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Introduction and Motivation

Definition 1.1 (Muckenhoupt A2 condition)
A non-negative integrable function w on T is said to satisfy the
Muckenhoupt A2 condition if there exists a positive constant C
satisfying ( 1

|I |

∫
I

w(ξ)dξ
)( 1
|I |

∫
I

1
w(ξ)dξ

)
≤ C (1)

for all intervals I ⊂ T.
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We recall the following important unitary operators on L2(R),
which generate the system of translates, the Gabor system and the
wavelet system on the real line:

Let ϕ ∈ L2(R).
Translation operator: For s ∈ R, Tsϕ(x) = ϕ(x − s), x ∈ R.
Modulation operator: For s ∈ R, Msϕ(x) = e2πisxϕ(x),
x ∈ R.
Dilation operator: For a ∈ R∗, Daϕ(x) = 1√

|a|
ϕ( x

a ), x ∈ R.
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Brief literature survey

• Nielsen and Šikić1 - the family {ϕ(· − k) : k ∈ Z}, for
ϕ ∈ L2(R) is a Schauder basis for its closed linear span (shift
invariant space generated by ϕ) if and only if wϕ belongs to
the Muckenhoupt A2 class, where wϕ(ξ) =

∑
k∈Z |ϕ̂(ξ + k)|2,

ξ ∈ R.
• Heil and Powell2 - the Gabor system {MnTkϕ, k, n ∈ Z} is a

Schauder basis for L2(R) if and only if |Zϕ|2 ∈ A2(T× T),
where Zϕ denotes the Zak transform of ϕ.

1M. Nielsen and H. Šikić. “Schauder bases of integer translates”. In: Appl.
Comput. Harmon. Anal. 23(2) (2007), pp. 259–262.

2C. Heil and A. M. Powell. “Gabor Schauder bases and the Balian-Low
theorem”. In: J. Math. Phys. 47.11 (2006), p. 113506.
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Brief literature survey

• Nielsen3 - considered the finitely generated shift invariant
space V (Φ) ⊂ L2(Rd), Φ = {ϕ1, · · · , ϕN} and characterized
the system of translates generated by Φ as a Schauder basis in
terms of the A2 condition.

In fact,a product Muckenhoupt A2 condition for matrix
weights is used.
The weight W (Φ) : Tn → CN×N defined by

W (Φ) =
( ∑

k∈Zn
ϕ̂i(· − k)ϕ̂j(· − k)

)N

i,j=1
, which is the Gram

matrix for Φ is considered.

3M. Nielsen. “On stability of finitely generated shift-invariant systems”. In:
J. Fourier Anal. Appl. 16.6 (2010), pp. 901–920.
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Aim of the talk

Here, we shall look into a similar problem of characterizing the
wavelet system on the Heisenberg group, arising due to the
integer left translations and the nonisotropic dilations, to be a
Schauder basis for its closed linear span in terms of the
Muckenhoupt A2 condition.
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Some works on Heisenberg group

• Barbieri et al4 - shift invariant space on polarized Heisenberg
group
• Radha and Saswata5 - shift invariant space with countably

many mutually orthogonal generators on the Heisenberg group
• Das and Radha6 - shift invariant space with countably many

generators

4D. Barbieri, E. Hernández, and A. Mayeli. “Bracket map for the
Heisenberg group and the characterization of cyclic subspaces”. In: Appl.
Comput. Harmon. Anal. 37(2) (2014), pp. 218–234.

5R. Radha and Saswata Adhikari. “Shift-invariant spaces with countably
many mutually orthogonal generators on the Heisenberg group”. In: Houston
J. Math. 46.2 (2020), pp. 435–463.

