Resonances of the Laplacian for Riemannian symmetric spaces

Lecture 1

Angela Pasquale

Institut Élie Cartan de Lorraine Université de Lorraine – Metz

Discussion Meeting in Harmonic Analysis DMHA 17, NISER

January 5-8, 2022

(Quantum or scattering) Resonances

• The Laplace operator on the unit circle S^1 is $\Delta_{S^1} = -\frac{d^2}{d\theta^2}$. It is positive, self-adjoint on $L^2(S^1)$ and with discrete spectrum: eigenvectors of the form $e^{in\theta}$ with eigenvalues n^2 , where $n \in \mathbb{Z}$, i.e.

$$\Delta_{S^1}e^{in\theta}=n^2e^{in\theta}$$
 .

- The Laplace operator on the real line $\mathbb R$ is $\Delta_{\mathbb R}=-\frac{d^2}{dx^2}$. It is positive, self-adjoint on $L^2(\mathbb R)$, with continuous spectrum $[0,+\infty)$ and no eigenvalues.
- The resonances are discrete spectral data, a "replacement of eigenvalues" for differential operators H on noncompact domains X.
 They might arise when we replace L²(X) by a dense subspace on which H is no longer self-adjoint.

E.g.: $H = \Delta_{\mathbb{R}}$, replace $L^2(\mathbb{R})$ by $C_c^{\infty}(\mathbb{R})$ (=space of compactly supported smooth functions on \mathbb{R})

The early days of the resonances (cf. E. Harrell [3])

The notion of resonances originated in the 30ies in Quantum Mechanics, for Schrödinger operators.

A Schrödinger operator (or Hamiltonian) is a differential operator

$$H = \Delta + V$$

where:
$$\Delta = -\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$$
 is the in Laplace operator

V is a potential acting as a multiplication operator.

In 1926 Schrödinger studied the Stark effect, i.e. the shifts caused to hydrogen's emission spectrum by the application of a constant field.

The hydrogen Stark Hamiltonian (in scaled units) on $L^2(\mathbb{R}^3)$:

$$H = \Delta - \frac{1}{|x|} + \kappa x_1$$

where $\kappa \ge 0$ is the electrical field strength and the fields acts in the x_1 -direction.

In Schrödinger's model, the energies were the eigenvalues of ${\cal H}$ and the model was based on eigenfunction expansions.

In 1926, an article in *Nature* by Epstein [2] started as follows:

The theory of atomic oscillations recently advanced by Schroedinger is of extraordinary importance since it throws a new light on the problems of atomic structure and, at the same time, offers a convenient practical method for calculating the Heisenberg-Born intensity matrices. It seemed desirable to apply it to as many special cases as possible. A complete theory of the Stark effect in hydrogen was, therefore, developed.

Despite its influence to modern physics, Schrödinger's analysis contained a mistake: the hydrogen Stark Hamiltonian has no eigenvalues if $\kappa > 0$.

This was first noticed by Oppenheimer [4] in 1928. Oppenheimer did not proved it, but referred to a work of Weyl (where it was not proved either).

The non-existence of eigenvalues for the Stark Hamiltonian was first proved by Titchmarsh [5] in 1951.

Although Schrödinger did not recognize this, the "eigenvalues" playing a role in the Stark effect are resonances. The "eigenfunction expansions" are resonant state expansions.

4/17

After Schrödinger and Oppeheimer, several quantum physicists implicitly considered something one could regard as a resonant state, a special non-normalized solution of the Schrödinger equation.

But it took long time for quantum physicists to state the basic questions about quantum resonances:

- What is the definition of a resonance energy?
- 2 How to determine if it occurs?
- Output Description
 Output Descript
- What is a "resonant state," and how to find it?
- How can the time-decay of a resonance be quantified?

Rigorous mathematical approaches to resonances were elaborated only in the 1970's and 80's.

Resonances of Schrödinger's operators

Consider the Schrödinger operator (or Hamiltonian)

$$H = \Delta + V$$

where: $\Delta = -\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplace operator

V is a potential acting as a multiplication operator.

Under suitable assumptions on V, the operator H extends as a self-adjoint operator on $L^2(\mathbb{R}^n)$ with continuous spectrum $\sigma(H) = [0, +\infty[$.

e. g.: *H* is self-adjoint if *V* real valued;

if $\lim_{|x|\to\infty} V(x)=0$ then the spectrum of H is contained in $[0,+\infty[$

For $u \in \mathbb{C} \setminus [0, +\infty[$, the resolvent of H

$$R_H(u) = (H - u)^{-1}$$

is a bdd operator on $L^2(\mathbb{R}^n)$ depending holomorphically in $u \in \mathbb{C} \setminus [0, +\infty[$, i.e.

$$u \in \mathbb{C} \setminus [0, +\infty[\longrightarrow R_H(u) \in \mathcal{B}(L^2(\mathbb{R}^n))]$$

is a holomorphic function.

