Resonances of the Laplacian for Riemannian symmetric spaces

Lecture 2

Angela Pasquale

Institut Élie Cartan de Lorraine Université de Lorraine – Metz

Discussion Meeting in Harmonic Analysis DMHA 17, NISER

January 5-8, 2022

A. Pasquale (Lecture 2)

Resonances of the Laplacian

(D) (A) (A) (A)

The study of analytic/meromorphic continuation of the resolvent of the Laplacian operator (more generally, of Schrödinger operators) has been carried to several classes of complete Riemannian manifolds.

e.g.: hyperbolic or asymptotically hyperbolic manifolds, symmetric or locally symmetric spaces (mostly, of rank 1).

Many authors: Borthwick, Bunke, Guillarmou, Guillopé, Mazzeo, Melrose, Müller, Olbrich, Patterson, Perry, Sjöstrand, Strohmaier, Vasy, Zworski,...

Many motivations/applications: geometric scattering, dynamical systems, spectral theory, trace formulas...

Resonances in Geometric Scattering Theory

Let Δ be (positive) Laplacian on a complete non-compact Riemannian manifold (*X*, *g*) (with bounded geometry).

Examples:

- Euclidean space \mathbb{R}^n : $\Delta = -\sum_{j=1}^n \frac{\partial^2}{\partial x^2}$.
- Poincaré half-plane $\mathbb{H} = \{z = x + iy \in \mathbb{C}' : y > 0\}$ with hyperbolic metric: $\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$

 Δ is a positive, essentially self-adjoint operator on the Hilbert space $L^2(X)$. Suppose: Δ has continuous spectrum $\sigma(\Delta) = [\rho_X^2, +\infty[$ with $\rho_X^2 \ge 0$.

The resolvent of Δ

$$R_{\Delta}(u) = (\Delta - u)^{-1}$$

is a bdd operator on $L^2(X)$ depending holomorphically on $u \in \mathbb{C} \setminus \sigma(\Delta)$, i.e.

$$\mathbb{C} \setminus \sigma(\Delta) \ni u \longrightarrow \mathcal{R}_{\Delta}(u) \in \mathcal{B}(L^{2}(X)).$$

is a holomorphic operator-valued function.

On $L^2(X)$, the resolvent R_{Δ} has no extension across $\sigma(\Delta)$.

Letting R_{Δ} act on a smaller dense subspace of $L^2(X)$, e.g. $C_c^{\infty}(X)$, a meromorphic continuation of R_{Δ} across $\sigma(\Delta)$ is possible in many cases.

In this case, the poles of the meromorphically extended Laplacian are the resonances of Δ .

The case of Riemannian symmetric spaces of non-compact type

In the following: X = G/K, where:

G = connected noncompact real semisimple Lie group with finite center

K = maximal compact subgroup of G

Examples:

- $H^n(\mathbb{R}) = SO_0(1, n) / SO(n)$ real hyperbolic space
- $\mathbb{H} = \operatorname{SL}(2,\mathbb{R})/\operatorname{SO}(2)$ upper half-plane
- SL(n, ℝ)/SO(n) the space of real positive-definite symmetric n × n matrices of determinant 1

They are complete non-compact Riemannian manifolds (with bounded geometry) with respect to their canonical *G*-invariant Riemannian metric.

Why studying resonances on G/K?

- well understood geometry
- radial part of Δ on a Cartan subspace is a Schrödinger operator
- Fourier analysis available
- links with Representation Theory (tools and applications)

Convenient modifications

- Consider Δ − ρ_X² instead of Δ
 → translate the spectrum [ρ_X², +∞) to [0, +∞)
- Change variables $u = z^2$

 $\rightsquigarrow u \in \mathbb{C} \setminus [0, +\infty[\text{ corresponds to } z \in \mathbb{C}^+ = \{ w \in \mathbb{C} : \operatorname{Im} w > 0 \}.$

Define

$$R(z) = R_{\Delta -
ho_X^2}(z^2) = (\Delta -
ho_X^2 - z^2)^{-1}$$

So $R : \mathbb{C}^+ \to \mathcal{B}(L^2(X))$ is a holomorphic operator-valued function.

