Pointwise Fatou theorem and its converse for solutions of the heat equation on a stratified Lie group 17th DMHA, NISER

> Jayanta Sarkar ISI Kolkata

5th Jan, 2021

- By a measure µ we will always mean a complex or a signed Borel measure such that |µ|(K) < ∞ for all compact sets K.
- If µ(E) ≥ 0, for all measurable sets E then µ will be called a positive measure.

$$\mathbb{R}^{n+1}_{+} = \{ (x, y) | x \in \mathbb{R}^{n}, y > 0 \}.$$

- By a measure µ we will always mean a complex or a signed Borel measure such that |µ|(K) < ∞ for all compact sets K.
- If µ(E) ≥ 0, for all measurable sets E then µ will be called a positive measure.

$$\mathbb{R}^{n+1}_{+} = \{ (x, y) | x \in \mathbb{R}^{n}, y > 0 \}.$$

- By a measure µ we will always mean a complex or a signed Borel measure such that |µ|(K) < ∞ for all compact sets K.
- If µ(E) ≥ 0, for all measurable sets E then µ will be called a positive measure.

$$\mathbb{R}^{n+1}_{+} = \{ (x, y) | x \in \mathbb{R}^{n}, \ y > 0 \}.$$

- By a measure µ we will always mean a complex or a signed Borel measure such that |µ|(K) < ∞ for all compact sets K.
- If µ(E) ≥ 0, for all measurable sets E then µ will be called a positive measure.

$$\mathbb{R}^{n+1}_+ = \{(x, y) | x \in \mathbb{R}^n, y > 0\}.$$

Poisson kernel

The Poisson kernel of \mathbb{R}^{n+1}_+ :

$$P(x,y) = y^{-n}P(x/y,1) = c_n \frac{y}{(y^2 + ||x||^2)^{\frac{n+1}{2}}}, \quad (x,y) \in \mathbb{R}^{n+1}_+.$$

The Poisson integral $P[\mu]$ of μ :

$$P[\mu](x,y) = \int_{\mathbb{R}^n} P(x-\xi,y) \ d\mu(\xi),$$

whenever the integral above converges absolutely for $(x, y) \in \mathbb{R}^{n+1}_+$.

Poisson kernel

The Poisson kernel of \mathbb{R}^{n+1}_+ :

$$P(x,y) = y^{-n}P(x/y,1) = c_n rac{y}{(y^2 + \|x\|^2)^{rac{n+1}{2}}}, \quad (x,y) \in \mathbb{R}^{n+1}_+.$$

The Poisson integral $P[\mu]$ of μ :

$$P[\mu](x,y) = \int_{\mathbb{R}^n} P(x-\xi,y) \ d\mu(\xi),$$

whenever the integral above converges absolutely for $(x, y) \in \mathbb{R}^{n+1}_+$.

Poisson kernel

The Poisson kernel of \mathbb{R}^{n+1}_+ :

$$P(x,y) = y^{-n}P(x/y,1) = c_n rac{y}{(y^2 + \|x\|^2)^{rac{n+1}{2}}}, \quad (x,y) \in \mathbb{R}^{n+1}_+.$$

The Poisson integral $P[\mu]$ of μ :

$$P[\mu](x,y) = \int_{\mathbb{R}^n} P(x-\xi,y) \ d\mu(\xi),$$

whenever the integral above converges absolutely for $(x, y) \in \mathbb{R}^{n+1}_+$.

Fatou's theorem

Theorem (Fatou, 1906)

Suppose that μ is a measure on \mathbb{R} with distribution function F. If $F'(x_0) = L$, then $P[\mu]$ has nontangential limit L at x_0 , that is,

$$\lim_{\substack{(x,y)\to(x_0,0)\\\|x-x_0\|<\alpha y}} P[\mu](x,y) = L,$$

for all $\alpha > 0$.

