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(Quantum or scattering) Resonances
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It is positive, self-adjoint on [2(8") and with discrete spectrum:
eigenvectors of the form e with eigenvalues n?, wherene Z,i.e.

o The Laplace operator on the unit circle S is Agr = —

AS1 e 2e/n9
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ra
It is positive, self-adjoint on L3(RR), with continuous spectrum [0, +c0) and no
eigenvalues.

o The resonances are discrete spectral data, a “replacement of eigenvalues” for
differential operators H on noncompact domains X.
They might arise when we replace L2(X) by a dense subspace on which H is no
longer self-adjoint.
E.g.: H = Ag, replace L%(R) by C°(R) (=space of compactly supported smooth
functions on R)

o The Laplace operator on the real line R is Ag = —
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The early days of the resonances (cf. E. Harrell [3])

The notion of resonances originated in the 30ies in Quantum Mechanics, for
Schrédinger operators.

A Schrédinger operator (or Hamiltonian) is a differential operator
H=A+V
where: A=— 27:1 96722 is the in Laplace operator
]
V' is a potential acting as a multiplication operator.

In 1926 Schrédinger studied the Stark effect, i.e. the shifts caused to hydrogen’s
emission spectrum by the application of a constant field.

The hydrogen Stark Hamiltonian (in scaled units) on L?(R®):

H:Afl+l¢,X1
X

where k > 0 is the electrical field strength and the fields acts in the xy-direction.

In Schrodinger’'s model, the energies were the eigenvalues of H and the model was
based on eigenfunction expansions.
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In 1926, an article in Nature by Epstein [2] started as follows:

The theory of atomic oscillations recently advanced by Schroedinger is of
extraordinary importance since it throws a new light on the problems of
atomic structure and, at the same time, offers a convenient practical method
for calculating the Heisenberg-Born intensity matrices. It seemed desirable to
apply it to as many special cases as possible. A complete theory of the Stark
effect in hydrogen was, therefore, developed.

Despite its influence to modern physics, Schrédinger’s analysis contained a mistake:
the hydrogen Stark Hamiltonian has no eigenvalues if x > 0.

This was first noticed by Oppenheimer [4] in 1928. Oppenheimer did not proved it, but
referred to a work of Weyl (where it was not proved either).

The non-existence of eigenvalues for the Stark Hamiltonian was first proved by
Titchmarsh [5] in 1951.

Although Schrédinger did not recognize this, the “eigenvalues” playing a role in the
Stark effect are resonances. The “eigenfunction expansions” are resonant state
expansions.
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After Schrédinger and Oppeheimer, several quantum physicists implicitly considered
something one could regard as a resonant state, a special non-normalized solution of
the Schrédinger equation.

But it took long time for quantum physicists to state the basic questions about quantum
resonances:

@ What is the definition of a resonance energy?

@ How to determine if it occurs?

© How can it be computed?

© What is a “resonant state,” and how to find it?

© How can the time-decay of a resonance be quantified?

Rigorous mathematical approaches to resonances were elaborated only in the 1970’s
and 80’s.
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Resonances of Schrddinger’s operators

Consider the Schrddinger operator (or Hamiltonian)
H=A+V
where: A=— 27:1 ;—; is the Laplace operator
i
V is a potential acting as a multiplication operator.

Under suitable assumptions on V, the operator H extends as a self-adjoint operator on
L3(R™) with continuous spectrum o (H) = [0, +oo].

€. g.: His self-adjoint if V real valued;
if im0 V() = 0 then the spectrum of H is contained in [0, +oo[

For u € C\ [0, +o0], the resolvent of H
Riu(u) = (H — u)™"
is a bdd operator on [2(R") depending holomorphically in u € C\ [0, 4o , i.e.
ueC\[0,400][ — Ru(u) e B(LA(R"))

is a holomorphic function.
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As operator on [2(R"), Ry(u) has no analytic extension across its spectrum.

But: can replace L?(R") by a smaller dense subspace, like C3°(R")
and consider

ueC\[0,+oo] = Ry(u) € Hom(CF(R"), C'(R")) = C'(R" x R™)
This map might have some continuation across [0, +oo|.

If the continuation turns out to be meromorphic, then the poles are called the
resonances of H.

Problems: Existence, location and counting estimates of the resonances.

o If V=0,i.e. H= Aisthe free Hamiltonian, these questions can be answered
using Fourier analysis.

e If V #£ 0, many effective approaches combine the known extension of the free
resolvent to properties of V.
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_ —1 i _
The resolvent Ra(u) = (A —u) ' of A = Z/ 1 dx2 (.,e. V=0)
can be computed via Fourier analysis.
Fourier transform: FI(N) =f(\) = W Jan f(X)e7**adx (A €R")
Fourier inversion: Flg(x) = & s [ g(NEM AN (x €R")
Plancherel Theorem:  |[flo=|[fl.  (f € L3(R")).
Ae X =\ \e”™*  Hence:

FAF'=M (unitary equivalence of A and M)
where M = multiplication operator by X - A on L2(R"), i.e. Mg(\) = X - Ag()).