Goal: Meromorphic continuation across \mathbb{R} of $R : \mathbb{C}^+ \to \text{Hom}(C_c^{\infty}(X), C_c^{\infty}(X)')$

Problem 1: Meromorphic continuation and resonances

Wanted: meromorphic continuation of $R : \mathbb{C}^+ \longrightarrow \mathcal{B}(L^2(X))$ across \mathbb{R} , by replacing $\mathcal{B}(L^2(X))$ with $\operatorname{Hom}(C_c^{\infty}(X), C_c^{\infty}(X)')$

i.e.

- a Riemann surface \int_{Ω}^{M} with Ω open in \mathbb{C} , containing (a part of) \mathbb{R}
- $R: M \to \operatorname{Hom}(C_c^{\infty}(X), C_c^{\infty}(X)')$ meromorphic and extending a lift of R to M:

 $\begin{array}{l} \forall f, g \in C_{\mathcal{C}}^{\infty}(X): \\ \langle \textbf{\textit{R}}(\cdot)f, g \rangle_{L^{2}(X)} \text{ lifts and extends} \\ \text{to } \textit{M the function } \langle \textbf{\textit{R}}(\cdot)f, g \rangle_{L^{2}(X)} \end{array}$

If such a meromorphic continuation exists, the poles of the meromorphically extended R will be called the resonances of Δ

(discarding that we are working with $R(z) = R_{\Delta - \rho_{\chi}^2}(z^2)$ and not with $R_{\Delta}(z)$)

Remark: as in the case of \mathbb{R}^n we will show (Paley-Wiener theorem) that the image will be in $C^{\infty}(X)$ and not only in $C^{\infty}_{c}(X)'$.

Residue operators at resonances

Suppose $R : \mathbb{C}^+ \to \text{Hom}(C^{\infty}_c(X), C^{\infty}(X))$ extends meromorphically across \mathbb{R} . Let z_0 be a resonance (=pole of the extended R).

The residue space at z_0 is

 $\mathbf{V}_{\mathbf{z}_0} = \left\{ \operatorname{Res}_{\varphi(z_0)}(\boldsymbol{R} \circ \varphi^{-1})(f) : f \in C^{\infty}_c(\boldsymbol{X}) \right\} \subset C^{\infty}(\boldsymbol{X})$

where φ is a chart of the Riemann surface in a neighborhood of z_0 .

The residue operator has finite rank if dim $V_{z_0} < \infty$. In this case, dim V_{z_0} is its rank.

Since Δ is *G*-invariant, V_{z_0} is a *G*-module (a *K*-spherical representation of *G*).

Problem 2: identify the resonance representation Is the Harish-Chandra module of this representation irreducible? Is it finite dimensional? Is it unitarizable?

The fine structure of X = G/K

X = G/K where:

- G connected noncompact real semisimple Lie group with finite center
- K maximal compact subgroup of G

Example: $\mathcal{P}_n = G/K, n \ge 2$, where $G = \operatorname{SL}(n, \mathbb{R}) = \{g \in \operatorname{Mat}(n, \mathbb{R}) : \det g = 1\}$ $K = \operatorname{SO}(n) = \{g \in \operatorname{SL}(n, \mathbb{R}) : gg^t = I\}$

 \mathcal{P}_n is the space of real positive-definite symmetric $n \times n$ matrices of determinant 1 $G \ni g \curvearrowright \mathcal{P}_n$ by $X \in \mathcal{P}_n \mapsto gXg^t$ $G/K \equiv \mathcal{P}_n$ by $gK \mapsto gg^t$

Example:
$$\mathcal{P}_n$$

 $\mathfrak{g} = \{X \in \operatorname{Mat}(n, \mathbb{R}) : \operatorname{Tr} X = 0\}, \quad \vartheta(X) = -X^t$
 $\mathfrak{k} = \{X \in \mathfrak{g} : X^t = -X\}, \quad \mathfrak{p} = \{X \in \mathfrak{g} : X^t = X\}$
 $\mathfrak{a} = \{H = \operatorname{diag}(h_1, h_2, \dots, h_n) : h_j \in \mathbb{R}, \sum_{j=1}^n h_j = 0\}$

 $\rightsquigarrow \mathcal{P}_n$ is or rank n-1.

