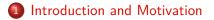
Wavelet system and Muckenhoupt \mathcal{A}_2 condition on the Heisenberg group

Dr. Arati Shashi NBHM Post-Doctoral Fellow IISER Thiruvananthapuram

DMHA 17 2022 School of Mathematical Sciences NISER Bhubaneswar

Jan 7, 2022



2 Heisenberg group

3 Wavelet system as Schauder basis

Introduction and Motivation

Definition 1.1 (Muckenhoupt A_2 condition)

A non-negative integrable function w on \mathbb{T} is said to satisfy the *Muckenhoupt* \mathcal{A}_2 *condition* if there exists a positive constant C satisfying

$$\left(\frac{1}{|I|}\int_{I}w(\xi)d\xi\right)\left(\frac{1}{|I|}\int_{I}\frac{1}{w(\xi)}d\xi\right) \le C \tag{1}$$

for all intervals $I \subset \mathbb{T}$.

We recall the following important unitary operators on $L^2(\mathbb{R})$, which generate the system of translates, the Gabor system and the wavelet system on the real line:

Let $\varphi \in L^2(\mathbb{R})$.

- Translation operator: For $s \in \mathbb{R}$, $T_s \varphi(x) = \varphi(x-s)$, $x \in \mathbb{R}$.
- Modulation operator: For $s \in \mathbb{R}$, $M_s \varphi(x) = e^{2\pi i s x} \varphi(x)$, $x \in \mathbb{R}$.
- Dilation operator: For $a \in \mathbb{R}^*$, $D_a \varphi(x) = \frac{1}{\sqrt{|a|}} \varphi(\frac{x}{a})$, $x \in \mathbb{R}$.

Brief literature survey

- Nielsen and Šikić¹ the family {φ(· k) : k ∈ Z}, for φ ∈ L²(ℝ) is a Schauder basis for its closed linear span (shift invariant space generated by φ) if and only if w_φ belongs to the Muckenhoupt A₂ class, where w_φ(ξ) = Σ_{k∈Z} |φ̂(ξ + k)|², ξ ∈ ℝ.
- Heil and Powell² the Gabor system $\{M_n T_k \varphi, k, n \in \mathbb{Z}\}$ is a Schauder basis for $L^2(\mathbb{R})$ if and only if $|Z_{\varphi}|^2 \in \mathcal{A}_2(\mathbb{T} \times \mathbb{T})$, where Z_{φ} denotes the Zak transform of φ .

¹M. Nielsen and H. Šikić. "Schauder bases of integer translates". In: *Appl. Comput. Harmon. Anal.* 23(2) (2007), pp. 259–262.

²C. Heil and A. M. Powell. "Gabor Schauder bases and the Balian-Low theorem". In: *J. Math. Phys.* 47.11 (2006), p. 113506.

Brief literature survey

- Nielsen³ considered the finitely generated shift invariant space $V(\Phi) \subset L^2(\mathbb{R}^d)$, $\Phi = \{\varphi_1, \cdots, \varphi_N\}$ and characterized the system of translates generated by Φ as a Schauder basis in terms of the \mathcal{A}_2 condition.
 - In fact,a product Muckenhoupt \mathcal{A}_2 condition for matrix weights is used.
 - The weight $W(\Phi) : \mathbb{T}^n \to \mathbb{C}^{N \times N}$ defined by $W(\Phi) = \left(\sum_{k \in \mathbb{Z}^n} \widehat{\varphi_i}(\cdot - k) \overline{\widehat{\varphi_j}(\cdot - k)}\right)_{i,j=1}^N$, which is the Gram

matrix for Φ is considered.

³M. Nielsen. "On stability of finitely generated shift-invariant systems". In: *J. Fourier Anal. Appl.* 16.6 (2010), pp. 901–920.

Aim of the talk

Here, we shall look into a similar problem of characterizing the wavelet system on the Heisenberg group, arising due to the integer left translations and the nonisotropic dilations, to be a Schauder basis for its closed linear span in terms of the Muckenhoupt A_2 condition.

Some works on Heisenberg group

- Barbieri et al⁴ shift invariant space on polarized Heisenberg group
- Radha and Saswata⁵ shift invariant space with countably many mutually orthogonal generators on the Heisenberg group
- Das and Radha⁶ shift invariant space with countably many generators

⁴D. Barbieri, E. Hernández, and A. Mayeli. "Bracket map for the Heisenberg group and the characterization of cyclic subspaces". In: *Appl. Comput. Harmon. Anal.* 37(2) (2014), pp. 218–234.

⁵R. Radha and Saswata Adhikari. "Shift-invariant spaces with countably many mutually orthogonal generators on the Heisenberg group". In: *Houston J. Math.* 46.2 (2020), pp. 435–463.

⁶S. R. Das and R. Radha. "Shift-invariant system on the Heisenberg Group". In: *Adv. Oper. Theory* 6.1 (2021), pp. 1–27.

Some works on Heisenberg group

- Mayeli⁷ the existence of a band-limited function $\psi \in L^2(\mathbb{H})$ and a lattice Γ in \mathbb{H} such that the discrete wavelet system $\{L_{2^{-j}\gamma}\delta_{2^{-j}}\psi\}_{j\in\mathbb{Z},\gamma\in\Gamma}$ forms a Parseval frame for $L^2(\mathbb{H})$.
- Arati and Radha⁸ orthonormality of the wavelet system on Heisenberg group
- Radha and Sivananthan⁹ Shannon type sampling theorem for the Heisenberg group

⁷A. Mayeli. "Shannon multiresolution analysis on the Heisenberg group". In: *J. Math. Anal. Appl.* 348(2) (2008), pp. 671–684.

⁸S. Arati and R. Radha. "Orthonormality of wavelet system on the Heisenberg group". In: *J. Math. Pures Appl.* 131 (2019), pp. 171–192.

