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(Quantum or scattering) Resonances

The Laplace operator on the unit circle S1 is ∆S1 = − d2

dθ2 .

It is positive, self-adjoint on L2(S1) and with discrete spectrum:
eigenvectors of the form einθ with eigenvalues n2, where n ∈ Z, i.e.

∆S1 einθ = n2einθ .

The Laplace operator on the real line R is ∆R = − d2

dx2 .

It is positive, self-adjoint on L2(R), with continuous spectrum [0,+∞) and no
eigenvalues.

The resonances are discrete spectral data, a “replacement of eigenvalues” for
differential operators H on noncompact domains X .
They might arise when we replace L2(X ) by a dense subspace on which H is no
longer self-adjoint.

E.g.: H = ∆R, replace L2(R) by C∞c (R) (=space of compactly supported smooth
functions on R)
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The early days of the resonances (cf. E. Harrell [3])

The notion of resonances originated in the 30ies in Quantum Mechanics, for
Schrödinger operators.

A Schrödinger operator (or Hamiltonian) is a differential operator

H = ∆ + V

where: ∆ = −
∑n

j=1
∂2

∂x2
j

is the in Laplace operator

V is a potential acting as a multiplication operator.

In 1926 Schrödinger studied the Stark effect, i.e. the shifts caused to hydrogen’s
emission spectrum by the application of a constant field.

The hydrogen Stark Hamiltonian (in scaled units) on L2(R3):

H = ∆− 1
|x | + κx1

where κ ≥ 0 is the electrical field strength and the fields acts in the x1-direction.

In Schrödinger’s model, the energies were the eigenvalues of H and the model was
based on eigenfunction expansions.
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In 1926, an article in Nature by Epstein [2] started as follows:

The theory of atomic oscillations recently advanced by Schroedinger is of
extraordinary importance since it throws a new light on the problems of
atomic structure and, at the same time, offers a convenient practical method
for calculating the Heisenberg-Born intensity matrices. It seemed desirable to
apply it to as many special cases as possible. A complete theory of the Stark
effect in hydrogen was, therefore, developed.

Despite its influence to modern physics, Schrödinger’s analysis contained a mistake:
the hydrogen Stark Hamiltonian has no eigenvalues if κ > 0.

This was first noticed by Oppenheimer [4] in 1928. Oppenheimer did not proved it, but
referred to a work of Weyl (where it was not proved either).

The non-existence of eigenvalues for the Stark Hamiltonian was first proved by
Titchmarsh [5] in 1951.

Although Schrödinger did not recognize this, the “eigenvalues” playing a role in the
Stark effect are resonances. The “eigenfunction expansions” are resonant state
expansions.
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After Schrödinger and Oppeheimer, several quantum physicists implicitly considered
something one could regard as a resonant state, a special non-normalized solution of
the Schrödinger equation.

But it took long time for quantum physicists to state the basic questions about quantum
resonances:

1 What is the definition of a resonance energy?
2 How to determine if it occurs?
3 How can it be computed?
4 What is a “resonant state,” and how to find it?
5 How can the time-decay of a resonance be quantified?

Rigorous mathematical approaches to resonances were elaborated only in the 1970’s
and 80’s.
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Resonances of Schrödinger’s operators

Consider the Schrödinger operator (or Hamiltonian)

H = ∆ + V

where: ∆ = −
∑n

j=1
∂2

∂x2
j

is the Laplace operator

V is a potential acting as a multiplication operator.

Under suitable assumptions on V , the operator H extends as a self-adjoint operator on
L2(Rn) with continuous spectrum σ(H) = [0,+∞[.

e. g.: H is self-adjoint if V real valued;
if lim|x|→∞ V (x) = 0 then the spectrum of H is contained in [0,+∞[

For u ∈ C \ [0,+∞[, the resolvent of H

RH(u) = (H − u)−1

is a bdd operator on L2(Rn) depending holomorphically in u ∈ C \ [0,+∞[ , i.e.

u ∈ C \ [0,+∞[ 7−→ RH(u) ∈ B(L2(Rn))

is a holomorphic function.
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As operator on L2(Rn), RH(u) has no analytic extension across its spectrum.

