Distribution of Residues Modulo p

S. Gun, Florian Luca, P. Rath, B. Sahu and R. Thangadurai

December 11, 2006

1 Introduction

The distribution of quadratic residues and non-residues modulo p has been of intrigue to the number theorists of the last several decades. Although Gauss' celebrated Quadratic Reciprocity Law gives a beautiful criterion to decide whether a given number is a quadratic residue modulo p or not, it is still an open problem to find a small upper bound on the least quadratic non-residue $\bmod p$ as a function of p, at least when $p \equiv 1(\bmod 8)$. This is because for any given natural number N one can construct many primes $p \equiv 1(\bmod 8)$ having the first N positive integers as quadratic residue (see, for example, Theorem 3 below).

In 1928, Brauer [1] proved that for any given natural number N one can find N consecutive quadratic residues as well as N consecutive quadratic non-residues modulo p for all sufficiently large primes p. Vegh, in a series of papers ([11], [12], [13] and [14]), studied the distribution of primitive roots modulo p. He considered problems such as the existence of a consecutive pair of primitive roots modulo p, or the existence of arbitrarily long arithmetic progressions of primitive roots modulo p^{h} whose common difference is also a primitive root $\bmod p^{h}$, as well as the existence of a primitive root in a given sequence of the form $g_{1}+b, g_{2}+b, \cdots, g_{\phi(p-1)}+b$, where b is any given integer and the g_{i} 's are all the primitive roots modulo p.

In 1956, L. Carlitz ([2]) proved that for sufficiently large primes p one can find arbitrarily long strings of consecutive primitive roots modulo p. This was independently proved by Szalay ([9] and [10]).

Mathematics Subject Classification: Primary 11N69, Secondary 11A07
Key Words: Quadratic residues, Primitive roots, Finite fields.

In [5], some of us studied the problem of the distribution of the nonprimitive roots modulo p. More precisely, we studied the distribution of the quadratic non-residues which are not primitive roots modulo p. In the present paper, we improve upon [5] and prove results analogous to those of Brauer and Szalay. Our main ingredients are some technical results due to A. Weil [15] or Davenport [4] and Szalay [10].

For convenience, we abbreviate the term 'quadratic non-residue which is not a primitive root' by 'QNRNP'. Note further that $\phi(p-1)=(p-1) / 2$ if and only if $p=2^{2^{m}}+1$ is a Fermat prime. In this case, the set of all QNRNP's modulo p is empty, since the primitive roots coincide with the quadratic non-residues. Thus, throughout this paper we assume that p is not a Fermat prime. We prove the following theorems.

Theorem 1. Let $\varepsilon \in(0,1 / 2)$ be fixed and let N be any positive integer. Then for all primes $p \geq \exp \left(\left(2 \varepsilon^{-1}\right)^{8 N}\right)$ satisfying

$$
\frac{\phi(p-1)}{p-1} \leq \frac{1}{2}-\varepsilon,
$$

we can find N consecutive QNRNP's modulo p.
Theorem 1 above generalizes the results of A. Brauer [1] and S. Gun, et al. [5].

Given a prime number p, we let

$$
k:=\frac{p-1}{2}-\phi(p-1)
$$

denote the number of QNRNP's modulo p and we write $g_{1}<g_{2}<\ldots<g_{k}$ for the increasing sequence of QNRNP's.

Corollary 1. For any given $\varepsilon \in(0,1 / 2)$ and natural number N, for all primes $p \geq \exp \left(\left(2 \varepsilon^{-1}\right)^{8 N}\right)$ and satisfying $\phi(p-1) /(p-1) \leq 1 / 2-\varepsilon$, the sequence $g_{1}+N, g_{2}+N, \ldots, g_{k}+N$ contains at least one QNRNP.

Theorem 2. There exists an absolute constant $c_{0}>0$ such that for almost all primes p, there exist a string of $N_{p}=\left\lfloor c_{0} \frac{\log p}{\log \log p}\right\rfloor$ of quadratic nonresidues which are not primitive roots.

We may also combine our Theorems with above mentioned results of Brauer and Szalay and infer that if $\varepsilon \in(0,1 / 2)$ and N are fixed, then for each sufficiently large prime p with $\phi(p-1) /(p-1)<1 / 2-\varepsilon$, there exist
N consecutive quadratic residues, N consecutive primitive roots, as well as N consecutive quadratic non-residues which furthermore are not primitive roots. In fact, we can even arrange the quadratic residues to be the first N quadratic residues.

