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1 Introduction

The distribution of quadratic residues and non-residues modulo p has been
of intrigue to the number theorists of the last several decades. Although
Gauss’ celebrated Quadratic Reciprocity Law gives a beautiful criterion to
decide whether a given number is a quadratic residue modulo p or not, it
is still an open problem to find a small upper bound on the least quadratic
non-residue mod p as a function of p, at least when p ≡ 1 (mod 8). This
is because for any given natural number N one can construct many primes
p ≡ 1 (mod 8) having the first N positive integers as quadratic residue (see,
for example, Theorem 3 below).

In 1928, Brauer [1] proved that for any given natural number N one can
find N consecutive quadratic residues as well as N consecutive quadratic
non-residues modulo p for all sufficiently large primes p. Vegh, in a series of
papers ([11], [12], [13] and [14]), studied the distribution of primitive roots
modulo p. He considered problems such as the existence of a consecutive pair
of primitive roots modulo p, or the existence of arbitrarily long arithmetic
progressions of primitive roots modulo ph whose common difference is also
a primitive root mod ph, as well as the existence of a primitive root in a
given sequence of the form g1 +b, g2 +b, · · · , gφ(p−1) +b, where b is any given
integer and the gi’s are all the primitive roots modulo p.

In 1956, L. Carlitz ([2]) proved that for sufficiently large primes p one
can find arbitrarily long strings of consecutive primitive roots modulo p.
This was independently proved by Szalay ([9] and [10]).
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In [5], some of us studied the problem of the distribution of the non-
primitive roots modulo p. More precisely, we studied the distribution of
the quadratic non-residues which are not primitive roots modulo p. In the
present paper, we improve upon [5] and prove results analogous to those of
Brauer and Szalay. Our main ingredients are some technical results due to
A. Weil [15] or Davenport [4] and Szalay [10].

For convenience, we abbreviate the term ‘quadratic non-residue which is
not a primitive root’ by ‘QNRNP’. Note further that φ(p − 1) = (p − 1)/2
if and only if p = 22m

+ 1 is a Fermat prime. In this case, the set of all
QNRNP’s modulo p is empty, since the primitive roots coincide with the
quadratic non-residues. Thus, throughout this paper we assume that p is
not a Fermat prime. We prove the following theorems.

Theorem 1. Let ε ∈ (0, 1/2) be fixed and let N be any positive integer.

Then for all primes p ≥ exp((2ε−1)8N ) satisfying

φ(p − 1)

p − 1
≤ 1

2
− ε,

we can find N consecutive QNRNP’s modulo p.

Theorem 1 above generalizes the results of A. Brauer [1] and S. Gun, et

al. [5].

Given a prime number p, we let

k :=
p − 1

2
− φ(p − 1)

denote the number of QNRNP’s modulo p and we write g1 < g2 < . . . < gk

for the increasing sequence of QNRNP’s.

Corollary 1. For any given ε ∈ (0, 1/2) and natural number N , for all

primes p ≥ exp((2ε−1)8N ) and satisfying φ(p − 1)/(p − 1) ≤ 1/2 − ε, the

sequence g1 + N, g2 + N, . . . , gk + N contains at least one QNRNP.

Theorem 2. There exists an absolute constant c0 > 0 such that for almost

all primes p, there exist a string of Np =

⌊

c0
log p

log log p

⌋

of quadratic non-

residues which are not primitive roots.

We may also combine our Theorems with above mentioned results of
Brauer and Szalay and infer that if ε ∈ (0, 1/2) and N are fixed, then for
each sufficiently large prime p with φ(p − 1)/(p − 1) < 1/2 − ε, there exist
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N consecutive quadratic residues, N consecutive primitive roots, as well as
N consecutive quadratic non-residues which furthermore are not primitive
roots. In fact, we can even arrange the quadratic residues to be the first N
quadratic residues.

Theorem 3. For every positive integer N there are infinitely many primes

p for which 1, 2, . . . , N are quadratic residues modulo p, and there ex-

ist both a string of N consecutive QNRNP ’s as well as a string of N
consecutive primitive roots. The smallest such prime can be chosen to be

< exp(exp(c1N
2)), where c1 > 0 is an absolute constant.

2 Preliminaries

Unless otherwise specified, p denotes a sufficiently large prime number. We
denote the group of residues modulo p by Zp and the multiplicative group
of Zp by Z

∗
p.

An element ζ ∈ Z
∗
p is said to be a primitive root modulo p if ζ is a

generator of Z
∗
p. Once we know a primitive root modulo p, the QNRNP’s

are precisely the elements of the set
{

ζ` : ` = 1, 3, . . . , (p − 2) and (`, p − 1) > 1
}

.