⁹R. Radha and S. Sivananthan. "Shannon type sampling theorems on the Heisenberg group". In: *Fields Inst. Comm., Amer. Math. Soc.* 52 (2007), pp. 367–374.

Frames and Riesz bases

Let $\mathcal{H} \neq 0$ be a separable Hilbert space.

Definition 1.2

A sequence $\{f_k : k \in \mathbb{N}\}$ in \mathcal{H} is a frame for \mathcal{H} if there exist constants A, B > 0 such that

$$A\|f\|^2 \le \sum_{k \in \mathbb{N}} |\langle f, f_k \rangle|^2 \le B\|f\|^2, \quad \forall f \in \mathcal{H}.$$

The numbers A and B are called frame bounds. If the right hand side inequality holds, then $\{f_k : k \in \mathbb{N}\}$ is said to be a Bessel sequence with bound B. A frame is called a Parseval frame if A = B = 1. A sequence $\{f_k : k \in \mathbb{N}\}$ in \mathcal{H} is said to be a frame sequence if it is a frame for $\overline{\text{span}}\{f_k : k \in \mathbb{N}\}$.

Frames and Riesz bases

Definition 1.3

A Riesz basis for \mathcal{H} is a family of the form $\{Ue_k : k \in \mathbb{N}\}$, where $\{e_k : k \in \mathbb{N}\}$ is an orthonormal basis for \mathcal{H} and $U : \mathcal{H} \to \mathcal{H}$ is a bounded invertible operator. Alternatively, a sequence $\{f_k : k \in \mathbb{N}\}$ is a Riesz basis for \mathcal{H} if $\{f_k : k \in \mathbb{N}\}$ is complete in \mathcal{H} , and there exist constants A, B > 0 such that for every finite scalar sequence $\{c_k\}$, one has

$$A\sum_{k} |c_{k}|^{2} \leq \|\sum_{k} c_{k}f_{k}\|^{2} \leq B\sum_{k} |c_{k}|^{2}.$$

A sequence $\{f_k : k \in \mathbb{N}\}$ in \mathcal{H} is called a Riesz sequence if it is a Riesz basis for $\overline{\text{span}}\{f_k : k \in \mathbb{N}\}$.

System of translates (Real line)

Theorem 1.4

Let $\varphi \in L^2(\mathbb{R})$ and $w_{\varphi}(\xi) = \sum_{k \in \mathbb{Z}} |\hat{\varphi}(\xi + k)|^2$, $\xi \in \mathbb{R}$. For any A, B > 0, the following statements^a hold. The collection $\{T_k \varphi\}_{k \in \mathbb{Z}}$ is

- (i) an orthonormal sequence if and only if $w_{\varphi}(\xi) = 1$ a.e. $\xi \in [0, 1]$.
- (ii) a frame sequence with bounds A, B if and only if $A \leq w_{\varphi}(\xi) \leq B$ a.e. $\xi \in [0,1] \setminus N$, where $N = \{\eta \in [0,1] : w_{\varphi}(\eta) = 0\}.$
- (iii) a Riesz sequence with bounds A, B if and only if $A \le w_{\varphi}(\xi) \le B$ a.e. $\xi \in [0, 1]$.

^aO. Christensen. Frames and bases: An introductory course. Boston: Birkhäuser, 2008.

System of translates (Heisenberg group)

The following results¹⁰ are on the system of translates $\{L_{(2k,l,m)}\varphi: (k,l,m) \in \mathbb{Z}^{2n+1}\}$ in $L^2(\mathbb{H}^n)$.

Theorem 1.5

If $\varphi \in L^2(\mathbb{H}^n)$, then $\{L_{(2k,l,m)}\varphi : (k,l,m) \in \mathbb{Z}^{2n+1}\}$ is an orthonormal system in $L^2(\mathbb{H}^n)$ if and only if the following conditions hold:

(i)
$$G_{0,0}^{\varphi}(\lambda) = 1$$
 a.e. $\lambda \in (0,1]$ and
(ii) $G_{k,l}^{\varphi}(\lambda) = 0$ a.e. $\lambda \in (0,1]$, for all $(k,l) \neq (0,0)$ in \mathbb{Z}^{2n} .

 $^{^{10}\}mathsf{Radha}$ and Adhikari, "Shift-invariant spaces with countably many mutually orthogonal generators on the Heisenberg group".

System of translates (Heisenberg group)

Theorem 1.6

Let $\varphi \in L^2(\mathbb{H}^n)$ satisfy condition (*ii*) in the above theorem. Then $\{L_{(2k,l,m)}\varphi: (k,l,m) \in \mathbb{Z}^{2n+1}\}$ is

(i) a frame sequence with bounds A, B > 0 if and only if

$$A \leq G^{arphi}_{0,0}(\lambda) \leq B$$
 a.e. $\lambda \in \Omega_{arphi}$

where $\Omega_{\varphi} = \{\eta \in (0,1] : G_{0,0}^{\varphi}(\eta) > 0\}.$

(ii) a Riesz sequence with bounds A, B > 0 if and only if

 $A \leq G^{\varphi}_{0,0}(\lambda) \leq B \quad \textit{a.e.} \ \lambda \in (0,1],$

Heisenberg group

Definition and properties:

• The Heisenberg group \mathbb{H}^n is a nilpotent Lie group whose underlying manifold is $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ satisfying the group law

$$(x,y,t)(u,v,s) = \left(x+u,y+v,t+s+\frac{1}{2}(u\cdot y-v\cdot x)\right).$$

- It is a nonabelian noncompact locally compact group.
- The Haar measure is the Lebesgue measure *dxdydt*.
- By Stone-von Neumann theorem, every infinite dimensional irreducible unitary representation of the Heisenberg group is unitarily equivalent to the representation π_{λ} , $\lambda \in \mathbb{R}^*$, where π_{λ} is defined by

$$\pi_{\lambda}(x, y, t)\varphi(\xi) = e^{2\pi i\lambda t} e^{2\pi i\lambda(x\cdot\xi + \frac{1}{2}x\cdot y)}\varphi(\xi + y), \quad \varphi \in L^2(\mathbb{R}^n).$$