Result of Loomis

- As shown by Loomis [Loo43], converse of the theorem above fails in general but it holds true if μ is positive.
- If u is a positive harmonic function in ℝⁿ⁺¹₊, then ∃ unique
 C ≥ 0, µ ≥ 0 such that

$$u(x,y) = Cy + P[\mu](x,y), \quad (x,y) \in \mathbb{R}^{n+1}_+,$$

Theorem (Loomis)

If u is a positive harmonic function in \mathbb{R}^2_+ , then

$$\lim_{\substack{(x,y)\to(x_0,0)\\ \|x-x_0\|<\alpha y}} u(x,y) = L, \text{ for all } \alpha > 0 \implies F'(x_0) = L.$$

Result of Loomis

- As shown by Loomis [Loo43], converse of the theorem above fails in general but it holds true if μ is positive.
- If u is a positive harmonic function in \mathbb{R}^{n+1}_+ , then \exists unique $C \ge 0$, $\mu \ge 0$ such that

$$u(x,y) = Cy + P[\mu](x,y), \quad (x,y) \in \mathbb{R}^{n+1}_+,$$

Theorem (Loomis)

If u is a positive harmonic function in \mathbb{R}^2_+ , then

$$\lim_{\substack{(x,y)\to(x_0,0)\\ \|x-x_0\|<\alpha y}} u(x,y) = L, \text{ for all } \alpha > 0 \implies F'(x_0) = L.$$

Result of Loomis

- As shown by Loomis [Loo43], converse of the theorem above fails in general but it holds true if μ is positive.
- If u is a positive harmonic function in \mathbb{R}^{n+1}_+ , then \exists unique $C \ge 0$, $\mu \ge 0$ such that

$$u(x,y) = Cy + P[\mu](x,y), \quad (x,y) \in \mathbb{R}^{n+1}_+,$$

Theorem (Loomis)

If u is a positive harmonic function in \mathbb{R}^2_+ , then

$$\lim_{\substack{(x,y)\to(x_0,0)\\ \|x-x_0\|<\alpha y}} u(x,y) = L, \text{ for all } \alpha > 0 \implies F'(x_0) = L.$$

Result of Ramey-Ullrich

- Higher dimensional interpretation of F' is a issue here. Ramey and Ullrich interpreted F' as the strong derivative of μ.
- The measure μ on \mathbb{R}^n has strong derivative $L \in \mathbb{C}$, at $x_0 \in \mathbb{R}^n$, if

$$\lim_{r \to 0} \frac{\mu(x_0 + rB)}{m(rB)} = L = D\mu(x_0),$$

holds for every open ball *B*, where $rB = \{rx \mid x \in B\}$, r > 0.

Theorem (Ramey-Ullrich[RU88])

Suppose that u is positive and harmonic in \mathbb{R}^{n+1}_+ with boundary measure μ . Then

$$\lim_{\substack{(x,y)\to(x_0,0)\\ ||x-x_0||<\alpha y}} u(x,y) = L, \text{ for all } \alpha > 0 \iff D\mu(x_0) = L.$$

Result of Ramey-Ullrich

- Higher dimensional interpretation of F' is a issue here. Ramey and Ullrich interpreted F' as the strong derivative of μ.
- The measure μ on \mathbb{R}^n has strong derivative $L \in \mathbb{C}$, at $x_0 \in \mathbb{R}^n$, if

$$\lim_{r\to 0} \frac{\mu(x_0 + rB)}{m(rB)} = L = D\mu(x_0),$$

holds for every open ball *B*, where $rB = \{rx \mid x \in B\}$, r > 0.