6S. R. Das and R. Radha. “Shift-invariant system on the Heisenberg
Group”. In: Adv. Oper. Theory 6.1 (2021), pp. 1–27.
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Some works on Heisenberg group

Mayeli7 - the existence of a band-limited function ψ ∈ L2(H)
and a lattice Γ in H such that the discrete wavelet system
{L2−jγδ2−jψ}j∈Z,γ∈Γ forms a Parseval frame for L2(H).
Arati and Radha8 - orthonormality of the wavelet system on
Heisenberg group
Radha and Sivananthan9 - Shannon type sampling theorem
for the Heisenberg group

7A. Mayeli. “Shannon multiresolution analysis on the Heisenberg group”.
In: J. Math. Anal. Appl. 348(2) (2008), pp. 671 –684.

8S. Arati and R. Radha. “Orthonormality of wavelet system on the
Heisenberg group”. In: J. Math. Pures Appl. 131 (2019), pp. 171–192.

9R. Radha and S. Sivananthan. “Shannon type sampling theorems on the
Heisenberg group”. In: Fields Inst. Comm., Amer. Math. Soc. 52 (2007),
pp. 367–374.
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Frames and Riesz bases

Let H 6= 0 be a separable Hilbert space.

Definition 1.2
A sequence {fk : k ∈ N} in H is a frame for H if there exist
constants A,B > 0 such that

A‖f ‖2 ≤
∑
k∈N
|〈f , fk〉|2 ≤ B‖f ‖2, ∀ f ∈ H.

The numbers A and B are called frame bounds. If the right hand
side inequality holds, then {fk : k ∈ N} is said to be a Bessel
sequence with bound B. A frame is called a Parseval frame if
A = B = 1. A sequence {fk : k ∈ N} in H is said to be a frame
sequence if it is a frame for span{fk : k ∈ N}.
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Frames and Riesz bases

Definition 1.3
A Riesz basis for H is a family of the form {Uek : k ∈ N}, where
{ek : k ∈ N} is an orthonormal basis for H and U : H → H is a
bounded invertible operator. Alternatively, a sequence {fk : k ∈ N}
is a Riesz basis for H if {fk : k ∈ N} is complete in H, and there
exist constants A,B > 0 such that for every finite scalar sequence
{ck}, one has

A
∑

k
|ck |2 ≤ ‖

∑
k

ck fk‖2 ≤ B
∑

k
|ck |2.

A sequence {fk : k ∈ N} in H is called a Riesz sequence if it is a
Riesz basis for span{fk : k ∈ N}.
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System of translates (Real line)

Theorem 1.4

Let ϕ ∈ L2(R) and wϕ(ξ) =
∑

k∈Z |ϕ̂(ξ + k)|2, ξ ∈ R. For any
A,B > 0, the following statementsa hold. The collection
{Tkϕ}k∈Z is

(i) an orthonormal sequence if and only if wϕ(ξ) = 1 a.e.
ξ ∈ [0, 1].

(ii) a frame sequence with bounds A,B if and only if
A ≤ wϕ(ξ) ≤ B a.e. ξ ∈ [0, 1] \N , where
N = {η ∈ [0, 1] : wϕ(η) = 0}.

(iii) a Riesz sequence with bounds A,B if and only if
A ≤ wϕ(ξ) ≤ B a.e. ξ ∈ [0, 1].

aO. Christensen. Frames and bases: An introductory course. Boston:
Birkhäuser, 2008.
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System of translates (Heisenberg group)

The following results10 are on the system of translates
{L(2k,l,m)ϕ : (k, l,m) ∈ Z2n+1} in L2(Hn).

Theorem 1.5

If ϕ ∈ L2(Hn), then {L(2k,l,m)ϕ : (k, l,m) ∈ Z2n+1} is an
orthonormal system in L2(Hn) if and only if the following
conditions hold:

(i) Gϕ
0,0(λ) = 1 a.e. λ ∈ (0, 1] and

(ii) Gϕ
k,l(λ) = 0 a.e. λ ∈ (0, 1], for all (k, l) 6= (0, 0) in Z2n .