Consider a non-principal character χ : Z
∗
p −→ µp−1, where µp−1 denotes the

group of (p − 1)th roots of unity. Then it is easy to observe that χ(ζ) is a
primitive (p − 1)th root of unity if and only if ζ is a primitive root mod p.
Let η be a primitive (p−1)th root of unity and assume that χ(ζ) = η. Since
χ is a homomorphism, it follows that χ(ζ i) = χi(ζ) = ηi. Hence, by the
above observation, it is clear that χ(κ) = ηi with (i, p − 1) > 1 with some
odd i if and only if κ is a QNRNP mod p.

Let ` be any non-negative integer. We define

β`(p − 1) =
∑

1≤i≤p−1
i odd, (i,p−1)>1

(

ηi
)`

.

Lemma 1. For 0 < l < p − 1, we have

β`(p − 1) = −α`(p − 1),

where α`(p− 1) is the sum of the `th powers of the primitive (p− 1)th roots

of unity.
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Proof. Observing that

p−2
∑

i=0

ηi = 0 =

(p−3)/2
∑

i=0

η2i,

we get the desired result.

Let

χ1, χ2 = χ2
1, . . . , χp−2 = χp−2

1 , χ0 = χp−1
1 ,

be all the multiplicative characters modulo p with the convention χ`(0) = 0
for all ` = 0, 1, . . . , p − 2.

Lemma 2. We have,

p−2
∑

`=0

β`(p − 1)χ`(x) =

{

p − 1, if x is a QNRNP;
0, otherwise.

Proof. When x ≡ 0 (mod p), the statement is obvious. We assume that
x 6≡ 0 (mod p). Let η be a primitive (p − 1)th root of unity. Consider

ηi1 , ηi2 , . . . , ηik , where 1 < i1 < . . . < ik, and

(ij , p − 1) > 1 and ij is odd for all j = 1, 2, . . . , k.

The expression

1 + ηilχ1(x) +
(

ηil
)2

χ2(x) + . . . +
(

ηil
)p−2

χp−2(x)

has the value p − 1 if (χ1(x))−1 = ηil and zero otherwise whenever x 6= 0.
Thus, giving l the values 1, 2, . . . , k, and adding up the above resulting
expressions we get

β0(p − 1)χ0(x) + . . . + βp−2(p − 1)χp−2(x) =

{

p − 1, if x is QNRNP;
0, otherwise,

which completes the proof of the lemma.

The following deep theorem of A. Weil [15] is of central importance in
the proofs of Theorem 1 and Theorem 2.
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Theorem 4. For any integer ` satisfying 2 ≤ ` < p and for any non-

principal characters χ1, χ2, · · · , χ` and distinct a1, a2, . . . , a` ∈ Zp, we have

∣

∣

∣

∣

∣

p
∑

x=1

χ1(x + a1)χ2(x + a2) · · ·χ`(x + a`)

∣

∣

∣

∣

∣

≤ (` − 1)
√

p.

For ` = 2, Davenport [3] was the first one to prove the above bound.
Note also that when ` = 1, the sum is 0.

For a positive integer m, we write ω(m) for the number of distinct prime
factors of m. The next result is due to Szalay [9].

Lemma 3. We have,

p−2
∑

`=0

|α`(p − 1)| = 2ω(p−1)φ(p − 1).

3 The Proof of Theorem 1

Let M(p,N) denote the number of consecutive QNRNP modulo p of length
N in Z

∗
p. We shall start with the following technical lemma.

Lemma 4. For any prime p and any positive integer N , we have

∣

∣

∣

∣

∣

M(p,N) − p

(

k

p − 1

)N
∣

∣

∣

∣

∣

≤ 2N2Nω(p−1)√p.

Proof. First note that β0(p − 1) = k. Clearly, by Lemma 2, we have

M(p,N) =

p−N
∑

x=1







N−1
∏

j=0

[

1

p − 1

p−2
∑

`=0

β`(p − 1)χ`(x + j)

]







=

p
∑

x=1







N−1
∏

j=0

[

1

p − 1

p−2
∑

`=0

β`(p − 1)χ`(x + j)

]







= (p − 1)−N
p
∑

x=1







N−1
∏

j=0

[

k +

p−2
∑

`=1

β`(p − 1)χ`(x + j)

]







= p

(

k

p − 1

)N

+
A

(p − 1)N
,
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where

A =
∑

0≤l1,l2,··· ,lN≤p−2
(l1,...,lN )6=0





N
∏

j=1

βlj (p − 1)





p
∑

x=1





N
∏

j=1

χlj (x + j − 1)



 .