But: can replace L2(Rn) by a smaller dense subspace, like C∞c (Rn)
and consider

u ∈ C \ [0,+∞[ 7−→ RH(u) ∈ Hom(C∞c (Rn),C∞c
′(Rn)) = C∞c

′(Rn × Rn)

This map might have some continuation across [0,+∞[.

If the continuation turns out to be meromorphic, then the poles are called the
resonances of H.

Problems: Existence, location and counting estimates of the resonances.

If V = 0, i.e. H = ∆ is the free Hamiltonian, these questions can be answered
using Fourier analysis.

If V 6= 0, many effective approaches combine the known extension of the free
resolvent to properties of V .
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The resolvent R∆(u) = (∆− u)−1 of ∆ = −
∑n

j=1
∂2

∂x2
j

(i.e. V = 0)

can be computed via Fourier analysis.

Fourier transform: F f (λ) = f̂ (λ) = 1
(2π)n/2

∫
Rn f (x)e−iλ·x dx (λ ∈ Rn)

Fourier inversion: F−1g(x) = 1
(2π)n/2

∫
Rn g(λ)eiλ·x dλ (x ∈ Rn)

Plancherel Theorem: ‖̂f‖2 = ‖f‖2 (f ∈ L2(Rn)).
∆e−iλ·x = λ · λe−iλ·x . Hence:

F∆F−1 = M (unitary equivalence of ∆ and M)
where M = multiplication operator by λ · λ on L2(Rn), i.e. Mg(λ) = λ · λg(λ).

 the spectrum of ∆ is σ(∆) = [0,+∞).

F(∆− u)−1F−1 = (M − u)−1 i.e. R∆(u) = (∆− u)−1 = F−1(M − u)−1F

Paley-Wiener theorem: f ∈ C∞c (Rn) if and only if f̂ is of exponential type and rapidly
decreasing, i.e. ∃R ≥ 0 such that supλ∈Rn e−R| Imλ|(1 + |λ|)N |̂f (λ)| <∞ for all N ∈ N.

Thus: for u ∈ C \ [0,+∞), f ∈ C∞c (Rn), we have R∆(u)f ∈ C∞(Rn) and[
R∆(u)f

]
(x) �

∫
Rn

1
λ · λ− u

f̂ (λ) eix·λ dλ (x ∈ Rn)

A. Pasquale (Lecture 1) Resonances of the Laplacian DMHA 17, Jan 5–8, 2022 8 / 17



Convenient modifications
Change variables u = z2  choice of square root:

√
−1 = i

u ∈ C \ [0,+∞[ corresponds to z ∈ C+ = {w ∈ C : Im w > 0}.
Define

R(z) = R∆(z2) = (∆− z2)−1

So R : C+ → B(L2(Rn)) is a holomorphic operator-valued function.
Goal: Mero continuation across R of R : C+ → Hom (C∞c (Rn),C∞(Rn))
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Meromorphic continuation of the resolvent: the case n = 1

Want to continue meromorphically the resolvent of ∆ = − d2

dx2 from C+ across R:[
R(z)f

]
(x) =

1√
2π

∫
R

1
λ2 − z2 f̂ (λ) eixλ dλ (f ∈ C∞c (R), x ∈ R, Im z > 0)

If Im z > 0 then
1

λ2 − z2 is the Fourier transform of x 7→ α

iz
e−iz|x|, where α =

√
2
π

.

Since F(f ∗ g) =
√

2π(F f )(Fg), the inversion formula for F yields

[R(z)f ](x) =
α

iz
(f ∗ e−iz|x|) =

α

iz

∫
R

eiz|x−y|f (y) dy .

This formula gives a meromorphic extension of R(z) with one pole at z = 0.
This pole is the unique resonance of ∆.

The operator Res0 : C∞c (R)→ C∞(R) defined by

Res0f : x 7−→ Res
z=0

[R(z)f ](x)

is the residue operator at the resonance z = 0.
The dimension of its image in C∞(R) is the rank of the residue operator.
Here: Res

z=0
[R(z)f ](x) = α

i

∫
R f (y) dy , constant in x .

