Resonances of the Laplacian
for Riemannian symmetric spaces

Lecture 2

Angela Pasquale

Institut Elie Cartan de Lorraine
Université de Lorraine — Metz

Discussion Meeting in Harmonic Analysis
DMHA 17, NISER

January 5-8, 2022

A. Pasquale (Lecture 2) Resonances of the Laplacian DMHA 17, Jan 5-8, 2022 1/15



More general noncompact Riemannian manifolds

The study of analytic/meromorphic continuation of the resolvent of the Laplacian
operator (more generally, of Schrédinger operators) has been carried to several
classes of complete Riemannian manifolds.

e.g.: hyperbolic or asymptotically hyperbolic manifolds, symmetric or locally symmetric
spaces (mostly, of rank 1).

Many authors: Borthwick, Bunke, Guillarmou, Guillopé, Mazzeo, Melrose, Miiller,
Olbrich, Patterson, Perry, Sjostrand, Strohmaier, Vasy, Zworski, ...

Many motivations/applications: geometric scattering, dynamical systems, spectral
theory, trace formulas...
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Resonances in Geometric Scattering Theory
Let A be (positive) Laplacian on a complete non-compact Riemannian manifold (X, g)
(with bounded geometry).
Examples:
@ Euclidean space R": A=-3T, ,;972,2-
@ Poincaré half-plane H = {z = x+ iy € (Cj: y > 0} with hyperbolic metric:
2( 82 22
b=y (Lt
A is a positive, essentially self-adjoint operator on the Hilbert space L2(X).
Suppose: A has continuous spectrum o(A) = [p%, +oo[ with p% > 0.

The resolvent of A
Ra(u) = (A—u)™
is a bdd operator on [2(X) depending holomorphically on u € C\ o(4), i.e.
C\ o(A) 3 u — Ra(u) € B(LA(X)).
is a holomorphic operator-valued function.

On L3(X), the resolvent Ra has no extension across o(A).
Letting Ra act on a smaller dense subspace of L?(X), e.g. C°(X), a meromorphic
continuation of Ra across o(A) is possible in many cases.

In this case, the poles of the meromorphically extended Laplacian are the resonances
of A.
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The case of Riemannian symmetric spaces of non-compact type

In the following: X = G/K, where:

G = connected noncompact real semisimple Lie group with finite center
K = maximal compact subgroup of G

Examples:
e H"(R) =SOq(1,n)/SO(n) real hyperbolic space
e H =SL(2,R)/SO(2) upper half-plane

@ SL(n,R)/SO(n) the space of real positive-definite symmetric n x n
matrices of determinant 1

They are complete non-compact Riemannian manifolds (with bounded geometry) with
respect to their canonical G-invariant Riemannian metric.
Why studying resonances on G/K?

o well understood geometry

o radial part of A on a Cartan subspace is a Schrddinger operator
o Fourier analysis available

o links with Representation Theory (tools and applications)
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Convenient modifications
o Consider A — p% instead of A

~ translate the spectrum [p%, +00) to [0, +oc0)

o Change variables v = 22

~ U € C\[0,+o00] correspondsto ze C"={weC:Imw > 0}.

o Define

R(2) = Ra () = (B — sk —2)"
So R: C* — B(L3(X)) is a holomorphic operator-valued function.

Goal: Meromorphic continuation across R of R : C™ — Hom (C3°(X), C°(X)')
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‘ Problem 1: Meromorphic continuation and resonances

Wanted: meromorphic continuation of R : C* — B(L3(X)) across R,
by replacing B(L?(X)) with Hom(Cg°(X),C°(X)')

i.e.

M
e a Riemann surface I with Q open in C, containing (a part of) R

Q
e R: M — Hom(Cg®(X),Ce°(X)") meromorphic
and extending a lift of R to M:
\ v, g € C&°(X):
M *> Hom Coo(x) CQQ(X) ) (Fi( )f, g>L2(X) lifts and extends
to M the function (R(-)f, g>L2( X)

]

Q\R
If such a meromorphic continuation exists, the poles of the meromorphically extended
R will be called the resonances of A

(discarding that we are working with R(z) = FfA_pi(zz) and not with Ra(2))

Remark: as in the case of R” we will show (Paley-Wiener theorem) that the image will
be in C>°(X) and not only in C°(X)'.
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Residue operators at resonances

Suppose R : C™ — Hom(Cg°(X),C> (X)) extends meromorphically across R.
Let zy be a resonance (=pole of the extended R).
The residue space at z; is

Vz = {Resyz)(Ro ™ ')(f) : f € CZ(X)} € C=(X)
where ¢ is a chart of the Riemann surface in a neighborhood of z,.
The residue operator has finite rank if dim V;; < oco. In this case, dim V_, is its rank.

Since A is G-invariant, Vz, is a G-module
(a K-spherical representation of G).

Problem 2: identify the resonance representation

Is the Harish-Chandra module of this representation irreducible?
Is it finite dimensional?