・ロン ・四 ・ ・ ヨ ・ ・ 日 ・

Root structure of G/K

 $\begin{array}{l} \mathfrak{a}^{*} = \text{the dual space of } \mathfrak{a} \\ \mathfrak{a}^{*}_{\mathbb{C}} = \text{its complexification} \\ \Sigma == \text{roots of } (\mathfrak{g}, \mathfrak{a}) \\ & \stackrel{\longrightarrow}{\longrightarrow} \Sigma \text{ is a finite subset of } \mathfrak{a}^{*} \\ \Sigma^{+} = \text{choice of positive positive roots in } \Sigma \\ \mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} : [H, X] = \alpha(H)X \text{ for all } H \in \mathfrak{a}\} = \text{root space of } \alpha \in \Sigma \\ m_{\alpha} = \dim_{\mathbb{R}} \mathfrak{g}_{\alpha} = \text{multiplicity of the root } \alpha \\ \rho = 1/2 \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha \in \mathfrak{a}^{*} \\ \langle \cdot, \cdot \rangle = \text{restriction to } \mathfrak{a} \times \mathfrak{a} \text{ of the Killing form of } \mathfrak{g} \\ & \stackrel{\longrightarrow}{\longrightarrow} \text{Euclidean structure on } \mathfrak{a} \text{ and } \mathfrak{a}^{*} \\ W = \text{Weyl group of } \Sigma \\ = (\text{finite}) \text{ subgroup of } O(\mathfrak{a}, \langle \cdot, \cdot \rangle) \text{ generated by reflections across } \ker(\alpha), \alpha \in \Sigma^{+} \end{array}$

Examples

$$\begin{aligned} \mathcal{P}_2 &= \mathrm{SL}(2,\mathbb{R})/\operatorname{SO}(2): \quad \mathfrak{a} = \mathbb{R}H_0 \quad \text{with} \quad H_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ & X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \quad \text{Then}: [H_0, X] = 2X, \qquad [H_0, Y] = -2Y \\ & \rightsquigarrow \alpha: \mathfrak{a} \to \mathbb{R}, \quad \alpha(H) = 2H \quad \text{is a root and} \quad \mathfrak{g}_\alpha = \mathbb{R}X, \quad m_\alpha = 1. \\ & \text{In this case:} \quad \Sigma = \{\pm \alpha\}, \quad \Sigma^+ = \{\alpha\}, \quad \rho = \frac{1}{2}\alpha, \quad W = \{\pm \mathrm{id}\} \end{aligned}$$

(日)

 $\mathcal{P}_3 = \operatorname{SL}(3,\mathbb{R})/\operatorname{SO}(3): \quad \mathfrak{a} = \{H = \operatorname{diag}(h_1,h_2,-(h_1+h_2)):h_1,h_2 \in \mathbb{R}\} \cong \mathbb{R}^2$

 Σ of type A_2 , $\Sigma^+ = \{\alpha_1, \alpha_2, \widetilde{\alpha} = \alpha_1 + \alpha_2\}$ $m_{\alpha} = 1$ for all α $W \cong S_3$ generated by reflections across ker (α_j) , j = 1, 2

 $\mathfrak{n} = \bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha}$ N = the analytic subgroup of *G* of Lie algebra \mathfrak{n}

Iwasawa decomposition: $G = KAN = K \exp(a)N$ $g = k(g) \exp(H(g))n(g)$

(uniquely determined components)

The Helgason-Fourier transform on X = G/K

 $G = KAN = K \exp(\mathfrak{a})N$ Iwasawa decomposition $g = k \exp(H(g)) n$ with $H(g) \in \mathfrak{a}$.