Theorem (Ramey-Ullrich[RU88])

Suppose that u is positive and harmonic in \mathbb{R}^{n+1}_+ with boundary measure μ . Then

$$\lim_{\substack{(x,y)\to(x_0,0)\\ ||x-x_0||<\alpha y}} u(x,y) = L, \text{ for all } \alpha > 0 \iff D\mu(x_0) = L.$$

Result of Ramey-Ullrich

- Higher dimensional interpretation of F' is a issue here. Ramey and Ullrich interpreted F' as the strong derivative of μ.
- The measure μ on \mathbb{R}^n has strong derivative $L \in \mathbb{C}$, at $x_0 \in \mathbb{R}^n$, if

$$\lim_{r\to 0}\frac{\mu(x_0+rB)}{m(rB)}=L=D\mu(x_0),$$

holds for every open ball *B*, where $rB = \{rx \mid x \in B\}$, r > 0.

Theorem (Ramey-Ullrich[RU88])

Suppose that u is positive and harmonic in \mathbb{R}^{n+1}_+ with boundary measure μ . Then

$$\lim_{\substack{(x,y)\to(x_0,0)\\ \|x-x_0\|<\alpha y}} u(x,y) = L, \text{ for all } \alpha > 0 \iff D\mu(x_0) = L.$$

- The heat equation in \mathbb{R}^{n+1}_+ : $\Delta u(x,t) = \frac{\partial}{\partial t}u(x,t), \quad (x,t) \in \mathbb{R}^{n+1}_+.$
- The heat kernel (aka the Gauss-Weierstrass kernel): $W(x,t) = w_{\sqrt{t}}(x) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{\|x\|^2}{4t}}, \quad (x,t) \in \mathbb{R}^{n+1}_+, \text{ where}$ w(x) = W(x,1).
- The Gauss-Weierstrass integral of a measure μ on \mathbb{R}^n : $W[\mu](x,t) = \mu * w_{\sqrt{t}}(x) = \int_{\mathbb{R}^n} W(x-y,t) d\mu(y)$, whenever the integral exists.
- If $W[|\mu|](x_0, t_0) < \infty$, then $W[\mu](x, t)$ exists in the strip $\mathbb{R}^n \times (0, t_0)$ and solves the heat equation there.

• The heat equation in \mathbb{R}^{n+1}_+ :

$$\Delta u(x,t) = rac{\partial}{\partial t} u(x,t), \quad (x,t) \in \mathbb{R}^{n+1}_+.$$

- The heat kernel (aka the Gauss-Weierstrass kernel): $W(x,t) = w_{\sqrt{t}}(x) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{||x||^2}{4t}}, \quad (x,t) \in \mathbb{R}^{n+1}_+, \text{ where }$ w(x) = W(x,1).
- The Gauss-Weierstrass integral of a measure μ on ℝⁿ: W[μ](x, t) = μ * w_{√t}(x) = ∫_{ℝⁿ} W(x − y, t) dμ(y), whenever the integral exists.
- If $W[|\mu|](x_0, t_0) < \infty$, then $W[\mu](x, t)$ exists in the strip $\mathbb{R}^n \times (0, t_0)$ and solves the heat equation there.

• The heat equation in \mathbb{R}^{n+1}_+ :

 $\Delta u(x,t) = \frac{\partial}{\partial t}u(x,t), \quad (x,t) \in \mathbb{R}^{n+1}_+.$

- The heat kernel (aka the Gauss-Weierstrass kernel): $W(x,t) = w_{\sqrt{t}}(x) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{||x||^2}{4t}}, \quad (x,t) \in \mathbb{R}^{n+1}_+, \text{ where}$ w(x) = W(x,1).
- The Gauss-Weierstrass integral of a measure μ on \mathbb{R}^n : $W[\mu](x,t) = \mu * w_{\sqrt{t}}(x) = \int_{\mathbb{R}^n} W(x-y,t) d\mu(y)$, whenever the integral exists.
- If $W[|\mu|](x_0, t_0) < \infty$, then $W[\mu](x, t)$ exists in the strip $\mathbb{R}^n \times (0, t_0)$ and solves the heat equation there.

