Characterization of Fourier transform of H-valued functions on the Real line

Md Hasan Ali Biswas

Department of Mathematics IIT Madras

January 5, 2022

DMHA-17 NISER Bhubaneswar

Md Hasan Ali Biswas (IITM)

Fourier transform of H-valued functions

January 5, 2022

Outline

A brief literature survey

2 Preliminaries

3 The Hilbert C^* -module $\mathcal{L}^2(\mathbb{R}, \mathrm{H})$

Fourier transform

5 The main results

Md Hasan Ali Biswas (IITM)

• Jaming[]- A characterization of Fourier transform ¹

Theorem 1

Let $T : L^1(\mathbb{R}) \to C(\mathbb{R})$ be a continuous linear operator satisfying $T(f \star g) = T(f)T(g)$. Then there exist $E \subset \mathbb{R}$ and a function $\phi : \mathbb{R} \to \mathbb{R}$ such that $T(f)(\xi) = \chi_E(\xi)\widehat{f}(\phi(\xi)), \xi \in \mathbb{R}$.

¹P. Jaming, A characterization of Fourier transforms, *Colloq. Math.* **118** (2010), 569-580.

- Lakshmi Lavanya and Thangavelu[] A characterisation of the Weyl transform ²
- $\bullet\,$ Lakshmi Lavanya and Thangavelu[] A characterisation of the Fourier transform on the Heisenberg group 3
- Shravan and Sivananthan- A characterisation of the Fourier transform on a non-abelian compact group ⁴

 2 R. L. Lavanya and S. Thangavelu, A characterisation of the Weyl transform, *Adv. Pure Appl. Math.* **3** (2012), no. 1, 113-122.

 3 R. L. Lavanya and S. Thangavelu, A characterisation of the Fourier transform on the Heisenberg group, *Ann. Funct. Anal.* **3** (2012), no. 1, 109-120.

⁴N. S. Kumar and S. Sivananthan, Characterisation of the Fourier transform on compact groups, *Bull. Aust. Math. Soc.* **93** (2016), no. 3, 467-472.

Md Hasan Ali Biswas (IITM)

We wish to ask the same question for H-valued functions on $\mathbb R,$ where H is a Hilbert $\mathit{C}^*\text{-module}.$

Definition 2

A *C*^{*}-algebra $(\mathcal{A}, || ||)$ is a Banach algebra equipped with an operator $x \mapsto x^*$ (called *involution*) with the following properties.

(i)
$$(ax + y)^* = \overline{a}x^* + y^*, x, y \in \mathcal{A}, a \in \mathbb{C};$$

(ii)
$$(xy)^* = y^*x^*, x, y \in A;$$

(iii)
$$(x^*)^* = x, \ x \in \mathcal{A}$$
; and

(iv)
$$||x^*x|| = ||x||^2, x \in \mathcal{A}.$$

If there exists e ∈ A such that ae = ea = a for all a ∈ A, then A is called a unital C*-algebra.

Example 3

(i) The space of all bounded linear operators on a Hilbert space.(ii) The set of all continuous functions vanishing at infinity on a locally compact Hausdorff space.

Md Hasan Ali Biswas (IITM) Fourier transform of H-valued functions

Hilbert C*-module was first introduced by Kaplansky ⁵. For a study of Hilbert C*-modules, we refer to⁶.

⁵I. Kaplansky, Modules over operator algebras, *Amer. J. Math.*, **75** (1953), 839-858. ⁶E. C. Lance, *Hilbert C*-modules A toolkit for operator algebraists*, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995.

