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1 Introduction

What is a code ? Code is nothing but a mapping from a set of message words to a set of
words, called code words.

Example 1. 1. ASCII code of alphabet, digits & symbols to understand by computers.
2. Writing C-Program of an algorithm to understand by C-compilers.
3. Signature of a person to authenticate documents.

We want to communicate information, in terms of texts, from a sender, through a channel,
to a receiver. There are many problems to send it through a channel. There are different
necessities while sending the information.

1. Economy: In many situations it is desirable to use an alphabet smaller than that occur
in natural language. This led to the techniques for codes for Data Compression. The study
is called Information Theory.(Ex: Huffman code, jpeg, zip, tar.gz).

2. Reliability: Messages may be altered by noise in the process of transmission. Thus
there is a need for codes that allow for Error detection and Error correction. The study is
called Error correcting codes.

3.Security: Some messages are sent with the requirement that only the right person can
understand them. This area of coding is known as Cryptography.

4.Suitability: The messages need to be coded such way that they are suitable for the
channel for the electronic communication. For example ASCII codes.

References: 1. Coding and Information Theory by Steven Roman
2. Coding and Information Theory by Richard W. Hamming
3. Error correcting Codes by Mac William and Sloane

2 Information Theory

How to define information ?
Suppose you are reading a book, when do you say that you get some information ? Is it,

when you will be suprised reading a text. If you are certain that which text you are going
to read, then you are not gaining any information. If you are uncertain about the next text,
then you will be surprised about occurence of the text and will gain some information.

The words ”uncertainty”, ”surprise” and ”information” are related. Before the event
(experiment, reception of a message symbol, etc), there is the amount of uncertainty; when
the event happens there is the amount of surprise; and after the event there is the gain of
information. All these amounts are same.

Definition: Source: A source is an ordered pair S = (X, p), where X = {x1, x2, . . . , xn}
is a finite set, known as a sourse alphabet, and P is a probability distribution on X. The
probability of xi by pi.
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When we receive a symbol xi from X, how much information do we get ? How to quantify
the information conveyed by the occurence of xi of a source S. Let define a number I(xi) for
each i, to measure how much informaion one gains on the occurence of xi.

For example, if p1 = 1 (and of course the other pi = 0), then there is no surprise, no gain
of information, since we were certain what the message must be.

On the other hand, if the probabilities are different, then when a symbol with low proba-
bility comes, we would fell more surprised, get more information than when a symbol of high
probability came.

1. Thus, the amount of information is strictly decreasing function on the probability of
occurence, with I(xi) = 0 if pi = 1.

We also feel that surprise is additive i.e., the information from two independent symbols
is the sum of the information from each separately.

2. Thus I(xixj) = I(xi) + I(xj).
3. The function should be continous.
A function I satisfies 1, 2 and 3 is satisfied if and only if it has the form I(xi) = log 1

pi
=

− log pi.
Draw the graph of I vs pi

The base is not very important, since any set of logs is proportional to another set of logs
as loga x = loga b logb x. We usually take the base n, the number of symbols. In the binary
case the we usually take base 2 and the units of information is called bits. We use base e (10),
then the unit of information is called nat (Hartley).

Example 2. Let S be an unbiased coin with x1 and x2 representing head and tail. Then
I(x1) = I(x2) = log2 2 = 1. Thus 1 bit of information we get on the occurrence of head/tail
from a toss of a unbiased coin.

2.1 Entropy

The expectation function of getting information after sampling a symbol from S is

Hr(S) =
n∑

i=1

piI(xi) =
n∑

i=1

pi logr

1
pi

and Hr(S) is called as [r-ary] entropy of the source S.

Example 3. S = (X = {x1, x2, x3, x4}, {p1 = 1
2 , p2 = 1

4 , p3 = 1
8 , p4 = 1

8}).
H2(S) = 13

4 bits of information.

Example 4. Consider binary source such as tossing of a coin with the probability of getting
x1(head) and x2 (tail) are p and 1− p. Then

H2(S) = p log2

1
p

+ (1− p) log2

1
1− p

Example 5. If S is unbiased source i.e., pi = 1
n for 1 ≤ i ≤ n, then Hr(S) = logr n.

The entropy of a balanced dice is H2(S) = log2 6 ≈ 2.5849 bits of information.

Example 6. One gets an average of 4.07991 bits of information by sampling a single letter
from English text.

29 December 2011

2



2.2 Mathematical Properties of Entropy

Lemma 1. [1] For all x > 0, loge x ≤ x− 1. Equality holds iff x = 1

Lemma 2. [1, page 110] Let P = {p1, . . . , pn} and Q = {q1, . . . , qn} be two probality distri-
butions. Then

n∑
i=1

pi log
1
pi
≤

n∑
i=1

pi log
1
qi

where 0. log 1
0 = 0 and p. log 1

0 = +∞ for p > 0. The equality holds iff pi = qi, ∀i

Theorem 1. [2] Let X be a discrete random variable with range {x1, . . . , xn}. Then

0 ≤ H(X) ≤ log n.

Furthermore, H(X) = log n iff p(xi) = 1
n∀i and H(X) = 0 iff p(xi) = 1 for some i.

Joint Entropy : How much [joint] information we expect by sampling two random
variables.

Theorem 2. [2] Let X and Y be discrete random variables. Then H(X,Y ) ≤ H(X)+H(Y )
with equality holding iff X and Y are independent.

corollary 1. [2] Let X1, . . . , Xn are discrete random variables. Then H(X1, . . . , Xn) ≤
H(X1) + · · ·+H(Xn) with equality holding iff X1, . . . , xn are independent.