Group Fourier transform:

- For $f \in L^1(\mathbb{H}^n)$, the group Fourier transform \hat{f} is defined as follows. For $\lambda \in \mathbb{R}^*$, $\hat{f}(\lambda)$ is given by $\hat{f}(\lambda) = \int_{\mathbb{C}^n \times \mathbb{R}} f(z, t) \pi_{\lambda}(z, t) dz dt.$
- $\widehat{f}(\lambda)$ is the bounded operator acting on $L^2(\mathbb{R}^n)$ given by

$$\hat{f}(\lambda)\varphi = \int_{\mathbb{C}^n \times \mathbb{R}} f(z,t) \pi_{\lambda}(z,t)\varphi dz dt, \, \varphi \in L^2(\mathbb{R}^n),$$

where the integral is a Bochner integral taking values in the Hilbert space $L^2(\mathbb{R}^n).$

• $\|\hat{f}(\lambda)\|_{\mathcal{B}} \leq \|f\|_{L^1(\mathbb{H}^n)}.$

Convolution:

• If f and g are in $L^1(\mathbb{H}^n),$ then their convolution is defined by

$$f * g(z, t) = \int_{\mathbb{C}^n \times \mathbb{R}} f((z, t)(w, s)^{-1})g(w, s)dwds.$$

- \bullet Under this convolution, $L^1(\mathbb{H}^n)$ becomes a noncommutative Banach algebra.
- $\bullet \ \widehat{(f\ast g)}(\lambda)=\widehat{f}(\lambda)\widehat{g}(\lambda), \quad \lambda\in \mathbb{R}^*.$

For $f \in L^2(\mathbb{H}^n)$:

- The definition of the group Fourier transform \hat{f} can also be extended to $L^2(\mathbb{H}^n)$ through the density argument.
- Further, the group Fourier transform satisfies the Plancherel formula

$$\|\hat{f}\|_{L^2(\mathbb{R}^*,\mathcal{B}_2;d\mu)} = \|f\|_{L^2(\mathbb{H}^n)},$$

where, $L^2(\mathbb{R}^*, \mathcal{B}_2; d\mu)$ stands for the space of functions on \mathbb{R}^* taking values in \mathcal{B}_2 , the class of Hilbert-Schmidt operators on $L^2(\mathbb{R}^n)$, and square integrable with respect to the Plancherel measure $d\mu(\lambda) = |\lambda|^n d\lambda$.

For a study on the Heisenberg group, we refer to the books by ${\rm Folland}^{11}$ and ${\rm Thangavelu}^{12}.$

¹²S. Thangavelu. *Harmonic analysis on the Heisenberg group*. Boston: Birkhäuser, 1998.

¹¹G. B. Folland. *Harmonic analysis in phase space*. Princeton, New Jersey: Princeton University Press, 1989.

Wavelet system on \mathbb{H}^n

For $\psi \in L^2(\mathbb{H}^n),$ the left translation and the nonisotropic dilation are defined as

$$\begin{split} L_{(u,v,s)}\psi(x,y,t) &= \psi((u,v,s)^{-1}(x,y,t)), \quad (u,v,s) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \\ \text{and } \delta_a \psi(x,y,t) &= |a|^{n+1} \psi(ax,ay,a^2t), \quad a \in \mathbb{R}^*, \end{split}$$

where $(x, y, t) \in \mathbb{H}^n$.

We consider the wavelet system generated by

- integer left translations $L_{(2k,l,m)}, (k,l) \in \mathbb{Z}^{2n}, m \in \mathbb{Z}$
- nonisotropic dyadic dilations $\delta_{2^j}, j \in \mathbb{Z}$,

and denote $\delta_{2^j} L_{(2k,l,m)} \psi$ by $\psi_{j,k,l,m}$ for convenience.

The following was defined by Radha and Saswata¹³while studying the system of translates on the Heisenberg group.

Definition 3.1

For
$$\psi \in L^2(\mathbb{H}^n)$$
 and $k, l \in \mathbb{Z}^n$, the function $G_{k,l}^{\psi}$ is defined as
 $G_{k,l}^{\psi}(\lambda) = \sum_{r \in \mathbb{Z}} \langle \widehat{\psi}(\lambda + r), \widehat{L_{(2k,l,0)}\psi}(\lambda + r) \rangle_{\mathcal{B}_2} |\lambda + r|^n, \ \lambda \in (0,1].$

¹³Radha and Adhikari, "Shift-invariant spaces with countably many mutually orthogonal generators on the Heisenberg group".

We define the function $H_{j,k,l}^{\psi}$ for $\psi \in L^2(\mathbb{H}^n)$, $j \in \mathbb{Z}$, $k, l \in \mathbb{Z}^n$ as $H_{j,k,l}^{\psi}(\lambda) = \sum_{r \in \mathbb{Z}} \langle \widehat{\psi}(2^{2j}(\lambda + r)), (\delta_{2^j}\widehat{L_{(2k,l,0)}}\psi)(2^{2j}(\lambda + r)) \rangle_{\mathcal{B}_2} |2^{2j}(\lambda + r)|^n$, where $\lambda \in (0, 1]$.