Md Hasan Ali Biswas (IITM)

Definition 4

Let \mathcal{A} be a C^* -algebra and H be a left \mathcal{A} -module (which is also a complex vector space) such that the linear structure on \mathcal{A} and H are compatible, *i.e.* $\lambda(ax) = a(\lambda x) = (\lambda a)x$ for every $\lambda \in \mathbb{C}, a \in \mathcal{A}, x \in \mathbb{H}$. Let $\langle \cdot, \cdot \rangle : \mathrm{H} \times \mathrm{H} \to \mathcal{A}$ be a mapping satisfying (i) $\langle x, x \rangle \ge 0$ for every $x \in H$ and $\langle x, x \rangle = 0$ if and only if x = 0, (ii) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ for every $x, y, z \in H$, (iii) $\langle ax, y \rangle = a \langle x, y \rangle$ for every $a \in \mathcal{A}$ and $x, y \in H$, (iv) $\langle x, y \rangle = \langle y, x \rangle^*$ for every $x, y \in H$. Then the pair $(H, \langle \cdot, \cdot \rangle)$ is called a *pre Hilbert A-module*. The map $\langle \cdot, \cdot \rangle$ is called an A-valued inner product. If H is complete with respect to the norm $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$ then it is called a *Hilbert A-module*. A Hilbert submodule of a Hilbert module H is a closed submodule of H.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Example 5

- (i) Let A be a C^* algebra. Then A is a Hilbert C^* -module over itself with respect to the inner product $\langle a, b \rangle = ab^*$.
- (ii) Let $H_k, 1 \le k \le n$ be a collection of Hilbert C^* -modules over a C^* -algebra \mathcal{A} . Then $H = \bigoplus_{k=1}^n H_k$ is a Hilbert C^* -module over \mathcal{A} with respect to the inner product $\langle x, y \rangle_H = \sum_{k=1}^n \langle x_k, y_k \rangle_{H_k}$, for $x = (x_1, \dots x_n), y = (y_1, \dots y_n) \in H$.

Remark 6

Let H be a pre Hilbert \mathcal{A} -module and $x, y \in H$. Then one has the Cauchy-Schwarz inequality in H: $\|\langle x, y \rangle\|^2 \le \|\langle x, x \rangle\| \|\langle y, y \rangle\|$.

- Now we shall show that if $(H, \langle \cdot, \cdot \rangle)$ is a pre Hilbert \mathcal{A} -module, then its completion \overline{H} turns out to be a Hilbert \mathcal{A} -module. Clearly, \overline{H} is a Banach space.
 - For $a \in A$, $x \in \overline{\mathrm{H}}$, define

$$ax = \lim_{n \to \infty} ax_n,$$

where $\{x_n\}$ is a sequence in H converging to x.

• It is easy to see that \overline{H} becomes an $\mathcal{A}\text{-module}$ with respect to the operation defined above.

Hilbert C^* -module

• For $x,y\in\overline{\mathrm{H}}$ define $\langle\cdot,\cdot
angle_1$ on $\overline{\mathrm{H}}$ by

$$\langle x, y \rangle_1 = \lim_{n \to \infty} \langle x_n, y_n \rangle,$$

where $\{x_n\}, \{y_n\}$ are two sequences in H converging to x, y respectively. • It is easy to verify that $(\overline{\mathrm{H}}, \langle \cdot, \cdot \rangle_1)$ is a Hilbert \mathcal{A} -module.

Definition 7

Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert C^* -module. A map $T : H \to H$ (a priori neither linear nor bounded) is said to be *adjointable* if there exists a map $T^* : H \to H$ satisfying

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
, for all $x, y \in H$.

An adjointable operator T is said to be *unitary* if $TT^* = T^*T = I$, where I is the identity operator on H.

Remark 8

Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert \mathcal{A} -module and $\mathcal{T} : H \to H$ be an adjointable operator. Then \mathcal{T} is unitary iff \mathcal{T} is onto and preserves the \mathcal{A} -valued inner product.

Definition 9

Let $(\mathrm{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert C^* -module. Then $x \in \mathrm{H}$ is said to be orthogonal to $y \in \mathrm{H}$ if $\langle x, y \rangle = 0$ and is denoted by $x \perp y$. If $U \subset \mathrm{H}$ is a Hilbert submodule, then $U^{\perp} = \{x \in \mathrm{H} : \langle x, y \rangle = 0$ for all $y \in U\}$ is called the orthogonal complement of U. The sum $\{u_1 + u_2 : u_i \in U_i, i = 1, 2\}$ of two submodules U_1, U_2 is called direct when $U_1 \cap U_2 = \{0\}$ and orthogonal when $U_1 \perp U_2$. We shall denote the orthogonal direct sum of U_1 and U_2 by $U_1 \bigoplus U_2$. A Hilbert submodule $U \subset \mathrm{H}$ is said to be complementable if $\mathrm{H} = U \bigoplus V$ for some submodule $V \subset \mathrm{H}$.