Theorem 3. For every positive integer N there are infinitely many primes p for which $1,2, \ldots, N$ are quadratic residues modulo p, and there exist both a string of N consecutive $Q N R N P$'s as well as a string of N consecutive primitive roots. The smallest such prime can be chosen to be $<\exp \left(\exp \left(c_{1} N^{2}\right)\right)$, where $c_{1}>0$ is an absolute constant.

2 Preliminaries

Unless otherwise specified, p denotes a sufficiently large prime number. We denote the group of residues modulo p by \mathbb{Z}_{p} and the multiplicative group of \mathbb{Z}_{p} by \mathbb{Z}_{p}^{*}.

An element $\zeta \in \mathbb{Z}_{p}^{*}$ is said to be a primitive root modulo p if ζ is a generator of \mathbb{Z}_{p}^{*}. Once we know a primitive root modulo p, the QNRNP's are precisely the elements of the set

$$
\left\{\zeta^{\ell}: \ell=1,3, \ldots,(p-2) \text { and }(\ell, p-1)>1\right\} .
$$

Consider a non-principal character $\chi: \mathbb{Z}_{p}^{*} \longrightarrow \mu_{p-1}$, where μ_{p-1} denotes the group of $(p-1)$ th roots of unity. Then it is easy to observe that $\chi(\zeta)$ is a primitive $(p-1)$ th root of unity if and only if ζ is a primitive root $\bmod p$. Let η be a primitive $(p-1)$ th root of unity and assume that $\chi(\zeta)=\eta$. Since χ is a homomorphism, it follows that $\chi\left(\zeta^{i}\right)=\chi^{i}(\zeta)=\eta^{i}$. Hence, by the above observation, it is clear that $\chi(\kappa)=\eta^{i}$ with $(i, p-1)>1$ with some odd i if and only if κ is a QNRNP $\bmod p$.

Let ℓ be any non-negative integer. We define

$$
\beta_{\ell}(p-1)=\sum_{\substack{1 \leq i \leq p-1 \\ i \text { odd, }(i, p-1)>1}}\left(\eta^{i}\right)^{\ell} .
$$

Lemma 1. For $0<l<p-1$, we have

$$
\beta_{\ell}(p-1)=-\alpha_{\ell}(p-1),
$$

where $\alpha_{\ell}(p-1)$ is the sum of the ℓ th powers of the primitive $(p-1)$ th roots of unity.

Proof. Observing that

$$
\sum_{i=0}^{p-2} \eta^{i}=0=\sum_{i=0}^{(p-3) / 2} \eta^{2 i}
$$

we get the desired result.
Let

$$
\chi_{1}, \quad \chi_{2}=\chi_{1}^{2}, \quad \ldots, \quad \chi_{p-2}=\chi_{1}^{p-2}, \quad \chi_{0}=\chi_{1}^{p-1}
$$

be all the multiplicative characters modulo p with the convention $\chi_{\ell}(0)=0$ for all $\ell=0,1, \ldots, p-2$.

Lemma 2. We have,

$$
\sum_{\ell=0}^{p-2} \beta_{\ell}(p-1) \chi_{\ell}(x)= \begin{cases}p-1, & \text { if } x \text { is a QNRNP; } \\ 0, & \text { otherwise. }\end{cases}
$$

Proof. When $x \equiv 0(\bmod p)$, the statement is obvious. We assume that $x \not \equiv 0(\bmod p)$. Let η be a primitive $(p-1)$ th root of unity. Consider

$$
\begin{aligned}
\eta^{i_{1}}, \eta^{i_{2}}, \ldots, \eta^{i_{k}}, & \text { where } \quad 1<i_{1}<\ldots<i_{k}, \quad \text { and } \\
\left(i_{j}, p-1\right)>1 & \text { and } i_{j} \text { is odd for all } j=1,2, \ldots, k .
\end{aligned}
$$

The expression

$$
1+\eta^{i_{l}} \chi_{1}(x)+\left(\eta^{i_{l}}\right)^{2} \chi_{2}(x)+\ldots+\left(\eta^{i_{l}}\right)^{p-2} \chi_{p-2}(x)
$$

has the value $p-1$ if $\left(\chi_{1}(x)\right)^{-1}=\eta^{i_{l}}$ and zero otherwise whenever $x \neq 0$. Thus, giving l the values $1,2, \ldots, k$, and adding up the above resulting expressions we get

$$
\beta_{0}(p-1) \chi_{0}(x)+\ldots+\beta_{p-2}(p-1) \chi_{p-2}(x)= \begin{cases}p-1, & \text { if } x \text { is QNRNP; } \\ 0, & \text { otherwise }\end{cases}
$$

which completes the proof of the lemma.
The following deep theorem of A. Weil [15] is of central importance in the proofs of Theorem 1 and Theorem 2.