Theorem 3.2 (Main result)

Let
$$\psi \in L^2(\mathbb{H}^n)$$
 satisfy
(i) $G_{k,l}^{\psi}(\lambda) = 0$ a.e. $\lambda \in (0,1]$, for all $(k,l) \in \mathbb{Z}^{2n} \setminus \{(0,0)\}$ and
(ii) $H_{j,k,l}^{\psi}(\lambda) = 0$ a.e. $\lambda \in (0,1]$, for all $j > 0$ in \mathbb{Z} and
 $(k,l) \in \mathbb{Z}^{2n}$,
where $G_{k,l}^{\psi}$ is as in Definition 3.1. Then, the wavelet system
 $\{\psi_{j,k,l,m} : k, l \in \mathbb{Z}^n, j, m \in \mathbb{Z}\}$ is a Schauder basis for its closed

 $\{\psi_{j,k,l,m} : k, l \in \mathbb{Z}^{N}, j, m \in \mathbb{Z}\}$ is a Schauder basis linear span if and only if $G_{0,0}^{\psi} \in \mathcal{A}_{2}$.

Notation:

- $\sigma(\mathbb{T})$ space of trigonometric polynomials on \mathbb{T}
- $c_{00}(\mathbb{Z}^{2n+1}, \sigma(\mathbb{T}))$ space of sequences consisting of only finitely many non-zero terms and each non-zero term is in $\sigma(\mathbb{T})$
- $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$ space of 1-periodic functions on \mathbb{T} taking values in $l^2(\mathbb{Z}^{2n+1})$ and square integrable with respect to $G_{0,0}^{\psi}$

•
$$\mathcal{A}(\psi)$$
 - span $\{\psi_{j,k,l,m}: k, l \in \mathbb{Z}^n, j, m \in \mathbb{Z}\}$

•
$$\mathcal{W}(\psi)$$
 - $\overline{\text{span}}\{\psi_{j,k,l,m}: k, l \in \mathbb{Z}^n, j, m \in \mathbb{Z}\}$

The proof of the main result makes use of an isometric isomorphism between $\mathcal{W}(\psi)$ and $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$.

Theorem 3.3

Let $\psi \in L^2(\mathbb{H}^n)$ satisfy (i) and (ii) in Theorem 3.2. For $f \in \mathcal{A}(\psi)$ given by $f = \sum c_{j,k,l,m}\psi_{j,k,l,m}$, the sequence R defined by $R(\lambda) = \{R_{j,k,l}(\lambda)\}_{(j,k,l)\in\mathbb{Z}\times\mathbb{Z}^n\times\mathbb{Z}^n}$, with $R_{j,k,l}(\lambda) = \sum_m c_{j,k,l,m}e^{2\pi i m \lambda}, \ \lambda \in \mathbb{T}$ is in $c_{00}(\mathbb{Z}^{2n+1}, \sigma(\mathbb{T}))$. Then the map $f \mapsto R$ defined initially between $\mathcal{A}(\psi)$ and $c_{00}(\mathbb{Z}^{2n+1}, \sigma(\mathbb{T}))$ can be extended to an isometric isomorphism of $\mathcal{W}(\psi)$ onto $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$.

- Notation used in the proof of the main result:
 - α the triplet of indices $(j,k,l)\in \mathbb{Z}\times \mathbb{Z}^n\times \mathbb{Z}^n$

•
$$\Lambda$$
 - $(J, K, L) \in \mathbb{N}^3$

- Ω the rectangle $\{(j,k,l) \in \mathbb{Z} \times \mathbb{Z}^n \times \mathbb{Z}^n : |j| \le J, |k| \le K, |l| \le L\}$
- We assume that \mathbb{Z} is ordered as $\{0, 1, -1, 2, -2, \ldots\}$.

Outline of the proof

For $\alpha \in \mathbb{Z}^{2n+1}$, $m \in \mathbb{Z}$, define

$$\begin{split} R^{\alpha,m}(\lambda) &= \{ (R^{\alpha,m})_{\alpha'}(\lambda) \}_{\alpha' \in \mathbb{Z}^{2n+1}}, \\ \text{with } (R^{\alpha,m})_{\alpha'}(\lambda) &= \begin{cases} e^{2\pi i m \lambda} &, \alpha' = \alpha \\ 0 &, \alpha' \neq \alpha \end{cases}, \text{ where } \lambda \in \mathbb{T}. \end{split}$$

Then, it can be shown that $\{\psi_{\alpha,m} : \alpha \in \mathbb{Z}^{2n+1}, m \in \mathbb{Z}\}$ is a Schauder basis for $\mathcal{W}(\psi)$ if and only if $\{R^{\alpha,m} : \alpha \in \mathbb{Z}^{2n+1}, m \in \mathbb{Z}\}$ is a Schauder basis for $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G^{\psi}_{0,0})$, by the isometric isomorphism between these spaces.

Assume that $\{R^{\alpha,m} : \alpha \in \mathbb{Z}^{2n+1}, m \in \mathbb{Z}\}$ is a Schauder basis for the space $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$.

Let $x \in L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$. Then there exists a unique $\{c_{\alpha,m}(x)\}_{\alpha \in \mathbb{Z}^{2n+1}, m \in \mathbb{Z}}$ such that $x = \sum_{\alpha,m} c_{\alpha,m}(x) R^{\alpha,m}$. By the Riesz representation theorem, for each $(\alpha, m) \in \mathbb{Z}^{2n+1} \times \mathbb{Z}$, there exists $S^{\alpha,m} \in L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$ such that $c_{\alpha,m}(x) = \langle x, S^{\alpha,m} \rangle$, for every $x \in L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$.

Hence $\langle R^{\alpha',m'}, S^{\alpha,m} \rangle_{L^2(\mathbb{T},l^2(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})} = \delta_{\alpha\alpha'}\delta_{mm'}$, which shows that $\{S^{\alpha,m} : \alpha \in \mathbb{Z}^{2n+1}, m \in \mathbb{Z}\}$ is a biorthogonal dual system.