In order to finish the proof of Lemma 4, we have to estimate A. So, we
rewrite it as A = B + C, where

C =
∑

1≤l1,l2,··· ,lN≤p−2





N
∏

j=1

βlj (p − 1)





p
∑

x=1





N
∏

j=1

χlj (x + j − 1)



 ,

and B is the similar summation with at least one (but not all) of the lj ’s
equal to zero. We further separate each sum over the set for which exactly
one `i’s is zero, then exactly two of the `i’s are 0, etc., up to when just one
of the `i’s is nonzero.

Now, we look at the sum corresponding to the case when exactly j of
the `i’s are equal to zero. This means that N − j of the `i’s are non-zero.
The corresponding sum is

Bj = kj
∑

0<r1,...,rN−j≤p−2

[

N−j
∏

b=1

βrb
(p − 1)

] [

p
∑

x=1

(

N−j
∏

b=1

χrb
(x + mb)

)

+ E

]

,

where E is the sum of some (p − 1)th roots of unity and in the summation
at most N terms occur. When we take the absolute value of this summand,
we get

|Bj | ≤ kj
∑

0<r1,...,rN−j≤p−2

N−j
∏

b=1

|βrb
(p − 1)|

(
∣

∣

∣

∣

∣

p
∑

x=1

(

N−j
∏

b=1

χrb
(x + mb)

)
∣

∣

∣

∣

∣

+ N

)

≤ kj

(

p−2
∑

`=0

|β`(p − 1)|
)N−j (∣

∣

∣

∣

∣

p
∑

x=1

(

N−j
∏

b=1

χrb
(x + mb)

)∣

∣

∣

∣

∣

+ N

)

.

Now, note that |β`(p − 1)| = |α`(p − 1)| for all ` = 1, 2, . . . , p − 2, and
|β0(p − 1)| = k, while |α0(p − 1)| = φ(p − 1). Thus, by Theorem 4 and
Lemma 3, we get

|Bj | < kj
(

2ω(p−1)φ(p − 1)
)N−j

((N − j − 1)
√

p + N)

< 2Nkj
(

2ω(p−1)φ(p − 1)
)N−j √

p.
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This inequality holds for all j = 1, 2, . . . , N − 2. When j = N − 1, we get

|BN−1| ≤ kN−12ω(p−1)φ(p − 1)N.

The term C in A can also be estimated as above and we get for it

|C| ≤
(

2ω(p−1)φ(p − 1)
)N

(N − 1)
√

p.

So, we see that the inequality (1) holds when j = N − 1 as well. Adding up
all the above estimates for |Bj | and |C|, we get

A

(p − 1)N
≤ 2N

√
p

(p − 1)N

N−1
∑

j=0

(

N

j

)

kj
(

2ω(p−1)φ(p − 1)
)N−j

< 2N
√

p

(

2ω(p−1) φ(p − 1)

p − 1
+

k

p − 1

)N

< 2N2Nω(p−1)√p,

where we used the fact that 2ω(p−1)φ(p − 1)/(p − 1) + k/(p − 1) < 2ω(p−1),
which finishes the proof of the lemma.

Proof of Theorem 1. We assume that N ≥ 4. From the definition of k, it is
easy to observe that

k

p − 1
=

1

2
− φ(p − 1)

p − 1
≥ ε.

Lemma 4 above tells us now that

pεN − M(p,N) ≤
∣

∣

∣

∣

∣

M(p,N) − p

(

k

p − 1

)N
∣

∣

∣

∣

∣

≤ 2N2Nω(p−1)√p,

The above chain of inequalities obviously implies that M(p,N) > 0 if

√
pεN > 2N2Nω(p−1). (1)

This last inequality is fulfilled if

log p > 2 log(2N) + 2N
(

ω(p − 1) log 2 + log(ε−1)
)

. (2)

For p > 4 · 106, we have that ω(p − 1) < 2 log p/ log log p. Thus, for such
values of p, the right hand side above is bounded above by

2 log(2N) +
4N log 2

log log p
log p + 2N log(ε−1),
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and so the desired inequality is fulfilled provided that
(

1 − 4N log 2

log log p

)

log p > 2 log(2N) + 2N log(ε−1).