・ロト ・四ト ・ヨト ・ヨト

Remark 10

Let H be a Hilbert C*-module such that $H = U \bigoplus V$. Then $U^{\perp} = V, \ V^{\perp} = U$.

Remark 11

Let H be a Hilbert C^* -module and $T : H \to H$ be an adjointable operator with closed range then $H = KerT^* \bigoplus Range(T)$. In particular, Range(T) is complementable.

Definition 12 ([8])

Let H be a Hilbert C*-module over a unital C*-albegra \mathcal{A} . A system $\{e_i : i \in I\}$ of vectors from H is said to be orthonormal if $\langle e_i, e_j \rangle = \delta_{i,j}e$, where e is the identity element of \mathcal{A} . A orthonormal system is said to be a orthonormal basis for H if for every $x \in H$ there exist $a_i \in \mathcal{A}$ such that $x = \sum_{i \in I} a_i e_i$.

Example 13

Let \mathcal{A} be a unital C^* -algebra. Consider the Hilbert C^* -module $H = \underbrace{\mathcal{A} \oplus \mathcal{A} \oplus \cdots \oplus \mathcal{A}}_{n-\text{times}}$. Then $\{e_1, e_2, \cdots, e_n\}$ is an orthonormal basis for H, where $e_i = (0, 0, \cdots, e_i, \cdots, 0)$ and e is the identity element of \mathcal{A} . i-th

< ロト < 同ト < ヨト < ヨト

The Hilbert C^* -module $\mathcal{L}^2(\mathbb{R}, \mathbb{H})$

• Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert \mathcal{A} -module. Define $L^2(\mathbb{R}, H) = \{f : \mathbb{R} \to H \mid \int_{\mathbb{R}} \|f(x)\|^2 dx < \infty\}.$

Then we know that $L^2(\mathbb{R}, \mathrm{H})$ is a Banach space.

• For $a\in \mathcal{A},\ f\in L^2(\mathbb{R},\mathrm{H})$ define

$$(af)(x) = af(x).$$

Then $af \in L^2(\mathbb{R}, \mathrm{H})$. Hence $(a, f) \mapsto af$ defines a map from $\mathcal{A} \times L^2(\mathbb{R}, \mathrm{H})$ into $L^2(\mathbb{R}, \mathrm{H})$. It is easy to see that with respect to this operation $L^2(\mathbb{R}, \mathrm{H})$ becomes an \mathcal{A} -module.

• For $f,g\in L^2(\mathbb{R},\mathrm{H})$ define $\langle f,g
angle_2$ by

$$\langle f,g\rangle_2 = \int_{\mathbb{R}} \langle f(x),g(x)\rangle dx.$$

Then using Cauchy-Schwarz inequality for H and for $L^2(\mathbb{R})$ we can show that the definition is well defined.

Lemma 14

Let X be a Banach space, $T \in X^*$ and $f : \mathbb{R} \to X$ be integrable. Then $T(\int_{\mathbb{R}} f(x)dx) = \int_{\mathbb{R}} T(f(x))dx.$

Lemma 15

Let \mathcal{A} be a unital C*-algebra and $f : \mathbb{R} \to \mathcal{A}$ be an integrable function. Then

(i)
$$f(x) \ge 0$$
 for a.e. $x \in \mathbb{R}$ implies $\int_{\mathbb{R}} f(x) dx \ge 0$.

(ii)
$$x \mapsto (f(x))^*$$
 is integrable and $(\int_{\mathbb{R}} f(x) dx)^* = \int_{\mathbb{R}} f(x)^* dx$.

Theorem 16

The space $(L^2(\mathbb{R}, \mathrm{H}), \langle \cdot, \cdot \rangle_2)$ is a pre Hilbert A-module.

We shall denote $\mathcal{L}^2(\mathbb{R}, \mathrm{H})$ to be the completion of $L^2(\mathbb{R}, \mathrm{H})$ with respect to the norm induced by the \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle_2$.