The image is C and the rank is 1.
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Meromorphic continuation of the resolvent: the case n ≥ 2

[R(z)f ](x) �
∫
Rn

1
λ · λ− z2 f̂ (λ) eix·λ dλ (f ∈ C∞c (Rn), x ∈ Rn, Im z > 0)

Wanted: Meromorphic continuation of R(z), for z ∈ C+, across R

Idea: polar coordinates

[R(z)f ](x) �
∫ +∞

0

1
r 2 − z2

[ ( ∫
Sn−1

eix·rw f̂ (rw) dw
)

︸ ︷︷ ︸
even in r by w 7→ −w

r n−2︸︷︷︸
same parity of n

]

︸ ︷︷ ︸
same parity as n
holomorphic in r ∈ C
f̂ (rw) rapidly decreasing by the Paley-Wiener
theorem

r dr

=

∫ +∞

0

1
r 2 − z2 F (r) r dr

Remark: F (r) = F (r , f , x), but we omit this dependence from the notation.
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Meromorphic continuation of the resolvent: the case n > 2, n odd

[R(z)f ](y) �
∫ +∞

0

1
r 2 − z2 F (r) r dr

Notice:
2r

r 2 − z2 =
1

r − z
+

1
r + z

F (r) holomorphic in r ∈ C, rapidly decreasing, with same parity as n.
Hence F is odd.

[R(z)f ](x) �
∫ +∞

0

F (r)

r − z
dr +

∫ +∞

0

F (r)

r + z
dr

=

∫ +∞

0

F (r)

r − z
dr +

∫ 0

−∞

F (−r)

−r + z
dr

=

∫ +∞

−∞

F (r)

r − z
dr
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Meromorphic continuation of the resolvent: the case n ≥ 2, n even

[R(z)f ](y) �
∫ +∞

0

1
r 2 − z2 F (r) r dr

In this case F is even.

Change of variables: r = eτ , τ 7→ F (eτ ) iπ-periodic

z = eζ ∈ C+ ! ζ ∈ {0 < Im w < π}.

[R(eζ)f ](y) �
∫ +∞

−∞

F (eτ )e2τ

e2τ − e2ζ dτ
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Holomorphic extension of the resolvent of the Laplacian on Rn, n ≥ 2

We have proved:

Theorem
For n ≥ 3 odd, the resolvent R has entire extension to C.

For n even, R extends to be entire as a function of log z, i.e. entire on the
logarithmic covering of C.

Remarks:
The laplacian ∆ has no resonances on Rn for n ≥ 2.

Difference between even and odd dimensional cases.
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The case of H = ∆ + V on Rn when V 6= 0
In this case the resonances often exist and play a significant role.

Suppose V ∈ L∞c (Rn,C). Let R0 denote the resolvent of the free Laplacian. Then

(∆ + V − z2)R0(z) = (∆− z2 + V )R0(z) = I + VR0(z)

We have seen that for Im z > 0

(R0(z)f )∧(λ) =
f̂ (λ)

|λ|2 − z2 (λ ∈ Rn)

Therefore (by Plancherel)

‖R0(z)‖L2→L2 =
1

d(z2,R+)
=

1
| Im(z2)| ≤

1
|z| Im z

.

For Im z >> 1 we have

‖VR0(z)‖L2→L2 ≤ ‖V‖∞(Im z)−2 < 1 .

Hence VR0 is invertible using the Neumann series

(I + VR0(z))−1 =
∞∑

k=0

(−1)k (VR0(z))k

This shows that

R(z) = (∆ + V − z2)−1 = R0(z)(I + VR0(z))−1

The study of R(z) reduces to that of (I + VR0(z))−1.
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The meromorphic continuation of (I + VR0(z))−1 relies on the so-called analytic
Fredholm theory : suppose that K (z) : L2 → L2 is a holomorphic family of compact
operators for z ∈ C and that (I + K (z0))−1 : L2 → L2 exists at some z0 ∈ C. Then

C 3 z 7−→ (I + K (z))−1 ∈ B(L2)

is a meromorphic family of operators.

As in the free case, the even dimensional case is more complicated.

. The proof of the meromorphic continuation of the resolvant (H − z2)−1

. the existence and properties of the resonances in this case,

. as well as some relvant examples of resonant state expansions,

can be found in the book of Dyalov and Zworski [1]. See also [6].

The theory of resonances of H = ∆ + V appears naturally and plays an important role
in many branches of mathematics, physics and engineering.

It is a very active field of research.
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