As operator on $L^2(\mathbb{R}^n)$, $R_H(u)$ has no analytic extension across its spectrum.

But: can replace $L^2(\mathbb{R}^n)$ by a smaller dense subspace, like $C_c^{\infty}(\mathbb{R}^n)$ and consider

$$u\in\mathbb{C}\setminus[0,+\infty[\quad\longmapsto\quad R_H(u)\in\mathrm{Hom}(\textit{\textbf{C}}_c^\infty(\mathbb{R}^n),\textit{\textbf{C}}_c^{\infty\prime}(\mathbb{R}^n))=\textit{\textbf{C}}_c^{\infty\prime}(\mathbb{R}^n\times\mathbb{R}^n)$$

This map might have some continuation across $[0, +\infty[$.

If the continuation turns out to be meromorphic, then the poles are called the resonances of H.

Problems: Existence, location and counting estimates of the resonances.

- If V = 0, i.e. $H = \Delta$ is the free Hamiltonian, these questions can be answered using Fourier analysis.
- If V ≠ 0, many effective approaches combine the known extension of the free resolvent to properties of V.

The resolvent
$$R_{\Delta}(u) = (\Delta - u)^{-1}$$
 of $\Delta = -\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ (i.e. $V = 0$)

can be computed via Fourier analysis.

Fourier transform:
$$\mathcal{F}f(\lambda) = \widehat{f}(\lambda) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-i\lambda \cdot x} dx$$
 $(\lambda \in \mathbb{R}^n)$

Fourier inversion:
$$\mathcal{F}^{-1}g(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} g(\lambda) e^{i\lambda \cdot x} d\lambda \qquad (x \in \mathbb{R}^n)$$

Plancherel Theorem:
$$\|\widehat{f}\|_2 = \|f\|_2$$
 $(f \in L^2(\mathbb{R}^n)).$

$$\Delta e^{-i\lambda \cdot x} = \lambda \cdot \lambda e^{-i\lambda \cdot x}$$
. Hence:

$$\mathcal{F}\Delta\mathcal{F}^{-1}=M$$
 (unitary equivalence of Δ and M) where $M=$ multiplication operator by $\lambda\cdot\lambda$ on $L^2(\mathbb{R}^n)$, i.e. $Mg(\lambda)=\lambda\cdot\lambda g(\lambda)$.

 \rightsquigarrow the spectrum of Δ is $\sigma(\Delta) = [0, +\infty)$.

$$\mathcal{F}(\Delta - u)^{-1}\mathcal{F}^{-1} = (M - u)^{-1}$$
 i.e. $R_{\Delta}(u) = (\Delta - u)^{-1} = \mathcal{F}^{-1}(M - u)^{-1}\mathcal{F}$

Paley-Wiener theorem: $f \in C_c^{\infty}(\mathbb{R}^n)$ if and only if \widehat{f} is of exponential type and rapidly decreasing, i.e. $\exists R \geq 0$ such that $\sup_{\lambda \in \mathbb{R}^n} e^{-R|\operatorname{Im} \lambda|} (1+|\lambda|)^N |\widehat{f}(\lambda)| < \infty$ for all $N \in \mathbb{N}$.

Thus: for $u\in\mathbb{C}\setminus[0,+\infty)$, $f\in C_c^\infty(\mathbb{R}^n)$, we have $R_\Delta(u)f\in C^\infty(\mathbb{R}^n)$ and

$$\left[\mathbf{R}_{\Delta}(\mathbf{u}) \mathbf{f} \right](\mathbf{x}) \asymp \int_{\mathbb{R}^n} \frac{1}{\lambda \cdot \lambda - \mathbf{u}} \, \widehat{\mathbf{f}}(\lambda) \, e^{i\mathbf{x} \cdot \lambda} \, d\lambda \qquad (\mathbf{x} \in \mathbb{R}^n)$$

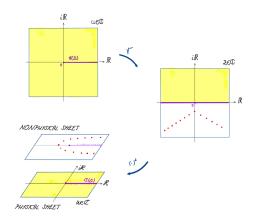
Convenient modifications

- Change variables $u = z^2 \rightsquigarrow$ choice of square root: $\sqrt{-1} = i$
- $u \in \mathbb{C} \setminus [0, +\infty[$ corresponds to $z \in \mathbb{C}^+ = \{w \in \mathbb{C} : \text{Im } w > 0\}.$
- Define

$$R(z) = R_{\Delta}(z^2) = (\Delta - z^2)^{-1}$$

So $R: \mathbb{C}^+ \to \mathcal{B}(L^2(\mathbb{R}^n))$ is a holomorphic operator-valued function.

