,F (τ, z).

Case II: l 6= −→0 . For a fixed X ∈ Cg, consider the function GX(τ, z;W ) defined by

GX(τ, z;W ) =
∑
j∈Ng0
j6l

(−1)jml−jm′j∂jz φ̃
(
τ, z; (1 +m′X)W

)
∂l−jz φ̃′

(
τ, z; (1−mX)W

)
. (20)
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We show that the function GX satisfy the same functional equation as (11) with weight

k + k′ + l and index m+m′. Let
(
a b
c d

)
∈ SL2(OK). Using (20), we have

GX

(
aτ + b

cτ + d
,

z

cτ + d
;

W

(cτ + d)2

)
=
∑
j∈Ng0
j6l

(−1)jml−jm′j∂jz/cτ+dφ̃

(
aτ + b

cτ + d
,

z

cτ + d
;
(1 +m′X)W

(cτ + d)2

)

× ∂l−jz/cτ+dφ̃
′
(
aτ + b

cτ + d
,

z

cτ + d
;
(1−mX)W

(cτ + d)2

)
.

Using Lemma 3.3, the above equation becomes

GX

(
aτ + b

cτ + d
,

z

cτ + d
;

W

(cτ + d)2

)
= (cτ + d)k+k

′+le

[
tr

(
(m+m′)

cz2

cτ + d

)]
e

[
4tr

(
(m+m′)

cW

cτ + d

)]
×
∑
j∈Ng0
j6l

(−1)jml−jm′j
(∑
a∈Ng0
a6j

(
4πimcz

cτ + d

)a
∂j−az φ̃

(
τ, z; (1 +m′X)W

)

×
∑
b∈Ng0
b6l−j

(
4πim′cz

cτ + d

)b
∂l−j−bz φ̃′

(
τ, z; (1−mX)W

))
.

Now we split the above sum into two parts,

GX

(
aτ + b

cτ + d
,

z

cτ + d
;

W

(cτ + d)2

)
= (cτ + d)k+k

′+le

[
tr

(
(m+m′)

cz2

cτ + d

)]
e

[
4tr

(
(m+m′)

cW

cτ + d

)]
×
(∑
j∈Ng0
j6l

(−1)jml−jm′j∂jz φ̃
(
τ, z; (1 +m′X)W

)
∂l−jz φ̃′

(
τ, z; (1−mX)W

)

+
∑

α,β∈Ng0
α+β<l

( ∑
j∈Ng0

α6j6l−β

(−1)jml−jm′j
(

4πimcz

cτ + d

)j−α(
4πim′cz

cτ + d

)l−j−β )

× ∂αz φ̃
(
τ, z; (1 +m′X)W

)
∂βz φ̃

′
(
τ, z; (1−mX)W

))
.

An easy computation shows that for any pair of α, β ∈ Ng
0 with α + β < l, the coefficient

of ∂αz φ̃ ∂
β
z φ̃
′ in the second sum of the above equation is zero, which prove our claim. Now

replacing the corresponding power series expression for φ̃ and φ̃′ from (8) in (20), we note
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that the function GX has power series expansion of the form

GX(τ, z;W ) =
∑
ν∈Ng0

χν,G(τ, z)W ν ,

where χν,G(τ, z) is given by∑
a∈Ng0
a6ν

(1 +m′X)a(1−mX)ν−a

a! (ν − a)! (k − 3/2 + a)! (k′ − 3/2 + ν − a)!

∑
j∈Ng0
j6l

(−1)jml−jm′jLam(∂jzφ)Lν−am′ (∂l−jz φ′).

(21)
As mentioned in the previous case one can show that for each ν ∈ Ng

0, the corresponding
function χν,G(τ, z) has the following Fourier expansion.

χν,G(τ, z) =
∑

N,R∈O∗K ,
4N(m+m′)−R2>0

(∑
a∈Ng0
a6ν

(1 +m′X)a(1−mX)ν−a

a! (ν − a)! (k − 3/2 + a)! (k′ − 3/2 + ν − a)!

∑
j∈Ng0
j6l

(−1)jml−jm′j

×
∑

n,n′,r,r′∈O∗K
n+n′=N,
r+r′=R,

4nm−r2>0,
4n′m′−r′2>0

(4nm− r2)a(4n′m′ − r′2)ν−arjr′l−jcφ(n, r)cφ′(n
′, r′)

)
e[tr(Nτ +Rz)].

Using Theorem 3.2 one can deduce that [φ, φ′]k,k
′,m,m′

X,2ν+l ∈ JKk+k′+2ν+l,m+m′ as [φ, φ′]k,k
′,m,m′

X,2ν+l =

ξν,G(τ, z) once we prove χν,G(τ, z)|m+m′Y = χν,G(τ, z) for all ν ∈ Ng
0 and Y ∈ OK × OK .

From (21) we have

χν,G(τ, z)|m+m′Y =
∑
a∈Ng0
a6ν

(1 +m′X)a(1−mX)ν−a

a! (ν − a)! (k − 3/2 + a)! (k′ − 3/2 + ν − a)!

×
∑
j∈Ng0
j6l

(−1)jml−jm′j(∂jz(L
a
mφ))|mY (∂l−jz (Lν−am′ φ

′))|m′Y.

From Lemma 3.4 the right hand side of the above equation is equal to∑
a∈Ng0
a6ν

(1 +m′X)a(1−mX)ν−a

a! (ν − a)! (k − 3/2 + a)! (k′ − 3/2 + ν − a)!

∑
j∈Ng0
j6l

(−1)jml−jm′j

×
(∑
t∈Ng0
t6j

(−4πimλ)t∂j−tz ((Lamφ)|mY )

)( ∑
s∈Ng0
s6l−j

(−4πim′λ)s∂l−j−sz ((Lν−am′ φ
′)|m′Y )

)
.
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Now using the assumption that φ and φ′ are Hilbert-Jacobi forms and (Lmφ)|mY = Lm(φ|mY ),
the above expression is equal to

=
∑
a∈Ng0
a6ν

(1 +m′X)a(1−mX)ν−a

a! (ν − a)! (k − 3/2 + a)! (k′ − 3/2 + ν − a)!

∑
j∈Ng0
j6l

(−1)jml−jm′j

×
(∑
t∈Ng0
t6j

(−4πimλ)t∂j−tz Lamφ

)( ∑
s∈Ng0
s6l−j

(−4πim′λ)s∂l−j−sz Lν−am′ φ
′
)
.

For a fixed a ∈ Ng
0 we note the following. For α, β ∈ Ng

0 with α + β < l, the coefficient of
∂αz (Lamφ) ∂βz (Lν−am φ′) in the above expression is zero. Thus χν,G is invariant under the lattice
action and this completes the proof.

5. Concluding Remark

Theorem 2.5 gives justification to expect that the space of bilinear holomorphic differential
operators raising the weight ν = (ν1, . . . , νg) ∈ Ng

0 is at least
∏g

i=1(1+ [νi/2]) for the space of
Hilbert-Jacobi forms over a totally real number field of degree g over Q on Hg×Cg. It would
be of interest to prove the generalization of the result of Böcherer [1] in case of Hilbert-Jacobi
forms that the dimension is exactly equal to

∏g
i=1(1 + [νi/2]).
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