The explicit form of $S^{\alpha,m}$ can be determined and shown to be

$$(S^{\alpha,m})_{\alpha'}(\lambda) = \begin{cases} \frac{1}{G_{0,0}^{\psi}(\lambda)} e^{2\pi i m \lambda} &, \, \alpha' = \alpha \\ 0 &, \, \alpha' \neq \alpha \end{cases} \text{ a.e. } \lambda \in \mathbb{T}.$$

Moreover,

$$\begin{split} \|S^{\alpha,m}\|_{L^{2}(\mathbb{T},l^{2}(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})}^{2} &= \int_{0}^{1} \|S^{\alpha,m}(\lambda)\|_{l^{2}(\mathbb{Z}^{2n+1})}^{2}G_{0,0}^{\psi}(\lambda)d\lambda \\ &= \int_{0}^{1} \left|\frac{1}{G_{0,0}^{\psi}(\lambda)}\right|d\lambda, \end{split}$$

which shows that $\frac{1}{G_{0,0}^\psi}\in L^1(\mathbb{T}).$

We now make use of the result

"A complete sequence $\{x_n : n \in \mathbb{N}\}$ with dual sequence $\{y_n : n \in \mathbb{N}\}$ is a Schauder basis for a Hilbert space \mathbb{H} if and only if the partial sum operators $S_N(x) = \sum_{n=1}^N \langle x, y_n \rangle x_n$ are uniformly bounded on \mathbb{H} ."

So, if we define the partial sum operators $\tilde{T}_{\Lambda,M}$ on $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$ for $\Lambda \in \mathbb{N}^3$, $M \in \mathbb{N}$ by $\tilde{T}_{\Lambda,M}(x) = \sum_{\substack{\alpha \in \Omega \\ |m| \leq M}} \langle x, S^{\alpha,m} \rangle_{L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})} R^{\alpha,m},$

for $x \in L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G^{\psi}_{0,0})$, then $\sup_{(\Lambda, M) \in \mathbb{N}^4} \|\tilde{T}_{\Lambda, M}\| < \infty$.

Heisenberg grou

We also consider the symmetric Fourier partial sum operators $T_{\Lambda,M}$ on $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$ given by

$$T_{\Lambda,M}(x) = \sum_{\substack{\alpha \in \Omega \\ |m| \le M}} \langle x, R^{\alpha,m} \rangle_{L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}))} R^{\alpha,m},$$
(2)
for $x \in L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi}).$

But, we can prove that $\langle x, S^{\alpha,m} \rangle_{L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})} = \langle x, R^{\alpha,m} \rangle_{L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}))}.$

So, $\tilde{T}_{\Lambda,M} = T_{\Lambda,M}$ and hence $A := \sup_{(\Lambda,M) \in \mathbb{N}^4} \|T_{\Lambda,M}\| < \infty.$

For $x \in L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$ and $\lambda \in \mathbb{T}$, the terms of the sequence $(T_{\Lambda,M}x)(\lambda)$ can be explicitly computed as

$$(T_{\Lambda,M}x)_{\alpha'}(\lambda) = \begin{cases} \int_0^1 x_{\alpha'}(\lambda') D_M(\lambda - \lambda') d\lambda' &, \alpha' \in \Omega\\ 0 &, \text{ otherwise} \end{cases},$$

where D_M is the Dirichlet kernel given by

$$D_M(x) = \sum_{m=-M}^M e^{2\pi i m x}$$

Also, we can choose $N \in \mathbb{N}$, such that for any $M \in \mathbb{N}$, $D_M(\lambda) \ge \frac{1}{2} ||D_M||_{\infty} = \frac{2M+1}{2}$ whenever $|\lambda| \le \frac{1}{NM}$. Now, let $I \subseteq \mathbb{T}$ and $|I| > \frac{1}{2N}$. Then

$$\begin{split} \left(\frac{1}{|I|}\int_{I}G_{0,0}^{\psi}(\lambda)d\lambda\right)\left(\frac{1}{|I|}\int_{I}\frac{1}{G_{0,0}^{\psi}(\lambda)}d\lambda\right)\\ &\leq (2N)^{2}\|\psi\|_{L^{2}(\mathbb{H}^{n})}^{2}\left\|\frac{1}{G_{0,0}^{\psi}}\right\|_{L^{1}(\mathbb{T})}. \end{split}$$

Let $C_1 := (2N)^2 \|\psi\|_{L^2(\mathbb{H}^n)}^2 \|\frac{1}{G_{0,0}^{\psi}}\|_{L^1(\mathbb{T})}$. Then $0 < C_1 < \infty$ and (1) holds with $C = C_1$.

Let $I \subseteq \mathbb{T}$ and $|I| \leq \frac{1}{2N}$. Choose $M \in \mathbb{N}$ such that $\frac{1}{4NM} \leq |I| \leq \frac{1}{2NM}$.

Define
$$x \in L^{2}(\mathbb{T}, l^{2}(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$$
 by

$$x(\lambda) = \{x_{\alpha'}(\lambda)\}_{\alpha' \in \mathbb{Z}^{2n+1}}, \text{ with } x_{\alpha'}(\lambda) = \begin{cases} f(\lambda) &, \alpha' = \mathbf{0} \\ 0 &, \text{ otherwise} \end{cases},$$

where $f\in L^2(\mathbb{T};\,G_{0,0}^\psi),\,f\geq 0$ on I and f=0 on $\mathbb{T}\setminus I.$ Then for any $\Lambda\in\mathbb{N}^3$,

$$\|T_{\Lambda,M}x\|_{L^{2}(\mathbb{T},l^{2}(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})} \leq A\|x\|_{L^{2}(\mathbb{T},l^{2}(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})}.$$