10Radha and Adhikari, “Shift-invariant spaces with countably many mutually
orthogonal generators on the Heisenberg group”.
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System of translates (Heisenberg group)

Theorem 1.6

Let ϕ ∈ L2(Hn) satisfy condition (ii) in the above theorem. Then
{L(2k,l,m)ϕ : (k, l,m) ∈ Z2n+1} is

(i) a frame sequence with bounds A,B > 0 if and only if

A ≤ Gϕ
0,0(λ) ≤ B a.e. λ ∈ Ωϕ,

where Ωϕ = {η ∈ (0, 1] : Gϕ
0,0(η) > 0}.

(ii) a Riesz sequence with bounds A,B > 0 if and only if

A ≤ Gϕ
0,0(λ) ≤ B a.e. λ ∈ (0, 1],
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Heisenberg group

Definition and properties:
The Heisenberg group Hn is a nilpotent Lie group whose
underlying manifold is Rn × Rn × R satisfying the group law

(x, y, t)(u, v, s) =
(
x + u, y + v, t + s + 1

2(u · y − v · x)
)
.

It is a nonabelian noncompact locally compact group.
The Haar measure is the Lebesgue measure dxdydt.
By Stone-von Neumann theorem, every infinite dimensional
irreducible unitary representation of the Heisenberg group is
unitarily equivalent to the representation πλ, λ ∈ R∗, where
πλ is defined by
πλ(x, y, t)ϕ(ξ) = e2πiλte2πiλ(x·ξ+ 1

2 x·y)ϕ(ξ+y), ϕ ∈ L2(Rn).
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Group Fourier transform:
For f ∈ L1(Hn), the group Fourier transform f̂ is defined as
follows. For λ ∈ R∗, f̂ (λ) is given by

f̂ (λ) =
∫
Cn×R

f (z, t)πλ(z, t)dzdt.

f̂ (λ) is the bounded operator acting on L2(Rn) given by

f̂ (λ)ϕ =
∫
Cn×R

f (z, t)πλ(z, t)ϕdzdt, ϕ ∈ L2(Rn),

where the integral is a Bochner integral taking values in the
Hilbert space L2(Rn).
‖f̂ (λ)‖B ≤ ‖f ‖L1(Hn).
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Convolution:
If f and g are in L1(Hn), then their convolution is defined by

f ∗ g(z, t) =
∫

Cn×R

f ((z, t)(w, s)−1)g(w, s)dwds.

Under this convolution, L1(Hn) becomes a noncommutative
Banach algebra.
( ̂f ∗ g)(λ) = f̂ (λ)ĝ(λ), λ ∈ R∗.
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For f ∈ L2(Hn):
The definition of the group Fourier transform f̂ can also be
extended to L2(Hn) through the density argument.
Further, the group Fourier transform satisfies the Plancherel
formula

‖f̂ ‖L2(R∗,B2;dµ) = ‖f ‖L2(Hn),

where, L2(R∗,B2; dµ) stands for the space of functions on R∗
taking values in B2, the class of Hilbert-Schmidt operators on
L2(Rn), and square integrable with respect to the Plancherel
measure dµ(λ) = |λ|ndλ.
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For a study on the Heisenberg group, we refer to the books by
Folland11 and Thangavelu12.

11G. B. Folland. Harmonic analysis in phase space. Princeton, New Jersey:
Princeton University Press, 1989.

12S. Thangavelu. Harmonic analysis on the Heisenberg group. Boston:
Birkhäuser, 1998.
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Wavelet system on Hn

For ψ ∈ L2(Hn), the left translation and the nonisotropic dilation
are defined as

L(u,v,s)ψ(x, y, t) = ψ((u, v, s)−1(x, y, t)), (u, v, s) ∈ Rn × Rn × R
and δaψ(x, y, t) = |a|n+1ψ(ax, ay, a2t), a ∈ R∗,

where (x, y, t) ∈ Hn .

We consider the wavelet system generated by
integer left translations L(2k,l,m), (k, l) ∈ Z2n ,m ∈ Z
nonisotropic dyadic dilations δ2j , j ∈ Z,

and denote δ2j L(2k,l,m)ψ by ψj,k,l,m for convenience.
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The following was defined by Radha and Saswata13while studying
the system of translates on the Heisenberg group.