Goal: Mero continuation across $\mathbb R$ of $R:\mathbb C^+ o\operatorname{Hom}(C^\infty_c(\mathbb R^n),C^\infty(\mathbb R^n))$



Meromorphic continuation of the resolvent: the case n = 1

Want to continue meromorphically the resolvent of $\Delta = -\frac{d^2}{dx^2}$ from \mathbb{C}^+ across \mathbb{R} :

$$\left[\frac{R(z)f}{(x)}\right](x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{1}{\lambda^2 - z^2} \widehat{f}(\lambda) e^{ix\lambda} d\lambda \qquad (f \in C_c^{\infty}(\mathbb{R}), x \in \mathbb{R}, \operatorname{Im} z > 0)$$

If $\operatorname{Im} z>0$ then $\frac{1}{\lambda^2-z^2}$ is the Fourier transform of $x\mapsto \frac{\alpha}{iz}e^{-iz|x|},$ where $\alpha=\sqrt{\frac{2}{\pi}}.$

Since $\mathcal{F}(f * g) = \sqrt{2\pi}(\mathcal{F}f)(\mathcal{F}g)$, the inversion formula for \mathcal{F} yields

$$[R(z)f](x) = \frac{\alpha}{iz}(f * e^{-iz|x|}) = \frac{\alpha}{iz} \int_{\mathbb{R}} e^{iz|x-y|} f(y) \, dy.$$

This formula gives a meromorphic extension of R(z) with one pole at z=0. This pole is the unique resonance of Δ .

The operator $\mathrm{Res}_0: C^\infty_c(\mathbb{R}) o C^\infty(\mathbb{R})$ defined by

$$\operatorname{Res}_0 f: x \longmapsto \underset{z=0}{\operatorname{Res}} [R(z)f](x)$$

is the residue operator at the resonance z = 0.

The dimension of its image in $C^{\infty}(\mathbb{R})$ is the rank of the residue operator.

Here: $\underset{z=0}{\operatorname{Res}}[R(z)f](x) = \frac{\alpha}{i} \int_{\mathbb{R}} f(y) \, dy$, constant in x.

The image is $\mathbb C$ and the rank is 1.

Meromorphic continuation of the resolvent: the case $n \ge 2$

$$[R(z)f](x) \asymp \int_{\mathbb{R}^n} \frac{1}{\lambda \cdot \lambda - z^2} \widehat{f}(\lambda) e^{ix \cdot \lambda} d\lambda \qquad (f \in C_c^{\infty}(\mathbb{R}^n), x \in \mathbb{R}^n, \operatorname{Im} z > 0)$$

Wanted: Meromorphic continuation of R(z), for $z \in \mathbb{C}^+$, across \mathbb{R}

Idea: polar coordinates

$$[R(z)f](x) \times \int_0^{+\infty} \frac{1}{r^2 - z^2} \left[\underbrace{\left(\int_{S^{n-1}} e^{ix \cdot rw} \, \widehat{f}(rw) \, dw \right)}_{\text{even in } r \text{ by } w \mapsto -w} \underbrace{\sum_{\text{same parity of } n} r \, dr}_{\text{holomorphic in } r \in \mathbb{C}} \underbrace{\widehat{f}(rw) \text{ rapidly decreasing by the Paley-Wiener theorem}}_{\text{theorem}} \right] r \, dr$$

Remark: F(r) = F(r, f, x), but we omit this dependence from the notation.

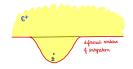
Meromorphic continuation of the resolvent: the case n > 2, n odd

$$[R(z)f](y) \asymp \int_0^{+\infty} \frac{1}{r^2 - z^2} F(r) r dr$$

Notice:

- F(r) holomorphic in $r \in \mathbb{C}$, rapidly decreasing, with same parity as n. Hence F is odd.

$$[R(z)f](x) \simeq \int_0^{+\infty} \frac{F(r)}{r-z} dr + \int_0^{+\infty} \frac{F(r)}{r+z} dr$$
$$= \int_0^{+\infty} \frac{F(r)}{r-z} dr + \int_{-\infty}^0 \frac{F(-r)}{r-z} dr$$
$$= \int_{-\infty}^{+\infty} \frac{F(r)}{r-z} dr$$



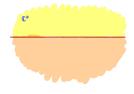
Meromorphic continuation of the resolvent: the case $n \ge 2$, n even

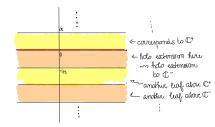
$$[R(z)f](y) \asymp \int_0^{+\infty} \frac{1}{r^2 - z^2} F(r) r dr$$

In this case F is even.