Is it unitarizable?
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The fine structure of X = G/K

X=G/K where:
G connected noncompact real semisimple Lie group with finite center
K maximal compact subgroup of G

Example: P, = G/K, n> 2, where
G=SL(n,R) ={g € Mat(n,R) : detg =1}
K =50(n) = {g € SL(n,R) : gg' = I}
‘Pn is the space of real positive-definite symmetric n x n matrices of determinant 1
G3gn Pn by XePr— gXg'
G/K=P, by gK+— gg'

g= Lie algebra of G
= Lie algebra of K
Then:g= ¢t & p
+1& —1 eigenspaces of a Cartan involution 9.
a C p maximal abelian subspace
dim a=: the (real) rank of X

Example: P,

g ={X € Mat(n,R) : Tr X = 0}, (X)) = -X!

t={Xecg: X' =-X}, p={Xecg: X' =X}

a = {H = diag(hi, hs, ..., hn) : hy € R, 37 by = 0} ~ Ppisorrank n—1.
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Root structure of G/K

a” = the dual space of a
ag = its complexification
Y == roots of (g, a)
~> ¥ is a finite subset of a*
¥t = choice of positive positive roots in
go ={X €g:[H,X]=a(H)X forall H € a} =root space of a € &
m, = dimg g, = multiplicity of the root o
p=1/2% cy+ Max € a"
(+,-) = restriction to a x a of the Killing form of g
~~ Euclidean structure on a and a*
W = Weyl group of
=(finite) subgroup of O(a, (-, -)) generated by reflections across ker(a), a € £

Examples
P, =SL(2,R)/SO(2): a=RHy with Ho = (g, _01)

X = (g ;), Y = (? g). Then: [Ho, X] = 2X,  [Ho, Y] = —2Y
~a:a—R, «oH)=2H isarootand go=RX, m,=1.
Inthis case: ¥ ={%a}, T'={a}, p=4a W={£id}
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P3 =SL(3,R)/SO(3): a = {H = diag(hi, ho, —(h1 + h2)) : hi, hp € R} = R?

):oftype Az, pan :{(11,042,&:(11 +a2}

m, =1 forall «

W = S; generated by reflections across ker(«;),
ji=12

N = Dacs+fa
N = the analytic subgroup of G of Lie algebra n

Iwasawa decomposition:

G = KAN = Kexp(a)N
g= k(g) exp(H(g))n(g) (uniquely determined components)
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The Helgason-Fourier transform on X = G/K

G = KAN = Kexp(a)N Ilwasawa decomposition
g = kexp(H(g))n with H(g) € a.

Define:
o M= 2Zx(A)and B=K/M.

e A: XxB—a by A(gK, kM) :=—H(g 'k) (‘composite distance’)
e ForaecatandbeB: e.,:X—=C by eyp(x):=elrAXD

Helgason-Fourier (HF) transform:
Ff(Ab) == [, f(x)e_xn(x) dx (A€ag,beB)

Plancherel theorem:

F extends to a unitary isometry of L*(X) onto L*(a” x B, [W|™! ;8®).
where:

¢ = Harish-Chandra’s c-function.

m = Plancherel density for the HF transform.
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Paley-Wiener theorem:

fe Ce(X) ifandonlyif Ffe H(at x B)w

where

H(ag x B)w = {F : ag x B— C entire of uniform exponential type, "W-invariant”}
and

F is entire of uniform exponential type if

e F(.,b)entireforall be B,

e 3R >0suchthatsup(, peasxs @ (1 4+ [A)YIF(X, b)| < oo forall N € N.

Helgason-Fourier (HF) inversion, |

Flgx) = |1W| /a*XBg(A, b)eir.b(x) % (x € X)

A different expression for the inversion formula holds for f € Cz°(X).
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For f € C&°(X)
/ FH, b)e.s(x) db = ( x @i )(X)
B
where

x = convolution on G/K
~ defined by (fi x b)on = (fiom)=*(fom), where « is the convolutionon Gand « : G — G/K
the canonical projection.
= spherical function on X of spectral parameter A € ag
~~ the spherical functions on X are:
e the (normalized) K-invariant joint eigenfunctions of the commutative algebra of G-invariant
diff ops on X
e matrix coefficients of the principal K-spherical reps of G corresponding to 1x
f x ¢ = convolution on X of f and ¢;x

= [HF transform of f](i\)epix, if f right-K-invariant
~~ by the Paley-Wiener thm for the HF-transform: entire and rapidly decreasing in
X € ag

Helgason-Fourier (HF) inversion, Il
For g = Ff where f € C3°(X)
1

B a\
P19 = gy [ (%0000 gy
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The resolvent of Laplacian A

Explicit formula for the resolvent R(z) of A on Cg°(X) via Fourier transform on G/K.

Ae_inp = ((MA) +(p,p))e-irp
Hence:

FAF'=M (unitary equivalence of A and M)

where

M = multiplication operator by (X, \) 4 {p, p) on L2(a* x B, |W|~"|c()\)|~2 dA\db), i.e.
Mg(X, b) = (A, A) + (p, p))g(A, b).

~~ the spectrum of A is o(A) = [p%, +00), where p% = (p, p).
FA-u)T"F'=M-u)" ie. Rau)=(A-uv)'=F'M-u)'F
Thus: for z € C*

R(z) = (A —px —2°)7": C(X) 3 f = R(2)f € C(X)

is given by

AN = [ o= (<o) sy @€
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Comparison between the cases of R” and X

The resolvents of the Laplacians of R” and X have similar structure:
Resolvent of the Laplacian on R”

[R(2)f](x) =< /R ) W%Zg e* V() dA (f € C(R"),x € R")
Resolvent of the Laplacian on X = G/K

F@N00 = [ 3= (o)) smyaing (fe Ce(X).x e X)
where: ! 7

R" <+— a*
Euclidean inner product «+— inner product induced by Killing form
N (Fxen))
ax
aA —
c(irX)c(—iX)
Difference:
In general, the Plancherel density for X is a meromorphic function of A € ag
~~ these singularities might originate resonances
Remark: “might” :
e Plancherel density is nonsingular (< even multiplicity case): then no resonances
e Plancherel density might be singular, and still no resonances
e.g. H"(R) x X where nodd and X of rank one
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