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Abstract. Using techniques due to Coster, we prove a supercongruence for a generalization of
the Domb numbers. This extends a recent result of Chan, Cooper and Sica and confirms a con-
jectural supercongruence for numbers which are coefficients in one of Zagier’s seven “sporadic”
solutions to second order Apéry-like differential equations.

1. Introduction

It is now well-known that the Apéry numbers

A(n) :=
n∑

k=0

(
n

k

)2(n+ k

k

)2

play a crucial role in the irrationality proof of ζ(3), satisfy many interesting congruences and
are related to modular forms. For example, Gessel [10] showed that

(1) A(np) ≡ A(p) (mod p3)

for any prime p > 3, while if

F (z) =
η7(2z)η7(3z)
η5(z)η5(6z)

and t(z) =

(
η(6z)η(z)
η(2z)η(3z)

)12

,

then by a result of Peters and Stienstra [16], we have

F (z) =
∞∑

n=0

A(n) tn(z).

Here η(z) is the Dedekind eta-function. Since then, there have been several papers which study
arithmetic properties of coefficients of power series expansions in t of modular forms where t is
a modular function (see [3], [6], [7], [11], [14], [15], [19], [20]).

Our interest is in the sequence of numbers given by

D(n) :=
n∑

k=0

(
n

k

)2(2k
k

)(
2(n− k)
n− k

)
.

The first few terms in the sequence of Domb numbers {D(n)}n≥0 are as follows:
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1, 4, 28, 256, 2716, 31504, . . .
This ubiquitous sequence (see A002895 of Sloane [18]) not only arises in the theory of third order
Apéry-like differential equations [1], odd moments of Bessel functions in quantum field theory
[2], uniform random walks in the plane [4], new series for 1/π [5], interacting systems on crystal
lattices [9] and the enumeration of abelian squares of length 2n over an alphabet with 4 letters
[17], but if

G(z) =
η4(z)η4(3z)
η2(2z)η2(6z)

and s(z) =

(
η(2z)η(6z)
η(z)η(3z)

)6

,

then (see [5])

G(z) =
∞∑

n=0

(−1)nD(n) sn(z).

Motivated by (1), Chan, Cooper and Sica [6] recently proved the congruence

(2) D(np) ≡ D(p) (mod p3).

The purpose of this short note is to prove a supercongruence for the generalized Domb numbers.
Recall that the term supercongruence refers to congruences that are stronger than those suggested
by formal group theory (for recent developments in this area, see [12], [13], [21]). For integers
A, B and C ≥ 1, let

(3) D(n,A,B,C) :=
n∑

k=0

(
n

k

)A(2k
k

)B(2(n− k)
n− k

)C

.

Our main result is the following.

Theorem 1.1. Let A, B and C be integers ≥ 1 and p > 3 be a prime. For any integers m,
r ≥ 1, we have

D(mpr, A,B,C) ≡ D(mpr−1, A,B,C) (mod p3r)
if A ≥ 2.

Note that Theorem 1.1 recovers (2) in the case A = 2, B = C = 1, r = 1 and generalizes
a numerical observation in Section 3 of [14] (see case (xii) in Table 3). The method of proof
for Theorem 1.1 is due to Coster in his influential Ph.D. thesis [8]. Namely, one expresses
the summands in (3) as products gAB(X, k) and g∗AB(X, k) (see Section 2), then utilizes the
combinatorial features of these products. One then writes (3) as two sums, one for which p | k
and the other for which p - k. In the case p - k, the sum vanishes modulo an appropriate power
of p while for p | k, the sum reduces to the required result. This strategy not only leads to
a generalization of (1) (see Theorem 4.3.1 in [8]), but can be used to prove supercongruences
for other similar sequences [15]. Additionally, a proof similar to that of Theorem 1.1 can be
employed to show

D(mpr, 1, 1, 1) ≡ D(mpr−1, 1, 1, 1) (mod p2r),
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thereby confirming another conjectural supercongruence in Section 3 of [14] (see case (ix) in Table
2). The details are left to the interested reader. The numbers D(n, 1, 1, 1) are coefficients in one
of Zagier’s seven “sporadic” solutions (see #10 in Table 1 of [20] or the modular parameterization
given by Case E in Table 3 of [20]) to a general family of second order Apéry-like differential
equations. Our hope is that the present note will inspire others to further explore the techniques
in [8]. In Section 2, we recall the relevant properties of the products gAB(X, k) and g∗AB(X, k)
and then prove Theorem 1.1.