• The heat equation in \mathbb{R}^{n+1}_+ :

 $\Delta u(x,t) = \frac{\partial}{\partial t}u(x,t), \quad (x,t) \in \mathbb{R}^{n+1}_+.$

- The heat kernel (aka the Gauss-Weierstrass kernel): $W(x,t) = w_{\sqrt{t}}(x) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{||x||^2}{4t}}, \quad (x,t) \in \mathbb{R}^{n+1}_+, \text{ where}$ w(x) = W(x,1).
- The Gauss-Weierstrass integral of a measure μ on \mathbb{R}^n : $W[\mu](x,t) = \mu * w_{\sqrt{t}}(x) = \int_{\mathbb{R}^n} W(x-y,t) d\mu(y)$, whenever the integral exists.
- If $W[|\mu|](x_0, t_0) < \infty$, then $W[\mu](x, t)$ exists in the strip $\mathbb{R}^n \times (0, t_0)$ and solves the heat equation there.

Result of Gehring

As W(x, t) = w_{√t}(x), it is natural to investigate the boundary behavior of solutions of the heat equation in the parabolic region:
 P(x₀, α) = {(x, t) ∈ ℝⁿ⁺¹₊ | ||x − x₀||² < αt}.

Theorem (Gehring[Geh60], 1960)

Suppose μ is a measure on \mathbb{R} with distribution function F such that $W[\mu]$ is well-defined in $\mathbb{R} \times (0, t_0)$.

- i) If $F'(x_0) = L$, then $W[\mu]$ has parabolic limit L at x_0 , that is $\lim_{\substack{(x,y)\to(x_0,0)\\(x,t)\in P(x_0,\alpha)}} W[\mu](x,t) = L$, for all $\alpha > 0$.
- ii) Further assume that μ is positive. If W[μ] has parabolic limit L at x₀, then F'(x₀) = L.

Result of Gehring

As W(x, t) = w_{√t}(x), it is natural to investigate the boundary behavior of solutions of the heat equation in the parabolic region:
 P(x₀, α) = {(x, t) ∈ ℝⁿ⁺¹₊ | ||x − x₀||² < αt}.

Theorem (Gehring[Geh60], 1960)

Suppose μ is a measure on \mathbb{R} with distribution function F such that $W[\mu]$ is well-defined in $\mathbb{R} \times (0, t_0)$.

i) If $F'(x_0) = L$, then $W[\mu]$ has parabolic limit L at x_0 , that is $\lim_{\substack{(x,y)\to(x_0,0)\\(x,t)\in P(x_0,\alpha)}} W[\mu](x,t) = L$, for all $\alpha > 0$.

ii) Further assume that μ is positive. If W[μ] has parabolic limit L at x₀, then F'(x₀) = L.

Result of Gehring

 As W(x, t) = w_{√t}(x), it is natural to investigate the boundary behavior of solutions of the heat equation in the parabolic region: P(x₀, α) = {(x, t) ∈ ℝⁿ⁺¹₊ | ||x − x₀||² < αt}.

Theorem (Gehring[Geh60], 1960)

Suppose μ is a measure on \mathbb{R} with distribution function F such that $W[\mu]$ is well-defined in $\mathbb{R} \times (0, t_0)$.

- i) If $F'(x_0) = L$, then $W[\mu]$ has parabolic limit L at x_0 , that is $\lim_{\substack{(x,y)\to(x_0,0)\\(x,t)\in P(x_0,\alpha)}} W[\mu](x,t) = L$, for all $\alpha > 0$.
- ii) Further assume that μ is positive. If $W[\mu]$ has parabolic limit L at x_0 , then $F'(x_0) = L$.

Parabolic convergence of solution of the heat equation in \mathbb{R}^{n+1}_+

• If u is a positive solution then $u = W[\mu]$, for some $\mu \ge 0$ on \mathbb{R}^n .