- Change of variables: $r = e^{\tau}$, $\tau \mapsto F(e^{\tau})$ $i\pi$ -periodic
- $z = e^{\zeta} \in \mathbb{C}^+ \iff \zeta \in \{0 < \operatorname{Im} w < \pi\}.$

$$[R(e^{\zeta})f](y) \asymp \int_{-\infty}^{+\infty} \frac{F(e^{\tau})e^{2\tau}}{e^{2\tau}-e^{2\zeta}} d\tau$$





Holomorphic extension of the resolvent of the Laplacian on \mathbb{R}^n , $n \geq 2$

We have proved:

Theorem

- For $n \ge 3$ odd, the resolvent R has entire extension to \mathbb{C} .
- For n even, R extends to be entire as a function of log z, i.e. entire on the logarithmic covering of \mathbb{C} .

Remarks:

- The laplacian Δ has no resonances on \mathbb{R}^n for $n \geq 2$.
- Difference between even and odd dimensional cases.

The case of $H = \Delta + V$ on \mathbb{R}^n when $V \neq 0$

In this case the resonances often exist and play a significant role.

• Suppose $V \in L^{\infty}_c(\mathbb{R}^n,\mathbb{C})$. Let R_0 denote the resolvent of the free Laplacian. Then

$$(\Delta + V - z^2)R_0(z) = (\Delta - z^2 + V)R_0(z) = I + VR_0(z)$$

We have seen that for Im z > 0

$$(R_0(z)f)^{\wedge}(\lambda) = \frac{\widehat{f}(\lambda)}{|\lambda|^2 - z^2} \qquad (\lambda \in \mathbb{R}^n)$$

Therefore (by Plancherel)

$$\|R_0(z)\|_{L^2\to L^2} = \frac{1}{d(z^2,\mathbb{R}^+)} = \frac{1}{|\operatorname{Im}(z^2)|} \le \frac{1}{|z|\operatorname{Im} z}.$$

For Im z >> 1 we have

$$||VR_0(z)||_{L^2\to L^2} \le ||V||_{\infty} (\operatorname{Im} z)^{-2} < 1.$$

Hence VR₀ is invertible using the Neumann series

$$(I + VR_0(z))^{-1} = \sum_{k=0}^{\infty} (-1)^k (VR_0(z))^k$$

This shows that

$$R(z) = (\Delta + V - z^2)^{-1} = R_0(z)(I + VR_0(z))^{-1}$$

The study of R(z) reduces to that of $(I + VR_0(z))^{-1}$.

• The meromorphic continuation of $(I+VR_0(z))^{-1}$ relies on the so-called *analytic Fredholm theory*: suppose that $K(z):L^2\to L^2$ is a holomorphic family of compact operators for $z\in\mathbb{C}$ and that $(I+K(z_0))^{-1}:L^2\to L^2$ exists at some $z_0\in\mathbb{C}$. Then

$$\mathbb{C}\ni z\longmapsto (I+K(z))^{-1}\in B(L^2)$$

is a meromorphic family of operators.

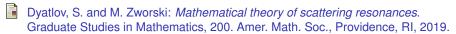
- As in the free case, the even dimensional case is more complicated.
- \triangleright The proof of the meromorphic continuation of the resolvant $(H-z^2)^{-1}$
- the existence and properties of the resonances in this case,
- ▷ as well as some relvant examples of resonant state expansions,

can be found in the book of Dyalov and Zworski [1]. See also [6].

The theory of resonances of $H = \Delta + V$ appears naturally and plays an important role in many branches of mathematics, physics and engineering.

It is a very active field of research.

References I



- Epstein, P.: Schroedinger's Quantum Theory and the Stark Effect, *Nature* **118** (1926), 444-445.
- Harrell, E. M., II: Perturbation theory and atomic resonances since Schrdinger's time. In: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon's 60th birthday, 227-248, Proc. Sympos. Pure Math., 76, Part 1, Amer. Math. Soc., Providence, RI, 2007.
- Oppenheimer, J. R.: Three notes on the quantum theory of aperiodic effects. *Phys. Rev.* **13** (1928), 66–81.
- Titchmarsh, E. C.: Some theorems on perturbation theory, III. *Proc. Roy. Soc. London Ser. A* **207** (1951), 321-328.
- Zworski, M.: Mathematical study of scattering resonances, *Bull. Math. Sci.* **7** (2017), 1-85.