Definition 3.1

For ψ ∈ L2(Hn) and k, l ∈ Zn , the function Gψ
k,l is defined as

Gψ
k,l(λ) =

∑
r∈Z
〈ψ̂(λ+ r), ̂L(2k,l,0)ψ(λ+ r)〉B2 |λ+ r |n , λ ∈ (0, 1].

13Radha and Adhikari, “Shift-invariant spaces with countably many mutually
orthogonal generators on the Heisenberg group”.
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We define the function Hψ
j,k,l for ψ ∈ L2(Hn), j ∈ Z, k, l ∈ Zn as

Hψ
j,k,l(λ) =

∑
r∈Z
〈ψ̂(22j(λ+r)), ̂(δ2j L(2k,l,0)ψ)(22j(λ+r))〉B2 |22j(λ+r)|n ,

where λ ∈ (0, 1].

Theorem 3.2 (Main result)

Let ψ ∈ L2(Hn) satisfy
(i) Gψ

k,l(λ) = 0 a.e. λ ∈ (0, 1], for all (k, l) ∈ Z2n \ {(0, 0)} and

(ii) Hψ
j,k,l(λ) = 0 a.e. λ ∈ (0, 1], for all j > 0 in Z and

(k, l) ∈ Z2n ,
where Gψ

k,l is as in Definition 3.1. Then, the wavelet system
{ψj,k,l,m : k, l ∈ Zn , j,m ∈ Z} is a Schauder basis for its closed
linear span if and only if Gψ

0,0 ∈ A2.
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Notation:

σ(T) - space of trigonometric polynomials on T
c00(Z2n+1, σ(T)) - space of sequences consisting of only
finitely many non-zero terms and each non-zero term is in
σ(T)
L2(T, l2(Z2n+1); Gψ

0,0) - space of 1-periodic functions on T
taking values in l2(Z2n+1) and square integrable with respect
to Gψ

0,0
A(ψ) - span{ψj,k,l,m : k, l ∈ Zn , j,m ∈ Z}
W(ψ) - span{ψj,k,l,m : k, l ∈ Zn , j,m ∈ Z}

The proof of the main result makes use of an isometric
isomorphism between W(ψ) and L2(T, l2(Z2n+1); Gψ

0,0).
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Theorem 3.3

Let ψ ∈ L2(Hn) satisfy (i) and (ii) in Theorem 3.2. For f ∈ A(ψ)
given by f =

∑
cj,k,l,mψj,k,l,m , the sequence R defined by

R(λ) = {Rj,k,l(λ)}(j,k,l)∈Z×Zn×Zn , with
Rj,k,l(λ) =

∑
m cj,k,l,me2πimλ, λ ∈ T is in c00(Z2n+1, σ(T)). Then

the map f 7→ R defined initially between A(ψ) and
c00(Z2n+1, σ(T)) can be extended to an isometric isomorphism of
W(ψ) onto L2(T, l2(Z2n+1); Gψ

0,0).
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Notation used in the proof of the main result:
α - the triplet of indices (j, k, l) ∈ Z× Zn × Zn

Λ - (J ,K ,L) ∈ N3

Ω - the rectangle
{(j, k, l) ∈ Z× Zn × Zn : |j| ≤ J , |k| ≤ K , |l| ≤ L}

We assume that Z is ordered as {0, 1,−1, 2,−2, . . .}.
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Outline of the proof

For α ∈ Z2n+1, m ∈ Z, define

Rα,m(λ) = {(Rα,m)α′(λ)}α′∈Z2n+1 ,

with (Rα,m)α′(λ) =
{

e2πimλ , α′ = α

0 , α′ 6= α
, where λ ∈ T.