Theorem

Suppose μ is as above. Then u has parabolic limit L at x_0 , that is $\lim_{\substack{(x,t)\to(x_0,0)\\(x,t)\in P(x_0,\alpha)}} u(x,t) = L$, for all $\alpha > 0$, if and only if $D\mu(x_0) = L$.

• In fact, Brossard and Chevalier[BC90] proved the above theorem for measures μ satisfying $\sup_{(x,t)\in B(0,1)\times(0,t_0)} (W[|\mu|](x,t) - |W[\mu](x,t)|) < \infty.$ Parabolic convergence of solution of the heat equation in \mathbb{R}^{n+1}_+

• If u is a positive solution then $u = W[\mu]$, for some $\mu \ge 0$ on \mathbb{R}^n .

Theorem

Suppose μ is as above. Then u has parabolic limit L at x_0 , that is $\lim_{\substack{(x,t)\to(x_0,0)\\(x,t)\in P(x_0,\alpha)}} u(x,t) = L$, for all $\alpha > 0$, if and only if $D\mu(x_0) = L$.

• In fact, Brossard and Chevalier[BC90] proved the above theorem for measures μ satisfying $\sup_{(x,t)\in B(0,1)\times(0,t_0)} (W[|\mu|](x,t) - |W[\mu](x,t)|) < \infty.$ Parabolic convergence of solution of the heat equation in \mathbb{R}^{n+1}_+

• If u is a positive solution then $u = W[\mu]$, for some $\mu \ge 0$ on \mathbb{R}^n .

Theorem

Suppose μ is as above. Then u has parabolic limit L at x_0 , that is $\lim_{\substack{(x,t) \to (x_0,0) \\ (x,t) \in P(x_0,\alpha)}} u(x,t) = L$, for all $\alpha > 0$, if and only if $D\mu(x_0) = L$.

 \bullet In fact, Brossard and Chevalier[BC90] proved the above theorem for measures μ satisfying

 $\sup_{(x,t)\in B(0,1)\times(0,t_0)} (W[|\mu|](x,t) - |W[\mu](x,t)|) < \infty.$

Stratified Lie groups

A stratified Lie group (G, \circ) is a connected, simply connected nilpotent Lie group whose Lie algebra \mathfrak{g} admits a vector space decomposition $\mathfrak{g} = V_1 \oplus V_2 \oplus \cdots \oplus V_l$, such that

$$[V_1, V_j] = V_{j+1}, \ 1 \le j < l, \qquad [V_1, V_l] = 0.$$

 $[V_1, V_j] = \operatorname{span}_{\mathbb{R}} \{ [X, Y] \mid X \in V_1, Y \in V_j \}.$ The Lie algebra g is equiped with a cannonical family of dilations $\{\delta_r \mid r \in (0, \infty)\}$, which are Lie algebra automophisms defined by

$$\delta_r\left(\sum_{j=1}^l X_j\right) = \sum_{j=1}^l r^j X_j, \quad X_j \in V_j.$$

Stratified Lie groups

A stratified Lie group (G, \circ) is a connected, simply connected nilpotent Lie group whose Lie algebra \mathfrak{g} admits a vector space decomposition $\mathfrak{g} = V_1 \oplus V_2 \oplus \cdots \oplus V_l$, such that

$$[V_1, V_j] = V_{j+1}, \ 1 \le j < l, \qquad [V_1, V_l] = 0.$$

 $[V_1, V_j] = \operatorname{span}_{\mathbb{R}} \{ [X, Y] \mid X \in V_1, Y \in V_j \}.$ The Lie algebra \mathfrak{g} is equiped with a cannonical family of dilations $\{\delta_r \mid r \in (0, \infty)\}$, which are Lie algebra automophisms defined by

$$\delta_r\left(\sum_{j=1}^l X_j\right) = \sum_{j=1}^l r^j X_j, \quad X_j \in V_j.$$

A stratified Lie group G always admits a homogeneous norm which is a continuous function $d: G \rightarrow [0, \infty)$, satisfying the following:

- i) *d* is smooth on $G \setminus \{0\}$;
- ii) $d(\delta_r(x)) = rd(x)$, for all $r \in (0, \infty)$, $x \in G$;
- iii) $d(x^{-1}) = d(x)$, for all $x \in G$;

iv)
$$d(x) = 0$$
, if and only if $x = 0$.