3 Noiseless Coding [2]

Source encoding for noiseless transmission. How to encode the text such that it contains least
number of alphabet (i.e., most information per alphabet) to transmit in a noiseless channel ?
Example of book: translating a book in English to Odia or Hindi. The transalated book will
be thick. Is there any other language (encoding) which will be thinner ? What is the best
language ?

3.1 Variable Length Encoding

Strings and Codes:
Let A = {a1, . . . , an} be a finite set, refered as an alphabet. A string, or word, over the
alphabet A is any sequence of elements of A, which is written of the form a = ai1ai2 . . . aik .
empty string(θ) is with no symbols. The length of a string a, len(a), is the number of alphabet
symbols appearing in a. The set of all strings over A is denoted by A∗.

[r-ary] code: Let A = {a − 1, . . . , ar} be a finite set, which is called as Code alphabet.
An [r-ary] code is a nonempty subset C of the set A∗. The size of the code alphabet is called
the radix of the code and the elements of C are called codewords. Example: binary code,
ternary code.

Encoding scheme: Let S = (X,P ) be a source. An encoding scheme for S is an ordered
pair (C, f), where C is a code and f : X 7→ C is an injective function, called an encoding
function.

Average codeword length: The average codeword length of an encoding scheme (C, f)
for a source S = (X = {x1, . . . , xn}, P ), is defined by

AveLen(C, f) =
n∑

i=1

P (xi)len(f(xi))

Example [2, Example 2.11].
Note that the average codeword length of an encoding scheme is not same as the average

codeword length of a code. Our goal is to determine code of minimum average codeword
length among all codes.

3



02 January 2012

Fixed and Variable length codes
If all codewords in a code C have the same length, we say C is a fixed length code or, block
code. If all codewords in a code C are of different lengths, we say C is a variable length code.
Any coding scheme that uses fixed length code is refered as fixed length encoding scheme and
similarly, for variable length encoding scheme.

If the probability distribution is not uniform, variable length encoding is more efficient
than other one. Example: S = {s1, . . . , s5}, p(s1) = 1 − ε, P ({s2, s3, s4, s5}) = ε. Average
codeword length = 3 (fixed length scheme), = 1 + 2ε < 3 if ε < 1 if we encode as s1 = 0, s2 =
100, s3 = 101, s4 = 110 and s5 = 111.

Trouble in variable length coding: S = {a, b, c}, C = {0, 01, 001}, f(a) = 0, f(b) =
01, f(c) = 001. The codeword 001 can be decoded as ab or as c.

Uniquely decodeble/decipherable: A code C is uniquely decipherable/decodable if
whenever c1, . . . , ck, d1, . . . , dj are code words in C and

c1 . . . ck = d1 . . . dj

then k = j and ci = di for all i = 1, . . . , k.
Example: S = {a, b, c}, C = {1, 01, 001}, f(a) = 0, f(b) = 01, f(c) = 001. 1 acts as a

codeword separator. 1001011 can be uniquely decodable as acba.
Instantaneous codes (Prefix property)

Another trouble in variable length coding: S = {a, b, c, d}, C = {0, 01, 011, 0111}, f(a) =
0, f(b) = 01, f(c) = 011, f(d) = 0111. If 0111 is transmitted, we can not decide which code
word is transmitted unless we get all. After receiving 0, we cannot decide whether it is for a
or, b, or c, or d. After receiving 01, we cannot decide whether it is for b, or c, or d.
Example: S = {a, b, c, d}, C = {0, 10, 110, 1110}, f(a) = 0, f(b) = 10, f(c) = 110, f(d) =
1110. In this case the codewords can be decodable as soon as they are received, since the
presence of 0 indicates the end of a code word.
Instantaneous code: A code is said to be instantaneous if each code word in any string of
codewords can be decoded as soon as it is received.

Instantaneous code and decision tree (finite automaton) [1].
This problem occurs iff a codeword is a prefix of another codeword.
Prefix property: A code is said to have prefix property if no codeword is a prefix of any

other codeword, i.e., if when ever c = x1 . . . xk is a code word, then x1 . . . xl is not a codeword
for 1 ≤ l < k. Example: C = {1, 01, 001}.

Theorem 3. A code C is instantaneous iff it has the prefix property.

Example: Comma code, C = {0, 10, 110, . . . , 1 . . . 10, 11 . . . 1}.
Construction of instantaneous code [1].

Theorem 4. Kraft’s Theorem

1. If C is an r-ary instantaneous code with codeword lengths l1, . . . , ln, then these lengths
must satisfy Kraft’s inequality

r∑
i=1

1
rli
≤ 1

2. If the numbers l1, . . . , ln satisfy Kraft’s inequality then there is an instantaneous r-ary
code with codeword length l1, . . . , ln.

Example 2.1.6 [2] to construct an instantaneous code for a given lengths satisfying Kraft’s
inequality.
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When does Kraft’s equality satisfy? Examples of codes satisfying equality: Block code,
comma code.

Kraft’s enequality => existence of instantaneous code => existence of uniquely decodable
code. Is uniquely decodable code => Kraft’s inequality ?

Theorem 5. McMillan’s Theorem
If C = {c1, c2, . . . , cn} is a uniquely decipherable r-ary code, then it’s codeword lengths
l1, l2, . . . , ln must satisfy Kraft’s inequality

n∑
i=1

1
rli
≤ 1.

Theorem 6. If a uniquely decipherable code exists with codeword lengths l1, l2, . . . , ln, then
an instantaneous code must exist with these same codeword lengths.

corollary 2. The minimum average codeword length, among all uniquely decipherable en-
coding scheme for a source S, is equal to the minimum average codeword length among all
instantaneous encoding scheme for S.
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