Consequently, we can prove that

$$\int_{I} \left| \int_{I} f(\lambda') D_{M}(\lambda - \lambda') d\lambda' \right|^{2} G_{0,0}^{\psi}(\lambda) d\lambda \leq A^{2} \int_{I} |f(\lambda)|^{2} G_{0,0}^{\psi}(\lambda) d\lambda.$$
(3)

For
$$\lambda, \lambda' \in I$$
, we have $|\lambda - \lambda'| \leq \frac{1}{NM}$ and so $D_M(\lambda - \lambda') \geq \frac{1}{2}(2M+1) \geq \frac{1}{4N|I|}$. Hence

$$\int_{I} \left| \int_{I} f(\lambda') D_{M}(\lambda - \lambda') d\lambda' \right|^{2} G_{0,0}^{\psi}(\lambda) d\lambda$$

$$\geq \frac{1}{(4N|I|)^{2}} \left(\int_{I} f(\lambda') d\lambda' \right)^{2} \int_{I} G_{0,0}^{\psi}(\lambda) d\lambda. \quad (4)$$

From (3) and (4), we have

$$\frac{1}{(4N)^2|I|^2} \left(\int_I f(\lambda') d\lambda'\right)^2 \int_I G_{0,0}^\psi(\lambda) d\lambda \le A^2 \int_I |f(\lambda)|^2 G_{0,0}^\psi(\lambda) d\lambda.$$

Let
$$f = \frac{1}{G_{0,0}^{\psi}}$$
 on I and $f = 0$ on $\mathbb{T} \setminus I$. Then clearly $f \in L^2(\mathbb{T}; G_{0,0}^{\psi})$. Also,

$$\frac{1}{(4N)^2|I|^2} \left(\int_I \frac{1}{G_{0,0}^{\psi}(\lambda)} d\lambda \right)^2 \left(\int_I G_{0,0}^{\psi}(\lambda) d\lambda \right) \le A^2 \left(\int_I \frac{1}{G_{0,0}^{\psi}(\lambda)} d\lambda \right)$$

In other words,

$$\left(\frac{1}{|I|}\int_{I}\frac{1}{G_{0,0}^{\psi}(\lambda)}d\lambda\right)\left(\frac{1}{|I|}\int_{I}G_{0,0}^{\psi}(\lambda)d\lambda\right)\leq A^{2}(4N)^{2}.$$

Thus, (1) holds with $C = \max\{C_1, A^2(4N)^2\} > 0$ for all $I \subseteq \mathbb{T}$, thereby proving that $G_{0,0}^{\psi} \in \mathcal{A}_2$.

Conversely, suppose $G_{0,0}^{\psi} \in \mathcal{A}_2$. By using the isometric isomorphism between the spaces $\mathcal{W}(\psi)$ and $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$, we need only show that $\{R^{\alpha,m} : \alpha \in \mathbb{Z}^{2n+1}, m \in \mathbb{Z}\}$ is a Schauder basis for $L^{2}(\mathbb{T}, l^{2}(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$.

As
$$G_{0,0}^{\psi} \in \mathcal{A}_2$$
, we have $\frac{1}{G_{0,0}^{\psi}} \in L^1(\mathbb{T})$ and so $G_{0,0}^{\psi}(\lambda) > 0$ a.e. $\lambda \in \mathbb{T}$.

For
$$(\alpha, m) \in \mathbb{Z}^{2n+1} \times \mathbb{Z}$$
, if we define $S^{\alpha,m} \in L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$ by

$$(S^{\alpha,m})_{\alpha'}(\lambda) = \begin{cases} \frac{1}{G_{0,0}^{\psi}(\lambda)} e^{2\pi i m \lambda} &, \alpha' = \alpha \\ 0 &, \alpha' \neq \alpha \end{cases} \text{ a.e. } \lambda \in \mathbb{T},$$

then $\{S^{\alpha,m} : \alpha \in \mathbb{Z}^{2n+1}, m \in \mathbb{Z}\}\$ is a biorthogonal dual to $\{R^{\alpha,m}: \alpha \in \mathbb{Z}^{2n+1}, m \in \mathbb{Z}\}.$

Next, we shall show that the operators $T_{\Lambda,M}$ on $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$ defined in (2) are uniformly bounded.

For $x\in L^2(\mathbb{T},l^2(\mathbb{Z}^{2n+1});G_{0,0}^\psi)$ and $\lambda\in\mathbb{T},$ we shall write

$$(T_{\Lambda,M}x)(\lambda) = \sum_{\alpha \in \Omega} \left(\sum_{|m| \le M} \langle x, R^{\alpha,m} \rangle_{L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}))} e^{2\pi i m \lambda} \right) \overrightarrow{u^{\alpha}},$$

where
$$\overrightarrow{u^{\alpha}} = \{(u^{\alpha})_{\alpha'}\}_{\alpha' \in \mathbb{Z}^{2n+1}} \text{ and } (u^{\alpha})_{\alpha'} = \begin{cases} 1 & , \alpha' = \alpha \\ 0 & , \text{ otherwise} \end{cases}$$

Then, it can be further simplified as

$$(T_{\Lambda,M}x)(\lambda) = \sum_{\alpha \in \Omega} \left(\int_0^1 x_\alpha(\lambda') D_M(\lambda' - \lambda) d\lambda' \right) \overrightarrow{u^{\alpha}}, \qquad (5)$$

where D_M is the Dirichlet kernel.