2. Proof of Theorem 1.1

We first recall the definition of two products and one sum and list some of their main prop-
erties. For more details, see Chapter 4 of [8]. For integers A, B ≥ 0, k, j ≥ 1 and X and for a
fixed prime p > 3, we define

gAB(X, k) =
k∏

i=1

(
1− X

i

)A(
1 +

X

i

)B

,

g∗AB(X, k) =
k∏

i=1
p-i

(
1− X

i

)A(
1 +

X

i

)B

,

and

Sj(k) =
k∑

i=1
p-i

1
ij
.

The following proposition (see Lemmas 4.2.1 and 4.2.5 in [8]) provides some of the main
properties of gAB(X, k), g∗AB(X, k) and Sj(k).

Proposition 2.1. For any integers A, B ≥ 0, X ∈ Z and integers m, k, r ≥ 1, we have
(i) Sj(mpr) ≡ 0 (mod pr) for j 6≡ 0 (mod p− 1),
(ii) S2j−1(mpr) ≡ 0 (mod p2r) for j 6≡ 0 (mod p−1

2 ),
(iii) gAB(pX, k) = g∗AB(pX, k)gAB(X,

⌊
k
p

⌋
),

(iv) g∗AB(X, k) ≡ 1 + (B −A)S1(k)X + 1
2

(
(A−B)2S1(k)2 − (A+B)S2(k)

)
X2 (mod X3),

(v)
(
n

k

)A(n+ k

k

)B

= (−1)Ak
( n

n− k

)A
gAB(n, k).

We now prove Theorem 1.1.

Proof of Theorem 1.1. We first note that it suffices to prove the result with p - n, p - m where
m, n ≥ 1 are integers and p > 3 is a prime. We now assume that A ≥ 2 and B ≥ C ≥ 1. Recall
that for integers m, n, r ≥ 1 with p - n, p - m and s ≥ 0 with s ≤ r, we have

(4) ordp

(
mpr

nps

)A

= A(r − s).



4 ROBERT OSBURN AND BRUNDABAN SAHU

Also, by Lemma 2.2 in [15], we have for a prime p > 3 and integers m ≥ 0, r ≥ 1

(5)
(

2mpr

mpr

)
≡
(

2mpr−1

mpr−1

)
(mod p3r).

Now, taking j = 2 in (i), j = 1 in (ii) and X = mpr, k = nps in (iv) of Proposition 2.1, we have

(6) g∗AB(mpr, nps) ≡ 1 (mod pr+2s)

for any non-negative integers m, n, r and s with s ≤ r. Letting n = mpr, k = nps, A→ A+ 2C,
B = 0 in (v) and X = mpr−1, k = nps in (iii) of Proposition 2.1, we have, for s ≥ 1,

(7)(
mpr

nps

)A+2C

= (−1)(A+2C)nps

(
mpr

mpr − nps

)A+2C

g(A+2C) 0(mpr, nps)

= (−1)Anps−1

(
mpr−1

mpr−1 − nps−1

)A+2C

g∗(A+2C) 0(mpr, nps)g(A+2C) 0(mpr−1, nps−1)

=
(
mpr−1

nps−1

)A+2C

g∗(A+2C) 0(mpr, nps).

In the last step of (7), we have applied (v) of Proposition 2.1 with n = mpr−1, k = nps−1,
A→ A+ 2C and B = 0. Thus,

(8)

(
mpr

nps

)A+2C(2nps

nps

)B−C(2mpr−1

2nps−1

)C

=
(
mpr−1

nps−1

)A+2C

g∗(A+2C) 0(mpr, nps)
(

2nps

nps

)B−C(2mpr−1

2nps−1

)C

.