Fourier transform

Definition 17

Let $f \in L^1(\mathbb{R}, \mathrm{H})$. Then the Fourier transform of f is defined by

 $\widehat{f}(\xi) = \int_{\mathbb{R}} e^{-2\pi i x \xi} f(x) dx, \quad \xi \in \mathbb{R}$, where the right hand side is a Bochner integral.

Theorem 18 (Riemann-Lebesgue lemma)

If $f \in L^1(\mathbb{R}, \mathrm{H})$, then $\widehat{f} \in C_0(\mathbb{R}, \mathrm{H})$.

Theorem 19 (Fourier inversion)

Let $f \in L^1(\mathbb{R}, \mathrm{H})$ be such that $\widehat{f} \in L^1(\mathbb{R}, \mathrm{H})$, then

$$f(x) = \int_{\mathbb{R}} e^{2\pi i x \xi} \widehat{f}(\xi) d\xi$$
, for a.e. $x \in \mathbb{R}$.

(日)

Theorem 20 (Plancherel theorem)

Let $f \in L^1(\mathbb{R}, \mathrm{H}) \cap L^2(\mathbb{R}, \mathrm{H})$, then $\langle f, f \rangle_2 = \langle \widehat{f}, \widehat{f} \rangle_2$.

Theorem 21

The Fourier transform is unitary on $\mathcal{L}^2(\mathbb{R}, \mathrm{H})$.

• Let $f, g \in L^1(\mathbb{R}, \mathbb{H})$. Then the convolution of f and g, denoted by $f \star g$, is defined as

$$f \star g(x) = \int_{\mathbb{R}} \langle f(y), g(x-y) \rangle dy$$
, a.e. $x \in \mathbb{R}$.
Let $F(x) = \|f(x)\|$ and $G(x) = \|g(x)\|$. Then using Cauchy-Schwarz inequality we can see that $f \star g$ is well defined and $f \star g \in L^1(\mathbb{R}, \mathcal{A})$.
Further as in the classical case, we can prove the following properties

- (i) If $f \in L^1(\mathbb{R}, \mathrm{H}), \ g \in L^{\infty}(\mathbb{R}, \mathrm{H})$ then $f \star g \in L^{\infty}(\mathbb{R}, \mathcal{A})$.
- (ii) If $f,g \in C_c(\mathbb{R},\mathrm{H})$ then $f \star g \in C_c(\mathbb{R},\mathcal{A})$.
- (iii) If $1 , <math>f \in L^{p}(\mathbb{R}, \mathrm{H})$ and $g \in L^{p'}(\mathbb{R}, \mathrm{H})$ where $\frac{1}{p} + \frac{1}{p'} = 1$, then $f \star g \in C_{0}(\mathbb{R}, \mathcal{A})$.

The main results

• For
$$f\in L^1(\mathbb{R},\mathcal{A}),\;g\in L^1(\mathbb{R},\mathrm{H}),$$
 we define

$$f \odot g(x) = \int_{\mathbb{R}} f(y)g(x-y)dy, \quad a.e. \ x \in \mathbb{R}.$$

Then $f \odot g \in L^1(\mathbb{R}, \mathrm{H})$.

Proposition 22

If $f, g, h \in L^1(\mathbb{R}, \mathrm{H})$, then $(f \star g) \odot h \in L^1(\mathbb{R}, \mathrm{H})$.

Theorem 23

Let $f,g\in L^1(\mathbb{R},\mathrm{H}).$ Then

$$(f \star g)^{\widehat{}}(\xi) = \langle \widehat{f}(\xi), \widehat{g}(-\xi) \rangle$$
, for $\xi \in \mathbb{R}$.

Theorem 24

Let $f, g, h \in L^1(\mathbb{R}, \mathrm{H})$. Then

$$((f\star g)\odot h)^{\widehat{}}(\xi)=\langle\widehat{f}(\xi),\widehat{g}(-\xi)
angle\widehat{h}(\xi), ext{ for }\xi\in\mathbb{R}$$
 .