1

In order to find $||T_{\Lambda,M}x||$, we also consider the modified partial sum operator $T^*_{\Lambda,M}$ on $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G^{\psi}_{0,0})$ defined as follows. For $x \in L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G^{\psi}_{0,0})$,

$$T^*_{\Lambda,M}(x) = \sum_{\alpha \in \Omega} \left(\sum_{|m| \le M-1} \langle x, R^{\alpha,m} \rangle_{L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}))} R^{\alpha,m} \right)$$

$$+ \frac{1}{2} \sum_{|m|=M} \langle x, R^{\alpha,m} \rangle_{L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}))} R^{\alpha,m} \right)$$

Computing as earlier, we get for $\lambda \in \mathbb{T}$,

$$(T^*_{\Lambda,M}x)(\lambda) = \sum_{\alpha \in \Omega} \left(\int_0^1 x_\alpha(\lambda') D^*_M(\lambda' - \lambda) d\lambda' \right) \overrightarrow{u^{\alpha}}, \qquad (6)$$

where D_M^* is the modified Dirichlet kernel¹⁴ given by

$$D_M^*(x) = D_M(x) - \cos 2\pi M x = \frac{\sin 2\pi M x}{\tan \pi x}.$$
 (7)

¹⁴A. Zygmund. *Trigonometric series, 3rd edition*. Cambridge: Cambridge Univ. Press, 2002.

Defining the sequences $p_M(\lambda)$, $q_M(\lambda)$, $\tilde{p}_M(\lambda)$ and $\tilde{q}_M(\lambda)^{15}$, for $M \in \mathbb{N}$ and $\lambda \in \mathbb{T}$, as

$$\begin{split} p_M(\lambda) &= \{(p_M)_\alpha(\lambda)\}_{\alpha \in \mathbb{Z}^{2n+1}}, \text{ where } (p_M)_\alpha(\lambda) = x_\alpha(\lambda)\cos 2\pi M\lambda, \\ q_M(\lambda) &= \{(q_M)_\alpha(\lambda)\}_{\alpha \in \mathbb{Z}^{2n+1}}, \text{ where } (q_M)_\alpha(\lambda) = x_\alpha(\lambda)\sin 2\pi M\lambda, \\ \tilde{p}_M(\lambda) &= \{(\tilde{p}_M)_\alpha(\lambda)\}_{\alpha \in \mathbb{Z}^{2n+1}}, \text{ where } (\tilde{p}_M)_\alpha \text{ is the } \\ &\text{ conjugate function of } (p_M)_\alpha \text{ given by } \\ &(\tilde{p}_M)_\alpha(\lambda) = -\int_0^1 \frac{(p_M)_\alpha(\lambda+t)}{\tan \pi t} dt \\ \text{ and } \tilde{q}_M(\lambda) &= \{(\tilde{q}_M)_\alpha(\lambda)\}_{\alpha \in \mathbb{Z}^{2n+1}}, \text{ where } (\tilde{q}_M)_\alpha \text{ is the } \\ &\text{ conjugate function of } (q_M)_\alpha \text{ given as above,} \end{split}$$

we have

$$(T^*_{\Lambda,M}x)(\lambda) = \sum_{\alpha \in \Omega} ((\tilde{p}_M)_{\alpha}(\lambda) \sin 2\pi M\lambda - (\tilde{q}_M)_{\alpha}(\lambda) \cos 2\pi M\lambda) \overrightarrow{u^{\alpha}}.$$
(8)

¹⁵Zygmund, *Trigonometric series, 3rd edition*.

For $x \in L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$, using (5-8), we have

$$\begin{split} \| T_{\Lambda,M} x \|_{L^{2}(\mathbb{T},l^{2}(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})} \\ &\leq \left(\int_{0}^{1} \| T_{\Lambda,M} x(\lambda) - T_{\Lambda,M}^{*} x(\lambda) \|_{l^{2}(\mathbb{Z}^{2n+1})}^{2} G_{0,0}^{\psi}(\lambda) d\lambda \right)^{\frac{1}{2}} \\ &+ \left(\int_{0}^{1} \| T_{\Lambda,M}^{*} x(\lambda) \|_{l^{2}(\mathbb{Z}^{2n+1})}^{2} G_{0,0}^{\psi}(\lambda) d\lambda \right)^{\frac{1}{2}} \\ &\leq \left(\int_{0}^{1} \sum_{\alpha \in \Omega} \left(\int_{0}^{1} |x_{\alpha}(\lambda')| d\lambda' \right)^{2} G_{0,0}^{\psi}(\lambda) d\lambda \right)^{\frac{1}{2}} \\ &+ \left(\int_{0}^{1} \sum_{\alpha \in \Omega} (|(\tilde{p}_{M})_{\alpha}(\lambda)| + |(\tilde{q}_{M})_{\alpha}(\lambda)|)^{2} G_{0,0}^{\psi}(\lambda) d\lambda \right)^{\frac{1}{2}} \\ &\leq \sqrt{C} \| x \| + \| \tilde{p}_{M} \| + \| \tilde{q}_{M} \|. \end{split}$$

using Cauchy-Schwarz inequality for the first term.

Using Theorem1¹⁶, there exists C'>0 independent of $M,\,\alpha$ and x such that

$$\int_0^1 |(\tilde{p}_M)_\alpha(\lambda)|^2 G_{0,0}^\psi(\lambda) d\lambda \le C' \int_0^1 |(p_M)_\alpha(\lambda)|^2 G_{0,0}^\psi(\lambda) d\lambda.$$

Then, we get

$$\begin{aligned} \|\tilde{p}_{M}\|_{L^{2}(\mathbb{T},l^{2}(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})} &\leq C' \sum_{\alpha \in \mathbb{Z}^{2n+1}} \int_{0}^{1} |(p_{M})_{\alpha}(\lambda)|^{2} G_{0,0}^{\psi}(\lambda) d\lambda \\ &\leq C' \|x\|_{L^{2}(\mathbb{T},l^{2}(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})}^{2}. \end{aligned}$$

Similarly,

$$\|\tilde{q}_M\|_{L^2(\mathbb{T},l^2(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})}^2 \le C' \|x\|_{L^2(\mathbb{T},l^2(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})}^2.$$

¹⁶R. Hunt, B. Muckenhoupt, and R. Wheeden. "Weighted norm inequalities for the conjugate function and Hilbert transform". In: *Trans. Math. Soc.* 176 (1973), pp. 227–251.