• $d(x \circ y) \leq C(d(x) + d(y)).$

• $C^{-1}d_1(x) \le d_2(x) \le Cd_1(x).$

d-ball: $B_d(x,s) = \{x_1 \in G \mid d(x^{-1} \circ x_1) < s\}.$

Fact: $m(B_d(x,s)) = s^Q m(B(\underline{0},1))$, where $Q = \sum_{j=1}^l j \dim V_j$.

A stratified Lie group G always admits a homogeneous norm which is a continuous function $d: G \rightarrow [0, \infty)$, satisfying the following:

- i) *d* is smooth on $G \setminus \{0\}$;
- ii) $d(\delta_r(x)) = rd(x)$, for all $r \in (0, \infty)$, $x \in G$;
- iii) $d(x^{-1}) = d(x)$, for all $x \in G$;

iv)
$$d(x) = 0$$
, if and only if $x = 0$.

•
$$d(x \circ y) \leq C(d(x) + d(y)).$$

• $C^{-1}d_1(x) \le d_2(x) \le Cd_1(x).$

d-ball: $B_d(x,s) = \{x_1 \in G \mid d(x^{-1} \circ x_1) < s\}.$

Fact: $m(B_d(x,s)) = s^Q m(B(\underline{0},1))$, where $Q = \sum_{j=1}^l j \dim V_j$.

A stratified Lie group G always admits a homogeneous norm which is a continuous function $d: G \rightarrow [0, \infty)$, satisfying the following:

- i) d is smooth on $G \setminus \{0\}$;
- ii) $d(\delta_r(x)) = rd(x)$, for all $r \in (0,\infty)$, $x \in G$;

iii)
$$d(x^{-1}) = d(x)$$
, for all $x \in G$

iv)
$$d(x) = 0$$
, if and only if $x = 0$.

•
$$d(x \circ y) \leq C(d(x) + d(y)).$$

•
$$C^{-1}d_1(x) \le d_2(x) \le Cd_1(x).$$

d-ball: $B_d(x,s) = \{x_1 \in G \mid d(x^{-1} \circ x_1) < s\}.$ Fact: $m(B_d(x,s)) = s^Q m(B(\underline{0},1))$, where $Q = \sum_{j=1}^l j \dim V_j.$

A stratified Lie group G always admits a homogeneous norm which is a continuous function $d: G \rightarrow [0, \infty)$, satisfying the following:

- i) d is smooth on $G \setminus \{0\}$;
- ii) $d(\delta_r(x)) = rd(x)$, for all $r \in (0, \infty)$, $x \in G$;

iii)
$$d(x^{-1}) = d(x)$$
, for all $x \in G$

iv)
$$d(x) = 0$$
, if and only if $x = 0$.

•
$$d(x \circ y) \leq C(d(x) + d(y)).$$

•
$$C^{-1}d_1(x) \le d_2(x) \le Cd_1(x).$$

d-ball: $B_d(x,s) = \{x_1 \in G \mid d(x^{-1} \circ x_1) < s\}.$

Fact: $m(B_d(x,s)) = s^Q m(B(\underline{0},1))$, where $Q = \sum_{j=1}^l j \dim V_j$.

A stratified Lie group G always admits a homogeneous norm which is a continuous function $d: G \rightarrow [0, \infty)$, satisfying the following:

- i) d is smooth on $G \setminus \{0\}$;
- ii) $d(\delta_r(x)) = rd(x)$, for all $r \in (0,\infty)$, $x \in G$;

iii)
$$d(x^{-1}) = d(x)$$
, for all $x \in G$

iv)
$$d(x) = 0$$
, if and only if $x = 0$.