Then, it can be shown that {ψα,m : α ∈ Z2n+1,m ∈ Z} is a
Schauder basis for W(ψ) if and only if {Rα,m : α ∈ Z2n+1,m ∈ Z}
is a Schauder basis for L2(T, l2(Z2n+1); Gψ

0,0), by the isometric
isomorphism between these spaces.
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Assume that {Rα,m : α ∈ Z2n+1,m ∈ Z} is a Schauder basis for
the space L2(T, l2(Z2n+1); Gψ

0,0).

Let x ∈ L2(T, l2(Z2n+1); Gψ
0,0). Then there exists a unique

{cα,m(x)}α∈Z2n+1,m∈Z such that x =
∑
α,m cα,m(x)Rα,m . By the

Riesz representation theorem, for each (α,m) ∈ Z2n+1 × Z, there
exists Sα,m ∈ L2(T, l2(Z2n+1); Gψ

0,0) such that
cα,m(x) = 〈x,Sα,m〉, for every x ∈ L2(T, l2(Z2n+1); Gψ

0,0).

Hence 〈Rα′,m′ ,Sα,m〉L2(T,l2(Z2n+1);Gψ
0,0) = δαα′δmm′ , which shows

that {Sα,m : α ∈ Z2n+1,m ∈ Z} is a biorthogonal dual system.
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The explicit form of Sα,m can be determined and shown to be

(Sα,m)α′(λ) =


1

Gψ
0,0(λ)

e2πimλ , α′ = α

0 , α′ 6= α
a.e. λ ∈ T.

Moreover,

‖Sα,m‖2L2(T,l2(Z2n+1);Gψ
0,0) =

∫ 1

0
‖Sα,m(λ)‖2l2(Z2n+1)G

ψ
0,0(λ)dλ

=
∫ 1

0

∣∣∣∣∣∣ 1
Gψ

0,0(λ)

∣∣∣∣∣∣ dλ,
which shows that 1

Gψ
0,0
∈ L1(T).
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We now make use of the result
“A complete sequence {xn : n ∈ N} with dual sequence
{yn : n ∈ N} is a Schauder basis for a Hilbert space H if and only
if the partial sum operators SN (x) =

∑N
n=1〈x, yn〉xn are uniformly

bounded on H.”

So, if we define the partial sum operators T̃Λ,M on
L2(T, l2(Z2n+1); Gψ

0,0) for Λ ∈ N3, M ∈ N by

T̃Λ,M (x) =
∑
α∈Ω
|m|≤M

〈x,Sα,m〉L2(T,l2(Z2n+1);Gψ
0,0)R

α,m ,

for x ∈ L2(T, l2(Z2n+1); Gψ
0,0), then sup

(Λ,M)∈N4
‖T̃Λ,M‖ <∞.
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We also consider the symmetric Fourier partial sum operators
TΛ,M on L2(T, l2(Z2n+1); Gψ

0,0) given by

TΛ,M (x) =
∑
α∈Ω
|m|≤M

〈x,Rα,m〉L2(T,l2(Z2n+1))Rα,m , (2)

for x ∈ L2(T, l2(Z2n+1); Gψ
0,0).

But, we can prove that
〈x,Sα,m〉L2(T,l2(Z2n+1);Gψ

0,0) = 〈x,Rα,m〉L2(T,l2(Z2n+1)).

So, T̃Λ,M = TΛ,M and hence A := sup
(Λ,M)∈N4

‖TΛ,M‖ <∞.
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For x ∈ L2(T, l2(Z2n+1); Gψ
0,0) and λ ∈ T, the terms of the

sequence (TΛ,M x)(λ) can be explicitly computed as

(TΛ,M x)α′(λ) =
{∫ 1

0 xα′(λ′)DM (λ− λ′)dλ′ , α′ ∈ Ω
0 , otherwise

,

where DM is the Dirichlet kernel given by

DM (x) =
M∑

m=−M
e2πimx .

Also, we can choose N ∈ N, such that for any M ∈ N,

DM (λ) ≥ 1
2‖DM‖∞ = 2M+1

2 whenever |λ| ≤ 1
NM .
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Now, let I ⊆ T and |I | > 1
2N . Then

( 1
|I |

∫
I

Gψ
0,0(λ)dλ

) 1
|I |

∫
I

1
Gψ

0,0(λ)
dλ


≤ (2N )2‖ψ‖2L2(Hn)

∥∥∥∥∥∥ 1
Gψ

0,0

∥∥∥∥∥∥
L1(T)

.

Let C1 := (2N )2‖ψ‖2L2(Hn)‖
1

Gψ
0,0
‖L1(T). Then 0 < C1 <∞ and (1)

holds with C = C1.

Let I ⊆ T and |I | ≤ 1
2N . Choose M ∈ N such that

1
4NM ≤ |I | ≤

1
2NM .
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Define x ∈ L2(T, l2(Z2n+1); Gψ
0,0) by

x(λ) = {xα′(λ)}α′∈Z2n+1 , with xα′(λ) =
{

f (λ) , α′ = 0
0 , otherwise

,

where f ∈ L2(T; Gψ
0,0), f ≥ 0 on I and f = 0 on T \ I . Then for

any Λ ∈ N3,

‖TΛ,M x‖L2(T,l2(Z2n+1);Gψ
0,0) ≤ A‖x‖L2(T,l2(Z2n+1);Gψ

0,0).

Consequently, we can prove that∫
I

∣∣∣∣∫
I

f (λ′)DM (λ− λ′)dλ′
∣∣∣∣2 Gψ

0,0(λ)dλ ≤ A2
∫

I
|f (λ)|2Gψ

0,0(λ)dλ.

(3)
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For λ, λ′ ∈ I , we have |λ− λ′| ≤ 1
NM and so DM (λ− λ′) ≥

1
2(2M + 1) ≥ 1

4N |I | . Hence

∫
I

∣∣∣∣∫
I

f (λ′)DM (λ− λ′)dλ′
∣∣∣∣2 Gψ

0,0(λ)dλ

≥ 1
(4N |I |)2

(∫
I

f (λ′)dλ′
)2 ∫

I
Gψ

0,0(λ)dλ. (4)

From (3) and (4), we have

1
(4N )2|I |2

(∫
I

f (λ′)dλ′
)2 ∫

I
Gψ

0,0(λ)dλ ≤ A2
∫

I
|f (λ)|2Gψ

0,0(λ)dλ.

34 / 49



Introduction and Motivation Heisenberg group Wavelet system as Schauder basis References References

Let f = 1
Gψ

0,0
on I and f = 0 on T \ I . Then clearly

f ∈ L2(T; Gψ
0,0). Also,

1
(4N )2|I |2

∫
I

1
Gψ

0,0(λ)
dλ

2 (∫
I

Gψ
0,0(λ)dλ

)
≤ A2

∫
I

1
Gψ

0,0(λ)
dλ

 .
In other words, 1

|I |

∫
I

1
Gψ

0,0(λ)
dλ

( 1
|I |

∫
I

Gψ
0,0(λ)dλ

)
≤ A2(4N )2.

Thus, (1) holds with C = max{C1,A2(4N )2} > 0 for all I ⊆ T,
thereby proving that Gψ

0,0 ∈ A2.
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Conversely, suppose Gψ
0,0 ∈ A2. By using the isometric

isomorphism between the spaces W(ψ) and L2(T, l2(Z2n+1); Gψ
0,0),

we need only show that {Rα,m : α ∈ Z2n+1,m ∈ Z} is a Schauder
basis for L2(T, l2(Z2n+1); Gψ

0,0).

As Gψ
0,0 ∈ A2, we have 1

Gψ
0,0
∈ L1(T) and so Gψ

0,0(λ) > 0 a.e.
λ ∈ T.

For (α,m) ∈ Z2n+1 × Z, if we define
Sα,m ∈ L2(T, l2(Z2n+1); Gψ

0,0) by

(Sα,m)α′(λ) =


1

Gψ
0,0(λ)

e2πimλ , α′ = α

0 , α′ 6= α
a.e. λ ∈ T,

then {Sα,m : α ∈ Z2n+1,m ∈ Z} is a biorthogonal dual to
{Rα,m : α ∈ Z2n+1,m ∈ Z}.

36 / 49



Introduction and Motivation Heisenberg group Wavelet system as Schauder basis References References

Next, we shall show that the operators TΛ,M on
L2(T, l2(Z2n+1); Gψ

0,0) defined in (2) are uniformly bounded.

For x ∈ L2(T, l2(Z2n+1); Gψ
0,0) and λ ∈ T, we shall write

(TΛ,M x)(λ) =
∑
α∈Ω

 ∑
|m|≤M

〈x,Rα,m〉L2(T,l2(Z2n+1))e2πimλ

−→uα,

where −→uα = {(uα)α′}α′∈Z2n+1 and (uα)α′ =
{

1 , α′ = α

0 , otherwise
.

Then, it can be further simplified as

(TΛ,M x)(λ) =
∑
α∈Ω

(∫ 1

0
xα(λ′)DM (λ′ − λ)dλ′

)−→
uα, (5)

where DM is the Dirichlet kernel.
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In order to find ‖TΛ,M x‖, we also consider the modified partial
sum operator T ∗Λ,M on L2(T, l2(Z2n+1); Gψ

0,0) defined as follows.
For x ∈ L2(T, l2(Z2n+1); Gψ

0,0),

T ∗Λ,M (x) =
∑
α∈Ω

 ∑
|m|≤M−1

〈x,Rα,m〉L2(T,l2(Z2n+1))Rα,m

+ 1
2
∑
|m|=M

〈x,Rα,m〉L2(T,l2(Z2n+1))Rα,m

 .
Computing as earlier, we get for λ ∈ T,

(T ∗Λ,M x)(λ) =
∑
α∈Ω

(∫ 1

0
xα(λ′)D∗M (λ′ − λ)dλ′

)−→
uα, (6)

where D∗M is the modified Dirichlet kernel14 given by

D∗M (x) = DM (x)− cos 2πMx = sin 2πMx
tan πx . (7)

14A. Zygmund. Trigonometric series, 3rd edition. Cambridge: Cambridge
Univ. Press, 2002. 38 / 49
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Defining the sequences pM (λ), qM (λ), p̃M (λ) and q̃M (λ)15, for
M ∈ N and λ ∈ T, as

pM (λ) = {(pM )α(λ)}α∈Z2n+1 , where (pM )α(λ) = xα(λ) cos 2πMλ,

qM (λ) = {(qM )α(λ)}α∈Z2n+1 , where (qM )α(λ) = xα(λ) sin 2πMλ,

p̃M (λ) = {(p̃M )α(λ)}α∈Z2n+1 , where (p̃M )α is the
conjugate function of (pM )α given by

(p̃M )α(λ) = −
∫ 1

0

(pM )α(λ+ t)
tan πt dt

and q̃M (λ) = {(q̃M )α(λ)}α∈Z2n+1 , where (q̃M )α is the
conjugate function of (qM )α given as above,

we have

(T ∗Λ,M x)(λ) =
∑
α∈Ω

((p̃M )α(λ) sin 2πMλ− (q̃M )α(λ) cos 2πMλ)
−→
uα.

(8)
15Zygmund, Trigonometric series, 3rd edition.
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For x ∈ L2(T, l2(Z2n+1); Gψ
0,0), using (5-8), we have

‖TΛ,M x‖L2(T,l2(Z2n+1);Gψ
0,0)