Define:

•
$$M = Z_{\kappa}(A)$$
 and $B = K/M$.

• $\mathcal{A}: X \times B \to \mathfrak{a}$ by $\mathcal{A}(gK, kM) := -H(g^{-1}k)$ ('composite distance')

• For $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ and $b \in B$: $e_{\lambda,b}: X \to \mathbb{C}$ by $e_{\lambda,b}(x) := e^{(\lambda + \rho)\mathcal{A}(x,b)}$

Helgason-Fourier (HF) transform:

 $\mathcal{F}f(\lambda, b) := \int_X f(x) e_{-\lambda, b}(x) \, dx \qquad (\lambda \in \mathfrak{a}^*_{\mathbb{C}}, b \in B)$

Plancherel theorem:

 \mathcal{F} extends to a unitary isometry of $L^2(X)$ onto $L^2(\mathfrak{a}^* \times B, |W|^{-1} \frac{d\lambda db}{c(i\lambda)c(-i\lambda)})$. where:

c = Harish-Chandra's c -function. $\frac{1}{c(i\lambda)c(-i\lambda)} = \text{Plancherel density for the HF transform.}$

Paley-Wiener theorem:

 $f \in C_c^{\infty}(X)$ if and only if $\mathcal{F}f \in H(\mathfrak{a}^*_{\mathbb{C}} \times B)_W$ where $\mathcal{H}(\mathfrak{a}^*_{\mathbb{C}} \times B)_W = \{F : \mathfrak{a}^*_{\mathbb{C}} \times B \to \mathbb{C} \text{ entire of uniform exponential type, "W-invariant"}\}$

and

F is entire of uniform exponential type if

- $F(\cdot, b)$ entire for all $b \in B$,
- $\exists R \geq 0$ such that $\sup_{(\lambda,b)\in\mathfrak{a}_{\Gamma}^*\times B} e^{-R|\operatorname{Im}\lambda|}(1+|\lambda|)^N |F(\lambda,b)| < \infty$ for all $N \in \mathbb{N}$.

Helgason-Fourier (HF) inversion, I

$$\mathcal{F}^{-1}g(x) = \frac{1}{|W|} \int_{\mathfrak{a}^* \times B} g(\lambda, b) e_{i\lambda, b}(x) \frac{d\lambda \, db}{c(i\lambda)c(-i\lambda)} \qquad (x \in X)$$

A different expression for the inversion formula holds for $f \in C_c^{\infty}(X)$.

(日)

For $f \in C_c^{\infty}(X)$

$$\int_{B} \mathcal{F}f(\lambda, b) \boldsymbol{e}_{i\lambda, b}(x) \, db = (f \times \varphi_{i\lambda})(x)$$

where

 \times = convolution on *G*/*K*

 \rightsquigarrow defined by $(f_1 \times f_2) \circ \pi = (f_1 \circ \pi) * (f_2 \circ \pi)$, where * is the convolution on G and $\pi : G \to G/K$ the canonical projection.

 φ_{λ} = spherical function on X of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$

- \rightsquigarrow the spherical functions on X are:
 - the (normalized) *K*-invariant joint eigenfunctions of the commutative algebra of *G*-invariant diff ops on *X*
 - matrix coefficients of the principal K-spherical reps of G corresponding to 1_K

$$f \times \varphi_{i\lambda}$$
 = convolution on X of f and $\varphi_{i\lambda}$

= [*HF* transform of f]($i\lambda$) $\varphi_{i\lambda}$, if f right-K-invariant

 \leadsto by the Paley-Wiener thm for the HF-transform: entire and rapidly decreasing in $\lambda\in\mathfrak{a}_{\mathbb{C}}^*$

Helgason-Fourier (HF) inversion, II

For $g = \mathcal{F}f$ where $f \in C^{\infty}_{c}(X)$

$$\mathcal{F}^{-1}g(x) = \frac{1}{|W|} \int_{\mathfrak{a}^*} (f \times \varphi_{i\lambda})(x) \frac{d\lambda}{c(i\lambda)c(-i\lambda)} \qquad (x \in X)$$

The resolvent of Laplacian Δ

Explicit formula for the resolvent R(z) of Δ on $C_c^{\infty}(X)$ via Fourier transform on G/K.