Proposition 25

Let $T : \mathcal{L}^2(\mathbb{R}, \mathrm{H}) \to \mathcal{L}^2(\mathbb{R}, \mathrm{H})$ be bounded, linear and of the form $T = S \otimes I$, where $S \in B(L^2(\mathbb{R}))$, I is the identity operator on H such that T commutes with translations. Then there exists $m \in L^{\infty}(\mathbb{R})$ such that

$$(Tf)^{(\xi)} = m(\xi)\widehat{f}(\xi), \quad f \in \mathcal{L}^2(\mathbb{R}, \mathrm{H}), \quad \xi \in \mathbb{R}.$$

Remark 26

Let $m \in L^{\infty}(\mathbb{R})$. Define $T_m : \mathcal{L}^2(\mathbb{R}, \mathrm{H}) \to \mathcal{L}^2(\mathbb{R}, \mathrm{H})$ by

$$(T_m f)^{\widehat{}}(\xi) = m(\xi)\widehat{f}(\xi).$$

Then

$$||T_m f||_2 = ||(T_m f)^{-}||_2 = ||m\hat{f}||_2 \le ||m||_{\infty} ||\hat{f}||_2 = ||m||_{\infty} ||f||_2.$$

Thus T_m turns out to be a continuous linear operator on $\mathcal{L}^2(\mathbb{R}, \mathrm{H})$. Further, T_m commutes with translations. As in the classical case $L^2(\mathbb{R})$, we can say that m is a Fourier multiplier for $\mathcal{L}^2(\mathbb{R}, \mathrm{H})$. On the other hand from Proposition 25 we assure that if $T \in B(\mathcal{L}^2(\mathbb{R}, \mathrm{H}))$ is of the form $S \otimes I$, with $S \in B(L^2(\mathbb{R}))$, I is the identity operator on H and commutes with translations, then $T = T_m$ for some $m \in L^\infty(\mathbb{R})$.

Theorem 27

Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert A-module. Let $T : \mathcal{L}^2(\mathbb{R}, H) \to \mathcal{L}^2(\mathbb{R}, H)$ be a bounded, linear and surjective map satisfying

(i)
$$T((f \star g) \odot h)(\xi) = \langle Tf(\xi), Tg(-\xi) \rangle Th(\xi)$$
, for
 $f, g, h \in \mathcal{L}^2(\mathbb{R}, \mathrm{H}), \quad (f \star g) \odot h \in \mathcal{L}^2(\mathbb{R}, \mathrm{H}), \quad \xi \in \mathbb{R},$

(ii)
$$T(\tau_s f)(\xi) = e^{-2\pi i s \xi} Tf(\xi), f \in \mathcal{L}^2(\mathbb{R}, \mathrm{H}), s, \xi \in \mathbb{R},$$

(iii) T is of the form $S \otimes I$ for some $S \in B(L^2(\mathbb{R}))$ and I is the identity operator on H and

$$\begin{array}{ll} (\text{iv}) \quad T(-f)(-\xi) = Tf(\xi), \ f \in \mathcal{L}^2(\mathbb{R}, \mathrm{H}), \quad \xi \in \mathbb{R}.\\ Then \ \langle Tf(\xi), Tg(\xi) \rangle = \langle \widehat{f}(\xi), \widehat{g}(\xi) \rangle, \quad f,g \in \mathcal{L}^2(\mathbb{R}, \mathrm{H}), \quad \xi \in \mathbb{R}. \end{array}$$

Outline of proof I

• Define $U: \mathcal{L}^2(\mathbb{R}, \mathrm{H}) \to \mathcal{L}^2(\mathbb{R}, \mathrm{H})$ by Uf = g if $Tf = \widehat{g}$. Then

$$(Uf)^{(\xi)} = \widehat{g}(\xi) = Tf(\xi).$$

- Clearly U is bounded linear and onto.
- Let $f_1, f_2, f_3 \in \mathcal{L}^2(\mathbb{R}, \mathbb{H})$ be such that $(f_1 \star f_2) \odot f_3 \in \mathcal{L}^2(\mathbb{R}, \mathbb{H})$. For i = 1, 2, 3 let $Uf_i = g_i$ and $U((f_1 \star f_2) \odot f_3) = g$. Then $Tf_i = \hat{g}_i$ and $T((f_1 \star f_2) \odot f_3) = \hat{g}$, i = 1, 2, 3.