Thus,

$$\|T_{\Lambda,M}x\|_{L^{2}(\mathbb{T},l^{2}(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})} \leq (\sqrt{C}+2\sqrt{C'})\|x\|_{L^{2}(\mathbb{T},l^{2}(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})}.$$

As C and C' are independent of $x,\,\Lambda$ and M, we obtain

$$\sup_{(\Lambda,M)\in\mathbb{N}^4} \|T_{\Lambda,M}\| \le \sqrt{C} + 2\sqrt{C'} < \infty.$$

As
$$\widetilde{T}_{\Lambda,M} = T_{\Lambda,M}$$
, we get $\sup_{(\Lambda,M)\in\mathbb{N}^4} \|\widetilde{T}_{\Lambda,M}\| < \infty$.

Let R belong to the space $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$ = $\overline{\text{span}}\{R^{\alpha',m'}: \alpha' \in \mathbb{Z}^{2n+1}, m' \in \mathbb{Z}\}$. By the uniform boundedness of the operators $\tilde{T}_{\Lambda,M}$ and the biorthogonality between $\{R^{\alpha',m'}\}$ and $\{S^{\alpha,m}\}$, we get

$$R = \lim_{\Lambda, M \to \infty} \sum_{\substack{\alpha \in \Omega \\ |m| \le M}} \langle R, S^{\alpha, m} \rangle_{L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})} R^{\alpha, m},$$

where the limit is in $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi}).$

The uniqueness of the coefficients, $\{\langle R, S^{\alpha,m} \rangle_{L^2(\mathbb{T},l^2(\mathbb{Z}^{2n+1});G_{0,0}^{\psi})}\}$ follows again from the biorthogonality between $\{R^{\alpha',m'}\}$ and $\{S^{\alpha,m}\}$.

Thus, $\{R^{\alpha,m} : \alpha \in \mathbb{Z}^{2n+1}, m \in \mathbb{Z}\}$ is a Schauder basis for $L^2(\mathbb{T}, l^2(\mathbb{Z}^{2n+1}); G_{0,0}^{\psi})$, thereby proving our assertion.

Example 3.4

Let $\psi(x, y, t) = \psi_1(x)\psi_2(y)\psi_3(t)$, where $\widehat{\psi_1}$ and ψ_2 are the Haar functions, $\chi^H_{[0,1]}$, on [0,1], given by

$$\chi^{H}_{[0,1]}(x) = \begin{cases} 1, & 0 \le x \le \frac{1}{2}, \\ -1, & \frac{1}{2} < x \le 1, \\ 0, & \text{otherwise,} \end{cases}$$

and $\widehat{\psi_3} = 2\chi_{[-1,-\frac{1}{2}]\cup[\frac{1}{2},1]}$. Then $\psi \in L^2(\mathbb{H})$ satisfies the conditions in the hypothesis of the main result.

The talk is based on the following research paper:

S. Arati and R. Radha, Wavelet system and Muckenhoupt A_2 condition on the Heisenberg group. *Colloquium Mathematicum*, Vol 158, No 1, pp 59-76, DOI: 10.4064/cm7467-9-2018 (2019).

References I

- S. Arati and R. Radha. "Orthonormality of wavelet system on the Heisenberg group". In: J. Math. Pures Appl. 131 (2019), pp. 171–192.
- [2] D. Barbieri, E. Hernández, and A. Mayeli. "Bracket map for the Heisenberg group and the characterization of cyclic subspaces". In: *Appl. Comput. Harmon. Anal.* 37(2) (2014), pp. 218–234.
- [3] O. Christensen. Frames and bases: An introductory course. Boston: Birkhäuser, 2008.
- S. R. Das and R. Radha. "Shift-invariant system on the Heisenberg Group". In: Adv. Oper. Theory 6.1 (2021), pp. 1–27.

References II

- [5] G. B. Folland. Harmonic analysis in phase space. Princeton, New Jersey: Princeton University Press, 1989.
- [6] C. Heil and A. M. Powell. "Gabor Schauder bases and the Balian-Low theorem". In: J. Math. Phys. 47.11 (2006), p. 113506.
- [7] R. Hunt, B. Muckenhoupt, and R. Wheeden. "Weighted norm inequalities for the conjugate function and Hilbert transform". In: *Trans. Math. Soc.* 176 (1973), pp. 227–251.
- [8] A. Mayeli. "Shannon multiresolution analysis on the Heisenberg group". In: J. Math. Anal. Appl. 348(2) (2008), pp. 671 –684.
- [9] M. Nielsen. "On stability of finitely generated shift-invariant systems". In: J. Fourier Anal. Appl. 16.6 (2010), pp. 901–920.

References

References III

- [10] M. Nielsen and H. Šikić. "Schauder bases of integer translates". In: Appl. Comput. Harmon. Anal. 23(2) (2007), pp. 259–262.
- [11] R. Radha and Saswata Adhikari. "Shift-invariant spaces with countably many mutually orthogonal generators on the Heisenberg group". In: *Houston J. Math.* 46.2 (2020), pp. 435–463.
- [12] R. Radha and S. Sivananthan. "Shannon type sampling theorems on the Heisenberg group". In: *Fields Inst. Comm.*, *Amer. Math. Soc.* 52 (2007), pp. 367–374.
- [13] S. Thangavelu. Harmonic analysis on the Heisenberg group. Boston: Birkhäuser, 1998.
- [14] A. Zygmund. *Trigonometric series, 3rd edition*. Cambridge: Cambridge Univ. Press, 2002.