Theorem 4. For any integer ℓ satisfying $2 \leq \ell<p$ and for any nonprincipal characters $\chi_{1}, \chi_{2}, \cdots, \chi_{\ell}$ and distinct $a_{1}, a_{2}, \ldots, a_{\ell} \in \mathbb{Z}_{p}$, we have

$$
\left|\sum_{x=1}^{p} \chi_{1}\left(x+a_{1}\right) \chi_{2}\left(x+a_{2}\right) \cdots \chi_{\ell}\left(x+a_{\ell}\right)\right| \leq(\ell-1) \sqrt{p}
$$

For $\ell=2$, Davenport [3] was the first one to prove the above bound. Note also that when $\ell=1$, the sum is 0 .

For a positive integer m, we write $\omega(m)$ for the number of distinct prime factors of m. The next result is due to Szalay [9].

Lemma 3. We have,

$$
\sum_{\ell=0}^{p-2}\left|\alpha_{\ell}(p-1)\right|=2^{\omega(p-1)} \phi(p-1)
$$

3 The Proof of Theorem 1

Let $M(p, N)$ denote the number of consecutive QNRNP modulo p of length N in \mathbb{Z}_{p}^{*}. We shall start with the following technical lemma.

Lemma 4. For any prime p and any positive integer N, we have

$$
\left|M(p, N)-p\left(\frac{k}{p-1}\right)^{N}\right| \leq 2 N 2^{N \omega(p-1)} \sqrt{p}
$$

Proof. First note that $\beta_{0}(p-1)=k$. Clearly, by Lemma 2, we have

$$
\begin{aligned}
M(p, N) & =\sum_{x=1}^{p-N}\left\{\prod_{j=0}^{N-1}\left[\frac{1}{p-1} \sum_{\ell=0}^{p-2} \beta_{\ell}(p-1) \chi_{\ell}(x+j)\right]\right\} \\
& =\sum_{x=1}^{p}\left\{\prod_{j=0}^{N-1}\left[\frac{1}{p-1} \sum_{\ell=0}^{p-2} \beta_{\ell}(p-1) \chi_{\ell}(x+j)\right]\right\} \\
& =(p-1)^{-N} \sum_{x=1}^{p}\left\{\prod_{j=0}^{N-1}\left[k+\sum_{\ell=1}^{p-2} \beta_{\ell}(p-1) \chi_{\ell}(x+j)\right]\right\} \\
& =p\left(\frac{k}{p-1}\right)^{N}+\frac{A}{(p-1)^{N}}
\end{aligned}
$$

where

$$
A=\sum_{\substack{0 \leq l_{1}, l_{2}, \cdots, l_{N} \leq p-2 \\\left(l_{1}, \ldots, l_{N}\right) \neq \mathbf{0}}}\left[\prod_{j=1}^{N} \beta_{l_{j}}(p-1)\right] \sum_{x=1}^{p}\left[\prod_{j=1}^{N} \chi_{l_{j}}(x+j-1)\right]
$$

In order to finish the proof of Lemma 4, we have to estimate A. So, we rewrite it as $A=B+C$, where

$$
C=\sum_{1 \leq l_{1}, l_{2}, \cdots, l_{N} \leq p-2}\left[\prod_{j=1}^{N} \beta_{l_{j}}(p-1)\right] \sum_{x=1}^{p}\left[\prod_{j=1}^{N} \chi_{l_{j}}(x+j-1)\right]
$$

and B is the similar summation with at least one (but not all) of the l_{j} 's equal to zero. We further separate each sum over the set for which exactly one ℓ_{i} 's is zero, then exactly two of the ℓ_{i} 's are 0 , etc., up to when just one of the ℓ_{i} 's is nonzero.