But

$$T((f_1 \star f_2) \odot f_3)(\xi) = ((g_1 \star g_2) \odot g_3)^{(\xi)} = ((Uf_1 \star Uf_2) \odot Uf_3)^{(\xi)}.$$

• Hence $U((f_1 \star f_2) \odot f_3) = (Uf_1 \star Uf_2) \odot Uf_3$. Further, we can show that $U\tau_t = \tau_t U$ for $t \in \mathbb{R}$.

Outline of proof II

• Let $f = F \otimes u$ be a basic tensor in $\mathcal{L}^2(\mathbb{R}, \mathrm{H})$. Then $T(F \otimes u) = SF \otimes u$.

• Define $S_1: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $S_1(F) = G$ if $SF = \widehat{G}$. Then

$$Uf = G \otimes u = S_1F \otimes u = (S_1 \otimes I)(F \otimes u).$$

Hence $U = S_1 \otimes I$.

• Using Proposition 25 there exists $m \in L^{\infty}(\mathbb{R})$ such that

$$(Uf)^{\widehat{\xi}} = m(\xi)\widehat{f}(\xi).$$

• Thus $\langle (Uf_1)^{(\xi)}, (Uf_2)^{(-\xi)} \rangle (Uf_3)^{(\xi)} = \langle \widehat{f_1}(\xi), \widehat{f_2}(-\xi) \rangle (Uf_3)^{(\xi)}.$

• Using ontoness of U we can show that

$$\langle Tf_1(\xi), Tf_2(\xi) \rangle = \langle \widehat{f_1}(\xi), \widehat{f_2}(\xi) \rangle.$$

Corollary 28

If in addition to the hypotheses of Theorem 27, T satisfies $T(g_k) = g_k$ where $g_k(x) = e^{-\pi x^2} e_k$ for some countable orthonormal basis $\{e_k : k \in \mathbb{N}\}$ of H then $Tf(\xi) = \hat{f}(\xi)$, $f \in \mathcal{L}^2(\mathbb{R}, \mathrm{H})$, $\xi \in \mathbb{R}$.

Proof.

Let $f \in \mathcal{L}^2(\mathbb{R}, \mathrm{H})$. Then

$$\langle Tf(\xi), Tg_k(\xi) \rangle = \langle \widehat{f}(\xi), \widehat{g}_k(\xi) \rangle.$$

This is equivalent to

$$\langle Tf(\xi), e_k \rangle = \langle \widehat{f}(\xi), e_k \rangle,$$

for all $k \in \mathbb{N}$.

Theorem 29

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a separable Hilbert space with countable orthonormal basis $\{e_k : k \in \mathbb{N}\}$ and $T : L^1(\mathbb{R}, \mathcal{H}) \to C_0(\mathbb{R}, \mathcal{H})$ be a bounded linear map satisfying

(i)
$$T((f \star g) \odot h)(\xi) = \langle Tf(\xi), Tg(-\xi) \rangle Th(\xi), \text{ for } f, g, h \in L^1(\mathbb{R}, \mathcal{H}), \xi \in \mathbb{R},$$

(ii)
$$T(\tau_s f)(\xi) = e^{-2\pi i s \xi} Tf(\xi), f \in L^1(\mathbb{R}, \mathcal{H}), s, \xi \in \mathbb{R},$$

- (iii) If $\langle f(x), e_k \rangle = 0$ for a.e. $x \in \mathbb{R}$ for some k then $\langle Tf(\xi), e_k \rangle = 0$ for all $\xi \in \mathbb{R}$ and
- (iv) $T(-f)(-\xi) = Tf(\xi), f \in L^1(\mathbb{R}, \mathcal{H}), \xi \in \mathbb{R}.$

Then there exists $E \subset \mathbb{R}$ such that

$$\langle Tf(\xi), Tg(\xi) \rangle = \chi_{E}(\xi) \langle \widehat{f}(\xi), \widehat{g}(\xi) \rangle, \quad f, g \in L^{1}(\mathbb{R}, \mathcal{H}), \ \xi \in E.$$