~ the spectrum of A is o(A) = [0, +00).
FA-u)"F'=M-u)" e Rau)=(A-u)'=F'M-u)'F

Paley-Wiener theorem: f ¢ CZ°(R") if and only if 7 is of exponential type and rapidly
decreasing, i.e. 3R > 0 such that sup, _z» €~ 7™ (1 4+ |A)V[F(N\)| < oo forall N € N,

Thus: for u € C\ [0, +00), f € C°(R"), we have Ra(u)f € C*(R") and

[Ra(u)f](x) =< /}R ) #_u TN e* dy  (xeR")
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Convenient modifications
e Change variables u = z* ~- choice of square root: v/—1 =i
o U€C\J0,+oco] correspondsto ze€ C*={we C:Imw > 0}.
o Define
R(z) = Ra(Z®) = (A — Z°)"
So R: C* — B(L%(R")) is a holomorphic operator-valued function.
Goal: Mero continuation across R of R : C* — Hom (Cg°(R"), C>(R"))
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Meromorphic continuation of the resolvent: the case n =1

2
Want to continue meromorphically the resolvent of A = f% from C* across R:
[R(2)f] (x) = \/%/ ﬁ e dy  (fe CP(R), x R, Imz > 0)
R

If Im z > 0 then ﬁ is the Fourier transform of x — %ef"z‘”, where a =

Since F(f x g) = V2=n(Ff)(Fg), the inversion formula for F yields

_ o —iz|x|y _ o iz|x—y|f
(AN = G ) = 2 [ iy 0.
This formula gives a meromorphic extension of R(z) with one pole at z = 0.
This pole is the unique resonance of A.
The operator Resy : Cz°(R) — C*°(R) defined by
Resof : X — ng[l?(z)f](x)
is the residue operator at the resonance z = 0.
The dimension of its image in C*°(R) is the rank of the residue operator.
Here: R_eg[F?(z)f](x) =< [ f(y) dy, constant in x.
The image is C and the rank is 1.
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Meromorphic continuation of the resolvent: the case n > 2

[R(2)](x) = /R ﬁ (e dx  (fe CF(R"), x € R, Imz > 0)

Wanted: Meromorphic continuation of R(z), for z € C*, across R

Idea: polar coordinates

[R(2)f](x)

X

[Tl (Loemime) o2 e

same parity of n

eveninrby w — —w

same parity as n
holomorphicinr € C

f(rw) rapidly decreasing by the Paley-Wiener
theorem

+o0 1
_ /O S F(nrar

Remark: F(r) = F(r, f, x), but we omit this dependence from the notation.
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Meromorphic continuation of the resolvent: the case n > 2, n odd
+oo 1
[R(2)f(y) < /0 ) F(r)rdr

Notice:
2r 1 1
+

2Tz ryz
o F(r) holomorphic in r € C, rapidly decreasing, with same parity as n.

Hence F is odd.

[R(2)f(x) x/om rF(r) dr+/0 h rFJ(F) dr

:/0+°o A dr+/7000 FEN o

r—z —r+z
+oo
[0
e =2
¢t ct
}R:daww‘nq’ P
mmthww . :ﬁ:;mW
£
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Meromorphic continuation of the resolvent: the case n > 2, n even

[R(2)f(y) < /0+OO ,,21722 F(r)rdr

In this case F is even.
o Change of variables: r = €”, 7+ F(e") imr-periodic
0z=6cC" e~ (€{0<Imw< 7}.

Ay = [ L g

¢t
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Holomorphic extension of the resolvent of the Laplacian on R”, n > 2

We have proved:

Theorem
@ Forn > 3 odd, the resolvent R has entire extension to C.

@ For n even, R extends to be entire as a function of log z, i.e. entire on the
logarithmic covering of C.

Remarks:
o The laplacian A has no resonances on R” for n > 2.
o Difference between even and odd dimensional cases.
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Thecase of H= A+ VonR"when V #0
In this case the resonances often exist and play a significant role.
e Suppose V € L°(R",C). Let Ry denote the resolvent of the free Laplacian. Then
(A+V—=Z2)Ry(2) = (A — 22+ V)Ro(2) = | + VRo(2)
We have seen that forImz > 0
(RN ) = (e

Therefore (by Plancherel)

(AeR"

1 1 1
R — = < .
H O(Z)||L2—>L2 d(zz’R+) |Im(z2)| - |Z|ImZ

ForIm z >> 1 we have
IVRo(2)l sz < [|Vloo(Im 2) 72 < 1.
Hence VR, is invertible using the Neumann series

oo

(14 VRo(2)) " = > (=1)(VRs(2))"
k=0
This shows that

R(z) = (A+ V — %)™ = Ry(2)(I + VRy(2)) ™"
The study of R(z) reduces to that of (/ + VRy(2))~".
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e The meromorphic continuation of (/ + VRy(2))~' relies on the so-called analytic
Fredholm theory: suppose that K(z) : L> — L? is a holomorphic family of compact
operators for z € C and that (/ + K(z)) ™" : L2 — L2 exists at some z, € C. Then

Csz— (I+K(2) " e B(L?)

is a meromorphic family of operators.
o As in the free case, the even dimensional case is more complicated.

> The proof of the meromorphic continuation of the resolvant (H — z%)~"
> the existence and properties of the resonances in this case,
> as well as some relvant examples of resonant state expansions,

can be found in the book of Dyalov and Zworski [1]. See also [6].

The theory of resonances of H = A + V appears naturally and plays an important role
in many branches of mathematics, physics and engineering.

It is a very active field of research.
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