Now, we look at the sum corresponding to the case when exactly j of the ℓ_{i} 's are equal to zero. This means that $N-j$ of the ℓ_{i} 's are non-zero. The corresponding sum is

$$
B_{j}=k^{j} \sum_{0<r_{1}, \ldots, r_{N-j} \leq p-2}\left[\prod_{b=1}^{N-j} \beta_{r_{b}}(p-1)\right]\left[\sum_{x=1}^{p}\left(\prod_{b=1}^{N-j} \chi_{r_{b}}\left(x+m_{b}\right)\right)+E\right],
$$

where E is the sum of some $(p-1)$ th roots of unity and in the summation at most N terms occur. When we take the absolute value of this summand, we get

$$
\begin{aligned}
\left|B_{j}\right| \leq & k^{j} \sum_{0<r_{1}, \ldots, r_{N-j} \leq p-2} \prod_{b=1}^{N-j}\left|\beta_{r_{b}}(p-1)\right|\left(\left|\sum_{x=1}^{p}\left(\prod_{b=1}^{N-j} \chi_{r_{b}}\left(x+m_{b}\right)\right)\right|+N\right) \\
& \leq k^{j}\left(\sum_{\ell=0}^{p-2}\left|\beta_{\ell}(p-1)\right|\right)^{N-j}\left(\left|\sum_{x=1}^{p}\left(\prod_{b=1}^{N-j} \chi_{r_{b}}\left(x+m_{b}\right)\right)\right|+N\right) .
\end{aligned}
$$

Now, note that $\left|\beta_{\ell}(p-1)\right|=\left|\alpha_{\ell}(p-1)\right|$ for all $\ell=1,2, \ldots, p-2$, and $\left|\beta_{0}(p-1)\right|=k$, while $\left|\alpha_{0}(p-1)\right|=\phi(p-1)$. Thus, by Theorem 4 and Lemma 3, we get

$$
\begin{aligned}
\left|B_{j}\right| & <k^{j}\left(2^{\omega(p-1)} \phi(p-1)\right)^{N-j}((N-j-1) \sqrt{p}+N) \\
& <2 N k^{j}\left(2^{\omega(p-1)} \phi(p-1)\right)^{N-j} \sqrt{p}
\end{aligned}
$$

This inequality holds for all $j=1,2, \ldots, N-2$. When $j=N-1$, we get

$$
\left|B_{N-1}\right| \leq k^{N-1} 2^{\omega(p-1)} \phi(p-1) N
$$

The term C in A can also be estimated as above and we get for it

$$
|C| \leq\left(2^{\omega(p-1)} \phi(p-1)\right)^{N}(N-1) \sqrt{p}
$$

So, we see that the inequality (1) holds when $j=N-1$ as well. Adding up all the above estimates for $\left|B_{j}\right|$ and $|C|$, we get

$$
\begin{aligned}
\frac{A}{(p-1)^{N}} & \leq 2 N \frac{\sqrt{p}}{(p-1)^{N}} \sum_{j=0}^{N-1}\binom{N}{j} k^{j}\left(2^{\omega(p-1)} \phi(p-1)\right)^{N-j} \\
& <2 N \sqrt{p}\left(2^{\omega(p-1)} \frac{\phi(p-1)}{p-1}+\frac{k}{p-1}\right)^{N} \\
& <2 N 2^{N \omega(p-1)} \sqrt{p}
\end{aligned}
$$

where we used the fact that $2^{\omega(p-1)} \phi(p-1) /(p-1)+k /(p-1)<2^{\omega(p-1)}$, which finishes the proof of the lemma.

Proof of Theorem 1. We assume that $N \geq 4$. From the definition of k, it is easy to observe that

$$
\frac{k}{p-1}=\frac{1}{2}-\frac{\phi(p-1)}{p-1} \geq \varepsilon
$$

Lemma 4 above tells us now that

$$
p \varepsilon^{N}-M(p, N) \leq\left|M(p, N)-p\left(\frac{k}{p-1}\right)^{N}\right| \leq 2 N 2^{N \omega(p-1)} \sqrt{p}
$$

The above chain of inequalities obviously implies that $M(p, N)>0$ if

$$
\begin{equation*}
\sqrt{p} \varepsilon^{N}>2 N 2^{N \omega(p-1)} \tag{1}
\end{equation*}
$$

This last inequality is fulfilled if

$$
\begin{equation*}
\log p>2 \log (2 N)+2 N\left(\omega(p-1) \log 2+\log \left(\varepsilon^{-1}\right)\right) \tag{2}
\end{equation*}
$$

For $p>4 \cdot 10^{6}$, we have that $\omega(p-1)<2 \log p / \log \log p$. Thus, for such values of p, the right hand side above is bounded above by

$$
2 \log (2 N)+\frac{4 N \log 2}{\log \log p} \log p+2 N \log \left(\varepsilon^{-1}\right)
$$

and so the desired inequality is fulfilled provided that

$$
\left(1-\frac{4 N \log 2}{\log \log p}\right) \log p>2 \log (2 N)+2 N \log \left(\varepsilon^{-1}\right)
$$