Similarly, letting n = 2mpr, k = 2nps, A = C, B = 0 in (v) and X = 2mpr−1, k = 2nps in (iii)
of Proposition 2.1, we have

(9)

(
2mpr

2nps

)C

= (−1)2Cnps

(
2mpr

2mpr − 2nps

)C

gC0(2mpr, 2nps)

=

(
2mpr−1

2mpr−1 − 2nps−1

)C

g∗C0(2mpr, 2nps)gC0(2mpr−1, 2nps−1)

=
(

2mpr−1

2nps−1

)C

g∗C0(2mpr, 2nps).

In the last step of (9), we have taken n = 2mpr−1, k = 2nps−1, A = C and B = 0 in (v) of
Proposition 2.1. By (5) and (6), we have
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(10)
(

2nps

nps

)B−C

≡
(

2nps−1

nps−1

)B−C

(mod p3s)

and

(11) g∗(A+2C) 0(mpr, nps) ≡ g∗C0(2mpr, 2nps) ≡ 1 (mod pr+2s).

For r ≥ s, A ≥ 2 and C ≥ 1, we now claim that

(12)

(
mpr

nps

)A+2C(2nps

nps

)B−C(
2mpr

2nps

)C ≡
(mpr−1

nps−1

)A+2C(2nps−1

nps−1

)B−C

(2mpr−1

2nps−1

)C (mod p3r).

To see this, we first note that by (9) and (11), (10) and (11), we have

(13)
(

2mpr−1

2nps−1

)C

=
(

2mpr

2nps

)C

− γpr+2s

(
2mpr−1

2nps−1

)C

,

(14)
(

2nps

nps

)B−C

=
(

2nps−1

nps−1

)B−C

+ αp3s

and

(15) g∗(A+2C) 0(mpr, nps) = 1 + βpr+2s

for some γ, α and β ∈ Z. After substituting (13)–(15) into the right hand side of (8) and
multiplying, we consider the following seven terms:

(a) pr+2s

(
mpr−1

nps−1

)A+2C(2nps−1

nps−1

)B−C(2mpr−1

2nps−1

)C

(b) p3s

(
mpr−1

nps−1

)A+2C(2mpr

2nps

)C

(c) pr+5s

(
mpr−1

nps−1

)A+2C(2mpr−1

2nps−1

)C

(d) pr+2s

(
2mpr

2nps

)C(2nps−1

nps−1

)B−C(
mpr−1

nps−1

)A+2C

(e) p2r+4s

(
2nps−1

nps−1

)B−C(
mpr−1

nps−1

)A+2C(2mpr−1

2nps−1

)C

(f) pr+5s

(
2mpr

2nps

)C(mpr−1

nps−1

)A+2C

(g) p2r+7s

(
2mpr−1

2nps−1

)C(
mpr−1

nps−1

)A+2C

.
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As ordp is at least 3r+C(r− s) in each of the cases (a)–(g) above and we have (4), (12) follows.
Now, using the identity (

a− b
c− d

)(
b

d

)
=

(
a
c

)(
c
d

)(
a−c
b−d

)(
a
b

) ,

we have

D(mpr, A,B,C) =
(

2mpr

mpr

)C mpr∑
k=0

(
mpr

k

)A+2C(2k
k

)B−C(
2mpr

2k

)C .

We now split D(mpr, A,B,C) into two sums, namely

D(mpr, A,B,C) =
(

2mpr

mpr

)C mpr∑
k=0
p-k

(
mpr

k

)A+2C(2k
k

)B−C(
2mpr

2k

)C +
(

2mpr

mpr

)C mpr∑
k=0
p|k

(
mpr

k

)A+2C(2k
k

)B−C(
2mpr

2k

)C .

Since A ≥ 2, B ≥ C ≥ 1, the first sum vanishes modulo p3r using (4) and the result then follows
from reindexing the second sum and applying (5) and (12). A similar argument holds in the
case A ≥ 2, C > B ≥ 1 upon noting that(

mpr

k

)A+2B(2(mpr−k)
mpr−k

)C−B(
2mpr

2k

)B ≡ 0 (mod p3r)

if p - k and

(
mpr

nps

)A+2B(2(mpr−nps)
mpr−nps

)C−B(
2mpr

2nps

)B ≡

(mpr−1

nps−1

)A+2B(2(mpr−1−nps−1)
mpr−1−nps−1

)C−B

(2mpr−1

2nps−1

)B (mod p3r)

if p | k. �
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