≤
(∫ 1

0
‖TΛ,M x(λ)− T ∗Λ,M x(λ)‖2l2(Z2n+1)G

ψ
0,0(λ)dλ

) 1
2

+
(∫ 1

0
‖T ∗Λ,M x(λ)‖2l2(Z2n+1)G

ψ
0,0(λ)dλ

) 1
2

≤

∫ 1

0

∑
α∈Ω

(∫ 1

0
|xα(λ′)|dλ′

)2
Gψ

0,0(λ)dλ

 1
2

+

∫ 1

0

∑
α∈Ω

(|(p̃M )α(λ)|+ |(q̃M )α(λ)|)2Gψ
0,0(λ)dλ

 1
2

≤
√

C‖x‖+ ‖p̃M‖+ ‖q̃M‖.

using Cauchy-Schwarz inequality for the first term.
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Using Theorem116, there exists C ′ > 0 independent of M , α and x
such that∫ 1

0
|(p̃M )α(λ)|2Gψ

0,0(λ)dλ ≤ C ′
∫ 1

0
|(pM )α(λ)|2Gψ

0,0(λ)dλ.

Then, we get

‖p̃M‖2L2(T,l2(Z2n+1);Gψ
0,0) ≤ C ′

∑
α∈Z2n+1

∫ 1

0
|(pM )α(λ)|2Gψ

0,0(λ)dλ

≤ C ′‖x‖2L2(T,l2(Z2n+1);Gψ
0,0).

Similarly,

‖q̃M‖2L2(T,l2(Z2n+1);Gψ
0,0) ≤ C ′‖x‖2L2(T,l2(Z2n+1);Gψ

0,0).

16R. Hunt, B. Muckenhoupt, and R. Wheeden. “Weighted norm inequalities
for the conjugate function and Hilbert transform”. In: Trans. Math. Soc. 176
(1973), pp. 227–251.

41 / 49



Introduction and Motivation Heisenberg group Wavelet system as Schauder basis References References

Thus,

‖TΛ,M x‖L2(T,l2(Z2n+1);Gψ
0,0) ≤ (

√
C + 2

√
C ′)‖x‖L2(T,l2(Z2n+1);Gψ

0,0).

As C and C ′ are independent of x, Λ and M , we obtain

sup
(Λ,M)∈N4

‖TΛ,M‖ ≤
√

C + 2
√

C ′ <∞.

As T̃Λ,M = TΛ,M , we get sup
(Λ,M)∈N4

‖T̃Λ,M‖ <∞.
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Let R belong to the space L2(T, l2(Z2n+1); Gψ
0,0)

= span{Rα′,m′ : α′ ∈ Z2n+1,m′ ∈ Z}. By the uniform
boundedness of the operators T̃Λ,M and the biorthogonality
between {Rα′,m′} and {Sα,m}, we get

R = lim
Λ,M→∞

∑
α∈Ω
|m|≤M

〈R,Sα,m〉L2(T,l2(Z2n+1);Gψ
0,0)R

α,m ,

where the limit is in L2(T, l2(Z2n+1); Gψ
0,0).

The uniqueness of the coefficients, {〈R,Sα,m〉L2(T,l2(Z2n+1);Gψ
0,0)}

follows again from the biorthogonality between {Rα′,m′} and
{Sα,m}.

Thus, {Rα,m : α ∈ Z2n+1,m ∈ Z} is a Schauder basis for
L2(T, l2(Z2n+1); Gψ

0,0), thereby proving our assertion.
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Example 3.4

Let ψ(x, y, t) = ψ1(x)ψ2(y)ψ3(t), where ψ̂1 and ψ2 are the Haar
functions, χH

[0,1], on [0, 1], given by

χH
[0,1](x) =


1, 0 ≤ x ≤ 1

2 ,

−1, 1
2 < x ≤ 1,

0, otherwise,

and ψ̂3 = 2χ[−1,− 1
2 ]∪[ 1

2 ,1]. Then ψ ∈ L2(H) satisfies the conditions
in the hypothesis of the main result.
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The talk is based on the following research paper:

S. Arati and R. Radha, Wavelet system and Muckenhoupt A2
condition on the Heisenberg group. Colloquium Mathematicum,
Vol 158, No 1, pp 59-76, DOI: 10.4064/cm7467-9-2018 (2019).
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