 $\Delta \boldsymbol{e}_{-i\lambda,b} = (\langle \lambda, \lambda \rangle + \langle \rho, \rho \rangle) \boldsymbol{e}_{-i\lambda,b}$ Hence:

 $\mathcal{F}\Delta\mathcal{F}^{-1} = M$ (unitary equivalence of Δ and M) where M = multiplication operator by $\langle \lambda, \lambda \rangle + \langle \rho, \rho \rangle$ on $L^2(\mathfrak{a}^* \times B, |W|^{-1}|c(\lambda)|^{-2} d\lambda db)$, i.e. $Mg(\lambda, b) = (\langle \lambda, \lambda \rangle + \langle \rho, \rho \rangle)g(\lambda, b)$.

 \rightsquigarrow the spectrum of Δ is $\sigma(\Delta) = [\rho_X^2, +\infty)$, where $\rho_X^2 = \langle \rho, \rho \rangle$.

$$\mathcal{F}(\Delta - u)^{-1}\mathcal{F}^{-1} = (M - u)^{-1}$$
 i.e. $R_{\Delta}(u) = (\Delta - u)^{-1} = \mathcal{F}^{-1}(M - u)^{-1}\mathcal{F}$

Thus: for $z \in \mathbb{C}^+$

$$\mathbf{R}(\mathbf{z}) = (\Delta - \rho_X^2 - \mathbf{z}^2)^{-1} : \mathbf{C}_c^{\infty}(\mathbf{X}) \ni \mathbf{f} \to \mathbf{R}(\mathbf{z})\mathbf{f} \in \mathbf{C}^{\infty}(\mathbf{X})$$

is given by

$$[R(z)f](x) \asymp \int_{\mathfrak{a}^*} \frac{1}{\langle \lambda, \lambda \rangle - z^2} (f \times \varphi_{i\lambda})(x) \frac{d\lambda}{c(i\lambda)c(-i\lambda)} \qquad (y \in X),$$

Comparison between the cases of \mathbb{R}^n and *X*

The resolvents of the Laplacians of \mathbb{R}^n and *X* have similar structure:

Resolvent of the Laplacian on \mathbb{R}^n

$$[R(z)f](x) \asymp \int_{\mathbb{R}^n} \frac{1}{|\lambda|^2 - z^2} e^{ix \cdot \lambda} \widehat{f}(\lambda) d\lambda \qquad (f \in C_c^{\infty}(\mathbb{R}^n), x \in \mathbb{R}^n)$$

Resolvent of the Laplacian on X = G/K

$$[R(z)f](x) \asymp \int_{\mathfrak{a}^*} \frac{1}{\langle \lambda, \lambda \rangle - z^2} (f \times \varphi_{i\lambda})(x) \frac{d\lambda}{c(i\lambda)c(-i\lambda)} \qquad (f \in C_c^{\infty}(X), x \in X)$$

where:

 $\begin{array}{rccc} \mathbb{R}^n & \longleftrightarrow & \mathfrak{a}^* \\ \text{Euclidean inner product} & \longleftrightarrow & \text{inner product induced by Killing form} \\ e^{i y \cdot \lambda} \widehat{f}(\lambda) & \longleftrightarrow & (f \times \varphi_{i\lambda})(y) \\ & d\lambda & \longleftrightarrow & \frac{d\lambda}{c(i\lambda)c(-i\lambda)} \end{array}$

Difference:

In general, the Plancherel density for X is a meromorphic function of $\lambda \in \mathfrak{a}^*_{\mathbb{C}}$

 \rightsquigarrow these singularities *might* originate resonances

Remark: "might" :

- Plancherel density is nonsingular (\Leftrightarrow even multiplicity case): then no resonances
- Plancherel density might be singular, and still no resonances
 e.g. Hⁿ(ℝ) × X where n odd and X of rank one

A. Pasquale (Lecture 2)