When p > exp(28N ), the factor appearing in parenthesis in the left hand
side of the last inequality above is ≥ 1/2. Note that since N ≥ 1, we have
that exp(28N ) > 4 · 106, so the inequality ω(p − 1) < 2 log p/(log log p) is
indeed satisfied for such values of p. Thus, in this range for p it suffices that

log p ≥ 4 log(2N) + 4N log(ε−1),

leading to p ≥ (2N)4ε−4N . Since (2N)4 ≤ 24N , the inequality

exp((2ε−1)8N ) > max{exp(28N ), (2N)4(ε−1)4N}

holds for all ε ≤ 1/2 and N ≥ 1, so the proof of Theorem 1 is completed.

4 The Proof of Theorem 2

Let P be the set of all primes. Fix δ > 0 and let P1 be the set of all primes
p ∈ P such that |ω(p − 1) − log log p| < δ log log p and p − 1 is divisible
by some odd prime q ≤ log log p. It is well-known that P1 contains most
primes; that is, if x is large then the set of primes p ∈ P\P1 is of cardinality
o(π(x)) as x → ∞.

We now let x be a large positive real number. Let p ≤ x be a prime. We
assume that p > x/ log x, since there are only π(x/ log x) = o(π(x)) primes
p ≤ x/ log x. Then log p ≥ log x − log log x, so log log p = log log x + O(1).
Thus, if p ∈ P1∩ [x/ log x, x] and x is large, then ω(p−1) ≤ (1+2δ) log log x.
Furthermore, if q is the smallest odd prime factor of p−1, then φ(p−1)/(p−
1) ≤ 1/2 − 1/(2q), and since 2q ≤ 2 log log x, we can take ε = 1/(2 log log x)
and hence ε−1 = 2 log log x. With all these choices, inequality (2) will be
fulfilled if

log x − log log x > 2 log(2N)

+ 2N ((1 + 2δ) log log x log 2 + log(2 log log x)) .

The above inequality is satisfied if we choose N =

⌊

c3
log x

log log x

⌋

, where we

can take c3 to be a positive constant < 1/(2 log 2), provided that afterwards
δ is chosen to be small enough and x is then chosen to be sufficiently large,
which completes the proof of this theorem.
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5 Proof of Theorem 3

Proof of Theorem 3. First we prove that there exist infinitely many
primes p for which 1, 2, . . . , N are all quadratic residues modulo p for any
given natural number N . For each prime q ≥ 5 let aq (mod q) be a quadratic
residue modulo q such that aq > 1 and put a3 = 1. Let p be a prime
congruent to 1 modulo 8 and to aq modulo q for all odd primes q ≤ N .
Then, by Quadratic Reciprocity,

(

q

p

)

=

(

p

q

)

=

(

aq

q

)

= 1

whenever q ≤ N is an odd prime. Furthermore,

(

2

p

)

= 1 because p ≡ 1

(mod 8). Using the multiplicativity property of the Legendre symbol, we

get that

(

a

p

)

= 1, whenever a is a positive integer all whose prime factors

are ≤ N . In particular, the first N positive integers are quadratic residues
modulo p. Note that 3 | (p − 1), and from the argument used at the proof
of Theorem 2, it follows that we may take ε = 1/6. Furthermore, p − 1
is not divisible by any prime q ∈ [5, . . . , N ]. By the Chinese Remainder
Theorem, the system of congruences p ≡ 1 (mod 8) and p ≡ aq (mod q) for
all odd primes q ≤ N has a solution p0 (mod P ), where P = 4

∏

q≤N q =
exp(O(N)). There are infinitely many primes in this progression. Now the
argument from the proof of Theorem 1 shows that such p can be chosen
on the scale of x = exp(128N ). The only problem that might worry us is
the existence of primes in the arithmetic progression p0 (mod P ) on the
scale of x. But note that P = exp(O(N)) = (log x)o(1), so the Siegel-
Walfitz Theorem, for example, tells us that the interval [x, 2x] contains
(1 + o(1))π(x)/φ(P ) primes p ≡ p0 (mod P ) (in particular, at least one of
them), which finishes the argument.

6 Final Remarks

Let N 6= 1 be any square-free natural number. Then it is well-known that N
is a quadratic non-residue modulo p for infinitely many primes p. The analo-
gous result for primitive roots is known as Artin’s Primitive Root conjecture.
In 1967, Hooley [7] proved this conjecture subject to the assumption of the
generalized Riemann hypothesis. Interestingly, it is not even known whether
2 is a primitive root modulo infinitely many primes. For more details, we
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refer to the article by Ram Murty [8]. Finally, in Theorem 1, it would be of
interest to obtain a constant M which depends only on the natural number
N and not on ε.
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