When $p>\exp \left(2^{8 N}\right)$, the factor appearing in parenthesis in the left hand side of the last inequality above is $\geq 1 / 2$. Note that since $N \geq 1$, we have that $\exp \left(2^{8 N}\right)>4 \cdot 10^{6}$, so the inequality $\omega(p-1)<2 \log p /(\log \log p)$ is indeed satisfied for such values of p. Thus, in this range for p it suffices that

$$
\log p \geq 4 \log (2 N)+4 N \log \left(\varepsilon^{-1}\right)
$$

leading to $p \geq(2 N)^{4} \varepsilon^{-4 N}$. Since $(2 N)^{4} \leq 2^{4 N}$, the inequality

$$
\exp \left(\left(2 \varepsilon^{-1}\right)^{8 N}\right)>\max \left\{\exp \left(2^{8 N}\right),(2 N)^{4}\left(\varepsilon^{-1}\right)^{4 N}\right\}
$$

holds for all $\varepsilon \leq 1 / 2$ and $N \geq 1$, so the proof of Theorem 1 is completed.

4 The Proof of Theorem 2

Let \mathcal{P} be the set of all primes. Fix $\delta>0$ and let \mathcal{P}_{1} be the set of all primes $p \in \mathcal{P}$ such that $|\omega(p-1)-\log \log p|<\delta \log \log p$ and $p-1$ is divisible by some odd prime $q \leq \log \log p$. It is well-known that \mathcal{P}_{1} contains most primes; that is, if x is large then the set of primes $p \in \mathcal{P} \backslash \mathcal{P}_{1}$ is of cardinality $o(\pi(x))$ as $x \rightarrow \infty$.

We now let x be a large positive real number. Let $p \leq x$ be a prime. We assume that $p>x / \log x$, since there are only $\pi(x / \log x)=o(\pi(x))$ primes $p \leq x / \log x$. Then $\log p \geq \log x-\log \log x$, so $\log \log p=\log \log x+O(1)$. Thus, if $p \in \mathcal{P}_{1} \cap[x / \log x, x]$ and x is large, then $\omega(p-1) \leq(1+2 \delta) \log \log x$. Furthermore, if q is the smallest odd prime factor of $p-1$, then $\phi(p-1) /(p-$ $1) \leq 1 / 2-1 /(2 q)$, and since $2 q \leq 2 \log \log x$, we can take $\varepsilon=1 /(2 \log \log x)$ and hence $\varepsilon^{-1}=2 \log \log x$. With all these choices, inequality (2) will be fulfilled if

$$
\begin{aligned}
\log x-\log \log x & >2 \log (2 N) \\
& +2 N((1+2 \delta) \log \log x \log 2+\log (2 \log \log x))
\end{aligned}
$$

The above inequality is satisfied if we choose $N=\left\lfloor c_{3} \frac{\log x}{\log \log x}\right\rfloor$, where we can take c_{3} to be a positive constant $<1 /(2 \log 2)$, provided that afterwards δ is chosen to be small enough and x is then chosen to be sufficiently large, which completes the proof of this theorem.

5 Proof of Theorem 3

Proof of Theorem 3. First we prove that there exist infinitely many primes p for which $1,2, \ldots, N$ are all quadratic residues modulo p for any given natural number N. For each prime $q \geq 5$ let $a_{q}(\bmod q)$ be a quadratic residue modulo q such that $a_{q}>1$ and put $a_{3}=1$. Let p be a prime congruent to 1 modulo 8 and to a_{q} modulo q for all odd primes $q \leq N$. Then, by Quadratic Reciprocity,

$$
\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)=\left(\frac{a_{q}}{q}\right)=1
$$

whenever $q \leq N$ is an odd prime. Furthermore, $\left(\frac{2}{p}\right)=1$ because $p \equiv 1$ $(\bmod 8)$. Using the multiplicativity property of the Legendre symbol, we get that $\left(\frac{a}{p}\right)=1$, whenever a is a positive integer all whose prime factors are $\leq N$. In particular, the first N positive integers are quadratic residues modulo p. Note that $3 \mid(p-1)$, and from the argument used at the proof of Theorem 2, it follows that we may take $\varepsilon=1 / 6$. Furthermore, $p-1$ is not divisible by any prime $q \in[5, \ldots, N]$. By the Chinese Remainder Theorem, the system of congruences $p \equiv 1(\bmod 8)$ and $p \equiv a_{q}(\bmod q)$ for all odd primes $q \leq N$ has a solution $p_{0}(\bmod P)$, where $P=4 \prod_{q \leq N} q=$ $\exp (O(N))$. There are infinitely many primes in this progression. Now the argument from the proof of Theorem 1 shows that such p can be chosen on the scale of $x=\exp \left(12^{8 N}\right)$. The only problem that might worry us is the existence of primes in the arithmetic progression $p_{0}(\bmod P)$ on the scale of x. But note that $P=\exp (O(N))=(\log x)^{o(1)}$, so the SiegelWalfitz Theorem, for example, tells us that the interval $[x, 2 x]$ contains $(1+o(1)) \pi(x) / \phi(P)$ primes $p \equiv p_{0}(\bmod P)($ in particular, at least one of them), which finishes the argument.

6 Final Remarks

Let $N \neq 1$ be any square-free natural number. Then it is well-known that N is a quadratic non-residue modulo p for infinitely many primes p. The analogous result for primitive roots is known as Artin's Primitive Root conjecture. In 1967, Hooley [7] proved this conjecture subject to the assumption of the generalized Riemann hypothesis. Interestingly, it is not even known whether 2 is a primitive root modulo infinitely many primes. For more details, we
refer to the article by Ram Murty [8]. Finally, in Theorem 1, it would be of interest to obtain a constant M which depends only on the natural number N and not on ε.

Acknowledgments. We are grateful to Prof. Ram Murty for going through our work. This work was started when the first and the third authors were at Harish-Chandra Research Institute. The second author was supported in part by grants PAPIIT IN104505, SEP-CONACyT 46755 and a Guggenheim Fellowship.

References

[1] A. Brauer, Űber Sequenzen von Potenzresten, Sitzungsberichte der Preubischen Akademie der Wissenschaften, (1928), 9-16.
[2] L. Carlitz, Sets of primitive roots, Compositio Math., 13 (1956), 65-70.
[3] H. Davenport, On the distribution of the l-th power residues $\bmod p, J$. London Math. Soc., 7 (1932), 117-121.
[4] H. Davenport, On character sums in finite fields, Acta Math., 71 (1939), 99-121.
[5] S. Gun, B. Ramakrishnan, B. Sahu and R. Thangadurai, Distribution of Quadratic non-residues which are not primitive roots, Math. Bohem., 130 (2005), no. 4, 387-396.
[6] G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," 4th ed. Clarendon, Oxford, 1960.
[7] C. Hooley, On Artin's conjecture, J. Reine Angew. Math 226 (1967) 209-220.
[8] M. R. Murty, Artin's conjecture for primitive roots, Math. Intelligencer, 10 (1988), no. 4, 59-67.
[9] M. Szalay, On the distribution of the primitive roots $\bmod p$ (in Hungarian), Mat. Lapok, 21 (1970), 357-362.
[10] M. Szalay, On the distribution of the primitive roots of a prime, J. Number Theory, 7 (1975), 183-188.
[11] E. Vegh, Primitive roots modulo a prime as consecutive terms of an arithmetic progression, J. Reine Angew. Math., 235 (1969), 185-188.
[12] E. Vegh, Primitive roots modulo a prime as consecutive terms of an arithmetic progression - II, J. Reine Angew. Math., 244 (1970), 108111.
[13] E. Vegh, A note on the distribution of the primitive roots of a prime, J. Number Theory, 3 (1971), 13-18.
[14] E. Vegh, Primitive roots modulo a prime as consecutive terms of an arithmetic progression - III, J. Reine Angew. Math., 256 (1972), 130137.
[15] A. Weil, On the Riemann hypothesis, Proc. Nat. Acad. Sci. U.S.A, Vol. 27 (1941), 345-347.

Addresses of the Authors

S. Gun

Department of Mathematical and Computational Sciences Universidad 3359 Mississauga Road North Mississauga, ON, Canada, L5L 1C6
sanoli.gun@utoronto.ca fluca@matmor.unam.mx
B. SAHU

Harish-Chandra Research Institute Chhatnag Road, Jhunsi
Allahabad 211019, INDIA
sahu@hri.res.in

Florian Luca
Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán México

\author{

P. Rath

 Institute of Mathematical Sciences
 C. I. T. Campus, Taramani
 Chennai-600113, INDIA
 rath@imsc.res.in}
R. Thangadurai Harish-Chandra Research Institute Chhatnag Road, Jhunsi Allahabad 211019, INDIA
thanga@hri.res.in