Outline of proof I

- Let $E = \{\xi \in \mathbb{R} : \langle Tf(\xi), e_j \rangle \neq 0$, for some $f \in L^1(\mathbb{R}, \mathcal{H})$ and for some $j \in \mathbb{N}\}$.
- Fix $\xi \in E$. Choose $k \in \mathbb{N}$ and $h \in L^1(\mathbb{R}, \mathcal{H})$ such that $\langle Th(\xi), e_k \rangle \neq 0$.
- Define $P_k : \mathcal{H} \to \mathbb{C}$ by

$$P_k(\sum_{i=1}^{\infty}\alpha_i e_i) = \alpha_k.$$

• Then there exists $u_{\xi,k} \in L^\infty(\mathbb{R},\mathcal{H})$ such that

$$P_k(Tf(\xi)) = \int_{\mathbb{R}} \langle f(t), u_{\xi,k}(t) \rangle dt.$$

• One can show that $u_{\xi,k}(t) \perp e_i$ for a.e. $t \in \mathbb{R}$, $i \neq k$. Let $u_{\xi,k}(t) = \overline{v_{\xi,k}(t)}e_k$, for some $v_{\xi,k} \in L^{\infty}(\mathbb{R})$.

Outline of proof II

$$P_k(T((f \star g) \odot h)(\xi)) = \int_{\mathbb{R}} f \star g(s) \langle T(\tau_s h)(\xi), e_k \rangle ds$$
$$= \int_{\mathbb{R}} f \star g(s) e^{-2\pi i s \xi} \langle Th(\xi), e_k \rangle ds$$
$$= \langle Th(\xi), e_k \rangle \langle \widehat{f}(\xi), \widehat{g}(-\xi) \rangle.$$

• But $P_k(T((f \star g) \odot h)(\xi)) = \langle Tf(\xi), Tg(-\xi) \rangle \langle Th(\xi), e_k \rangle$. • Hence

$$\langle Tf(\xi), Tg(\xi) \rangle = \langle \widehat{f}(\xi), \widehat{g}(\xi) \rangle.$$

< ロト < 同ト < ヨト < ヨ

Corollary 30

If in addition to the hypotheses of Theorem 29, T satisfies $T(g_k) = g_k$ where $g_k(x) = e^{-\pi x^2} e_k$ for all $k \in \mathbb{N}$, then there exists $E \subset \mathbb{R}$ such that $Tf(\xi) = \chi_E(\xi)\widehat{f}(\xi), \quad f \in L^1(\mathbb{R}, \mathcal{H}), \quad \xi \in \mathbb{R}.$ This talk is based on the following paper.

Ali Biswas, Md Hasan and Radha, Ramakrishnan, Characterization of Fourier transform of *H*-valued functions on the Real line, *Rocky Mountain J. Math.* **51** (2021), no. 1, 43-53.

References I

- E. C. Lance, Hilbert C*-modules A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995.
- P. Jaming, A characterization of Fourier transforms, *Colloq. Math.* **118** (2010), 569-580.
- M. S. Jakobsen, On a (no longer) new Segal algebra: a review of the Feichtinger algebra, *J. Fourier Anal. Appl* (ISSN 0003-9527), **24** (2018) 1579-1660.
- I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75 (1953), 839-858.
- R. L. Lavanya and S. Thangavelu, A characterisation of the Fourier transform on the Heisenberg group, Ann. Funct. Anal. 3 (2012), no. 1, 109-120.

- R. L. Lavanya and S. Thangavelu, A characterisation of the Weyl transform, *Adv. Pure Appl. Math.* **3** (2012), no. 1, 113-122.
- N. S. Kumar and S. Sivananthan, Characterisation of the Fourier transform on compact groups, *Bull. Aust. Math. Soc.* **93** (2016), no. 3, 467-472.
- Landi, G. and Pavlov, A., On orthogonal systems in Hilbert C*-modules J. Operator Theory 68 (2012), no. 2, 487–500.

THANK YOU

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >