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ABSTRACT. In this paper, we find the number of representations of integers by
certain quadratic forms in 8 variables by using the theory of modular forms. By
expressing these formulas in terms of certain convolution sums of the divisor
function and using our formulas, we deduce formulas for the convolution sums
Wjz(n) for j =1,2,3,4.

1. Introduction

For positive integers a, b, n, define the convolution sum W, 3(n) by

Wap(n) =Y o(l)o(m), (1)

l,meN
al+bm=n

where o(n) is the divisor function. We note that W, 1(n) = Wi 4(n), which is
denoted by W, (n). These type of sums were evaluated as early as the 19th century.
For example, the sum Wy (n) was evaluated by M. Besge, J. W. L. Glaisher and S.
Ramanujan [3, 6, 12]. Some of the convlotution sums of the above type have been
obtained by several authors (see for example [7, 13, 11] and also the works of K.
S. Williams and his co-authors ([16] and the references therein)).

Let @ be the quadratic form in four variables defined by

Q: x% + x17T9 + 23:% + x% + x314 + 23:3,
and
Rg(n) = card {(1, 2, w3, 4) € Z* : Q(w1, 2, w3, 1) =1}

be the number of representations of a positive integer n by the quadratic form Q.
A formula for Rg(n) was obtained in [15] by using an elementary method, which
is given by

Ro(n) = 40(n) — 280 (%) , (2)
where we define o(z) = 0, when z is not a positive integer. In this article we find
a formula for Rggjq(n) where

Q®JQ := 23 + 1129+ 225 + 23+ w314 + 223 + 5 (22 + w526 + 202 + 22 + 27208 + 222,
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for j = 1,2, 3,4 using theory of modular forms. Next, by using the above formula
for Rg(n), we express Rog;o(n) in terms of the convolution sums W;(n), Wr;(n)
and Wj 7(n). Since the convolutions W;(n), 1 < j <4 and Wr;(n), j = 1,2,4 are
already known, we use them along with Wa;1(n) (which we prove using the theory
of quasimodular forms), to give formulas for W, 7z(n) for 1 < j < 4. We note that
Roeg(n) has also been evaluated by K. S. Williams in [15], using the convolution
sums method.

2. Preliminaries and Statement of Results

Let Myi(N) be the space of modular forms of weight k for the congruence
subgroup I'g(N) and S;(N) be the subspace of cusp forms of weight k for the
congruence subgroup I'o(NV).

Let 2 : Z®™ — Z be a positive definite quadratic form given by

1
2(x) = §XtAX,
where x € Z*™. Then the associated theta series, denoted by © 5(2), is defined as
@Q(Z) — Z e27ri3(x)z.
X€Z27”

Let M be the smallest positive integer such that M.A~! is an even integral matrix
(i.e., a matrix with diagonal entries as even integers and off-diagonal entries as

M) Then, it is

known that © ¢(z) is a modular form of weight m on T'¢(M) with character xm -
For more details on theta series associated to integral quadratic forms we refer to
Chapter IX of [14] and [4, p.32].

For k > 4, let E}, denote the normalized Eisenstein series of weight &k in Mj(1)
given by

integers) and X, ar be the quadratic character defined by (

2k -
Ex(z)=1- B, Z or—1(n)g"™ (g =e*™*, Im(z) > 0),
n>1
. . x — Bn, .
where By, is the k-th Bernoulli number defined by = Z ——1z". The Eisen-
er —1 = m!

stein series F4(z) = 1+240203(n)q" is used in our proof. For k = 2, the Eisenstein
n>1
series Fs(z) is a quasimodular form of weight 2, depth 1 on SLy(Z), which has the
following Fourier expansion:
Ey(z)=1-24) o(n)q"
n>1
and it is fundamental in the theory of quasimodular forms. In order to evaluate

the convolution sum Waq(n), we use the following structure theorem on M, kgk/ 2(N),
the space of quasimodular forms of weight k, depth < k/2 on Tg(N) (see [8, 10]).

Theorem A (Kaneko-Zagier): For an even integer k with k > 2, we have

k/2-1
MEY*(N) = @@ DI Mj—aj(N) & CD¥/?>71 5y, 3)
§=0
where the differential operator D is defined by D := ﬁ%.
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Using this theorem, one can express each quasimodular form of weight k£ and depth
< k/2 as a linear combination of j-th derivatives of modular forms of weight k — 2j
onT'g(N), 0<j <k/2—1 and the (k/2 — 1)-th derivate of the quasimodular form
E5. For details on basic theory of modular forms and quasimodular forms, we refer
the reader to [4, 8, 10].

Let d be the dimension of the space Sp°(IN), which is spanned by the nor-
malised Hecke eigenforms in the space Si(N). We denote these basis elements as
{Ag n;j(2) : 1 < j < d}, where we denote their Fourier expansions by

AVSSTE E :TkNJ

n>1

If d = 1, then we write the basis element as Ay ny and its Fourier coefficients are
denoted as 7 n(n). For more details on the theory of newforms, we refer to [2].
We also need the following 9 cusp forms which are basis elements of the space
S4(28). Here we use the same notation for their Fourier coefficients as in [1]. For
1 < j <9, the nine cusp forms f;(z) = >, +,¢;(n)q" are defined by the following
eta products/quotients. -

_ n°@n°(7z2).

hie)r = LSRESRN falz) = ?72( ) ( ) 2(T2)n*(14z);
f5(2) = 7]2(42)774(142)772(282); fo(z) = %7
frla) = %; fs(z) = (Z)n(27z7)7(7ﬁz;))n (282),
where 7)(z) is the Dedekind eta function given by n(z) = q1/24 H 1—q")
n>1

We need the following convolution sums Wy (n), N = 1,2,3,4,14,28. Among
these, Wag(n) is recently evaluated by A. Alaca, S. Alaca and E. Ntienjem [1] and
the rest were evaluated by E. Royer [13].

THEOREM 2.1. (See [1, 13]) For a natural number n,

Wi(n) = %03( ( - Z) o

W) = gy + 5o (5) + ( §)em(5-1)7 ()
e @ B D0
W4(n)=4is<73(n)+1i603(g)+ 03 2—14 n) )+<214—Z>0(Z),

)
<
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st = o g (3) + s (3) s (3) s (5)

rigoes (55) + (a1~ 7im) 70+ (31~ 1) (38)

1121 ) + 2389 (n)—ic () - 3349 ()
67200 ' 22400 2 1287 67200 *
101 17 13 433 254

—%05(71) - 4—006(71) + 2—0007(11) - ﬁczg(n) - 7—509(71).

Following the method of Royer [13], we evaluate the following convolution sum.

THEOREM 2.2. For a natural number n,

Wai(n) = 214 (n) + i (%) — ino (2%) — S%na(n) + ﬁag(n)
3 n 49 n 147 n 1
+200% (5) * 12007 (7) + 1007 (31) — 15727

—im,? (2) 11 Tyo1,2(n) — > —=(Ta213(n) + Ta21,4(n))

175 3 00 672
11
~ 1768V 57(74,21;3(n) — Ta21,4(n)).

Note: The dimension of S7°*(21) is 4 and out of which two newforms have rational
Fourier coefficients and the other two newforms do not have rational Fourier coef-
ficients. In the latter case, the eigenvalues of the Hecke operators T'(p) for p # 3,7
satisfy the quadratic polynomial 22 + 3z — 12, and therefore the eigenvalues (and
hence the Fourier coefficients) of these two newforms belong to the number field
Q(+/57) (57 is the discriminant of the quadratic polynomial). More precisely, the
Fourier coefficients 74 21.3(n) and 7421.4(n) belong to the number field Q(v/57).
However, we note that both 74 21,3(n) + 74,21,4(n) and \/ﬁ(7'4721;3(n) — T421.4(n))
are rational numbers.

The following is the main theorem of this section.

THEOREM 2.3. For a natural number n,

924 1176 /ny\ 16
Rgaq(n) = g%(”)JrTUS (?) 374,7(71)3
924 96 /n\ 1176 smy 4704 s
Roeso(n) = gpos(n) + 5205 (§)+ 25 73 (?)+ 25 73 (ﬂ)
48 192 ny 28
%7'47( )+T5T47(§> %7'4 14:1(n),
12 108 /ny 588 /my\ 5202 /m
Rassa(n) = geoaln) + oo0s (5) + 5ros (5) + 75500 (57)
F o raam) + oo (5) + serasialn),
25T4 7\n 25 7—4,7 3 25T4 2152
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6 18 n 96 n 294 n 882 n
Rosio(n) = grosln) + 3200 (5) + g0 (§) + 5500 () + 5500 (15)
4704 n 356 316 1014
3572 (35) ~ T () — g ealm) + 2ea(m) + Trcaln)

1328 ) + 336 () - 664 ) + 10432 ) + 10432
25 ° 5 ¢ 25 25 ° 25

+

+ co(n).

REMARK 2.1. As mentioned in the introduction K. S. Williams [15] evaluated
the formula for Rgogg(n) by using the convolution sum W7(n). In this paper we
have computed this formula using the theory of modular forms. Therefore, as a
consequence to our formula for Rggg(n), we obtain the convolution sum Wr(n)
(see Corollary 2.4 below). The proof is demonstrated in §3.3.

REMARK 2.2. By the Atkin-Lehner theory of newforms [2], we see that the
normalized newforms Ay 7(z) and Ay 14;5(2), j = 1,2 are eigenforms under the
Hecke operator for the prime 7 dividing the level with eigenvalues +7. Using this,
we have for a > 1,

T417(7a) = (_1)a7a; 7_4’14;1(7(1) = (—1)a7a; ’7'4,14;2(7(1) = 7a.

Therefore, in Theorem 2.3, the formulas for Rggjo(n) for 1 < j < 3 have elemen-
tary evaluations when n = 7%, a > 1.

In the following corollary, we use the formulas of Theorem 2.3 and the convo-
lution sums Wy (n), N = 1,2,3,4,14,21,28 (given by Theorems 2.1 and 2.2), to
obtain the convolution sums W7 (n), Wa 7(n), Ws 7(n) and Wy 7(n). We note that
in [5], Chan and Cooper also used a different method to evaluate the convolution
sums Wy,(n), p=3,7,11,23.

COROLLARY 2.4. For a natural number n, we have

1 49 n 1 n 1 n n
Wiln) = g5oe00) + 13500 (7) + <24 - 28) oln) + (24 - 4) 7 (7)
1
—%74,7(71),
1 1 n 49 n 49 n
War(n) = giaoa(m) + 15593 (5) + 5572 (5) + 1507 (13)

1 n n 1 n n 3
* <24 - 28) 7 (3)+ <24 - 8) 7 (%) = 3577
6 n 1 1
_ﬁﬂlﬁ (*) + —74141(n) + T(X)T4’14;2(n)’

2 600
War(n) = 1210003(") + %03 (g) + 1330”3 (%) + %(7)"3 (1)
(ai5) 7 (5 (i) 7 (3) - et
_%74,7 <g) - %.074,21;2(71) + %(74’21;3(70 + T421.4(n))

11
+M\/ﬁ(74,21;3(n) — Tu21,4(n)),
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i) = g s (5) g (3) s (3) ¢ sl ()

49 n 1 n n 1 n n
1507 (28>+<24_28> (3 >+<24_16>J(7>
697 139 893
1702001 ™ + 295002 — @03(”) ~ 701004
43 7 241 881 178
200%™ ~ 3% 15007 — 105087 — 550 (-

3. Proofs

For the proofs of our theorems, we need the following newforms Ay n(z),
(k,N) S {(2,14),(2,21),(477)}, A4,14;1(Z), A4714;2(2’) and A4721;j(2’)7 1< j < 4.
Below we give their expression in terms of Eisenstein series and eta products. We
have used the L-functions and modular forms database [9] to get some of these
expressions.

Az 14(2) = n(2)n(22)n(72)n(142),

Agi(z) = 2772(2)77(32()7;(1)2)”(212) (32 (2)n?(T2)n™*(92) + 3n* (2)n*(92)n>(632)
—1°(32)n(72)n(92)n(212) + Tn(2)n” (32)n(92)n" (212)
+31° (2)n(72)n* (92)1(632) — 3n(2)n°(32)1(212)7(632)) ,

Apn(z) = (n*(2)1° (72) + 4n*(22)n° (142))n* (2)n° (72)

n
n(2z)n(14z) ’

9 Az 14(2)
Agia1(2) = —EA4,7(Z) —9A,7(22) + 1 (24A214(2) + 14E5(142) — Es(2)),
Ayraa(z) = Ayz(z) —4A47(22) — 5A3 1,(2),

1
A4,21;1(2’) = A2,21(2’)(

24E2( z) —

L Ba(32) + L Ba(72) + ;EQ(QLZ)) ,

8 24

A4721;2(2’) = AQ 21( ) <12E2( ) ZIIEQ(SZ) — T;EQ(?Z) + ZEQ(QLZ)) .

We have not found expressions for the remaining two newforms Ay 21,3(2) and
Ay 21.4(2) (of weight 4 and level 21), whose Fourier coefficients lie in the real qua-
dratic field Q(v/57). (Refer to the Note before Theorem 2.3.) Below, we give their
first few Fourier coefficients using the database [9].

—34+ /57 17 — 3ﬁ
Ago13(z) = q+#q2+3q3 ¢+ (3-V57)¢°

—9+ /57
@
—3 /57
+ ¢

2
9+ Vo7
04V

+7q" 4

17—|—3\/7 4

Ay 21:4(2) +3¢° + + (34 V57)¢°

77
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We also need the following weight 2 Eisenstein series defined (for two positive
integers a, b, a < b) by
1

—a

@a,b(z) = b

3.1. Proof of Theorem 2.2. The vector space M3(21) is of dimension 4 with
a basis

(bE5(bz) — aEs(az)).

{@1,3(2), P1,7(2), ®1,21(2), Az21(2)},
and M4(21) is of dimension 10 with a basis

{15‘4(61,2)7 Cl|217 A477(Z), A477(32:)7 A4721;j(2’), 1 S j S 4}

We note that Ey(z)E(21z) € M5%(21). Using Theorem A and the above basis, we
have

1 4 441 576
E. FE5(21z)= —F —F —F —F4(21 —A
L ()Ea(212) = oo Eu(2) + s Bu(32) + A EA(72) + ok By (212) - PTOA ()
5184 144 66 30
—A — Ay 91 —— A
175 4,7(32) — o5 421:2(2) + ( 133 57 — 7) 4,21;3(2)

66 30 40 4
— A — Do —DE. .
+<133v57 7) 121.4(2) + - 1,21(27)-i-7 2(2)

By comparing the n-th Fourier coefficients of both the sides of the above identity,
we get the required formula for Wa;(n).

REMARK 3.1. In this remark we derive an expression for the newform Ay 14,1 (%)
in terms of the Eisenstein series Fo(z) and its derivative. We note that (see [13])

1 2 49 8
864 3456 48 72

— P A (2) = 22 A (2) = A
7 4,7(2) s 4,7(22) 7 4,14:1(2) % 4,14:2(2)
39 6

+7D‘1)1,14(Z) + ?DE2(Z)

Now, consider the quasimodular form E5(2z)E5(7z) in M=?(14), and using Theo-
rem A, we have the following expression

8
Ey(22)Eq(72) = ﬁﬂl( )-|- E4(22) + ﬁEzl(?Z) 125E 1(142)
864 3456 72
T a7(2) — A4 7(22)-1- A4 14:1(2) — %A4 14;2(2)
18 39 36 6
+7D¢1,7(2) + 7D<I)1’14(2) - 7D(I)2’14(Z) + ?DEQ(Z)

Therefore, from the above two expressions, we get

96 18 36
EQ(QZ)EQ(?Z) — EQ(Z)E2(14Z) = 7A4714;1(Z) + 7D‘1)1,7(Z) — 7D(I)2714(Z).
This gives an expression for the newform Ay 14.1(%) in terms of Eisenstein series.
More precisely, we have

A4714;1( ) = 9;76E2(2Z)E2(7Z) 976E2(Z)E2(14Z) - %DEQ(?Z) (4)

1 7 1
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3.2. Proof of Theorem 2.3. In this section, we shall obtain the formulas for
Roajo(n) as given in Theorem 2.3. Let

Oqoje(z) = ) @D (5)

T1, ,L8EL

be the theta series associated with the quadratic forms Q ® j@Q for 7 = 1,2,3,4.
Now using the description mentioned in the Preliminaries section, we see that the
theta series ©ga ;o () belongs to the space My(75) and has the Fourier expansion

Oqajq(z Z Rgajo(n

Therefore, it is sufficient to obtain explicit bases for the spaces of modular forms
My4(7j). The required formulas will follow by expressing each theta series as a lin-
ear combination of the corresponding modular form basis and comparing the nth
Fourier coefficients. We shall give below explicit bases for the spaces My(75) for
j=1,2,3,4 in tabular form.

Space | Dimension Basis

My(7) 3 {E4(az),al7; Ay 7(2)}

M4(14) 8 {E4(az),a|l4 A4 7(bz) b|2 A4 142(2’) S < }

M4(21) 10 {E4(az),a|21 A477(bz) b|3 A4721,z(2’) S < }
(

M4 (28) 15 {FEs(az),a|28; f;(2),1 <i <9}

(Note that the newforms Ay n(z), Ay n;i(2) appearing in the above table are
defined in §3 and the forms f;(z) that apper for level 28 case are defined in §2.)

Using the above bases, we have the following:

Ogoalz) = 5Fa(e)+ 50 Ba(T2) + £ Aas(), (6)
Oqera(s) = s Fule) + o Fa(22) + 24590E4(7z) + oo E(142)
+3—§A4,7(z) + %A4,7(2z) + %A4,14;1(z), (7)
OQasq(z) = 530 4(2) + %Eﬁ:&z) + %m(?z) 53(1)15 (212)
+25A47( z) + 28 A47(32)4‘ A421 2(2), (8)
Oqaaq(z) = 10100E4(z) + ﬁ&@ )+ % Ey(4z) + %Emz)
+1104070E4(14z) 19285 1(282) — %fl( ) — @fz( )+ 2f5(2)
TR () + 1o () + 2 foz) — S fe(e)
10432f8( )+ 10432f9( ). )

The theorem now follows by comparing the nth Fourier coefficients from the above
expressions.



REPRESENTATION OF QUADRATIC FORMS 9

3.3. Proof of Corollary 2.4. In order to get the convolution sums W, ,(n)
for (a,b) = (1,7),(2,7),(3,7),(4,7) in the corollary, we first compute the formulas
Rgajo(n) (1 < j <4) using the convolution sums method.

Let Ng = NU {0}. For n € N we know that (see [15])

Ro(n) = 40(n) — 280 (%) . (10)

Then for 1 < j <4, Rggjg(n) is given by

Roejem) = > (>, uy( > 1

bl Qarywa)=a  Q(os.as)=b
= Rq(n)+Rq(n/j)+ Y Rqla)Rq(b)
a,beN
a+jb=n

40(n) — 280 (%) +40 (;‘) 980 (:j) +

16, (n) — 4 x 28W;(n) — 4 x 28W;.(n) + 282 (%) .
Comparing these formulas with the formulas given in Theorem 2.3 and using the
convolution sums given in Theorem 2.1 and Theorem 2.2, we get the convolution

sums W; 7(n), for 1 < j < 4. This completes the proof.
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