•
$$d(x \circ y) \leq C(d(x) + d(y)).$$

•
$$C^{-1}d_1(x) \le d_2(x) \le Cd_1(x).$$

$$\begin{array}{l} d\text{-ball:} \ B_d(x,s) = \{x_1 \in G \mid d(x^{-1} \circ x_1) < s\}. \\ \text{Fact:} \ m\left(B_d(x,s)\right) = s^Q m(B(\underline{0},1)), \text{ where } Q = \sum_{j=1}^l j \ dim \ V_j. \end{array}$$

- There exists a homogeneous norm d_L on G such that d_L(·)^{2−Q} is the fundamental solution of L.
- $\mathcal{H} = \mathcal{L} \frac{\partial}{\partial t}$ is the heat operator associated to the sub-Laplacian \mathcal{L} .
- Since {X₁, X₂, · · · , X_{N1}} generates g as a Lie algebra, Hörmander's theorem ⇒ L and H are hypoelliptic.

- There exists a homogeneous norm d_L on G such that d_L(·)^{2-Q} is the fundamental solution of L.
- $\mathcal{H} = \mathcal{L} \frac{\partial}{\partial t}$ is the heat operator associated to the sub-Laplacian \mathcal{L} .
- Since {X₁, X₂, · · · , X_{N1}} generates g as a Lie algebra, Hörmander's theorem ⇒ L and H are hypoelliptic.

- There exists a homogeneous norm d_L on G such that d_L(·)^{2-Q} is the fundamental solution of L.
- $\mathcal{H} = \mathcal{L} \frac{\partial}{\partial t}$ is the heat operator associated to the sub-Laplacian \mathcal{L} .
- Since {X₁, X₂, · · · , X_{N1}} generates g as a Lie algebra, Hörmander's theorem ⇒ L and H are hypoelliptic.

- There exists a homogeneous norm d_L on G such that d_L(·)^{2-Q} is the fundamental solution of L.
- $\mathcal{H} = \mathcal{L} \frac{\partial}{\partial t}$ is the heat operator associated to the sub-Laplacian \mathcal{L} .
- Since $\{X_1, X_2, \cdots, X_{N_1}\}$ generates \mathfrak{g} as a Lie algebra, Hörmander's theorem $\implies \mathcal{L}$ and \mathcal{H} are hypoelliptic.

The simplest nontrivial example of a stratified Lie group is the Heisenberg group $H^n = \mathbb{R}^{2n} \oplus \mathbb{R}$.

A basis for \mathbb{R}^{2n} is given by

$$X_j = \frac{\partial}{\partial x_j} + 2y_j \frac{\partial}{\partial s}, \ \ Y_j = \frac{\partial}{\partial y_j} - 2x_j \frac{\partial}{\partial s}, \ \ 1 \le j \le n.$$

 $\{X_j, Y_j\}_{1 \leq j \leq n}$ generates the Lie algebra of H^n as

$$[X_j, Y_j] = -4\frac{\partial}{\partial s}, \quad 1 \le j \le n.$$

The simplest nontrivial example of a stratified Lie group is the Heisenberg group $H^n = \mathbb{R}^{2n} \oplus \mathbb{R}$. A basis for \mathbb{R}^{2n} is given by

$$X_j = rac{\partial}{\partial x_j} + 2y_j rac{\partial}{\partial s}, \ \ Y_j = rac{\partial}{\partial y_j} - 2x_j rac{\partial}{\partial s}, \ \ 1 \leq j \leq n.$$

 $\{X_j, Y_j\}_{1\leq j\leq n}$ generates the Lie algebra of H^n as

$$[X_j, Y_j] = -4\frac{\partial}{\partial s}, \quad 1 \le j \le n.$$

The simplest nontrivial example of a stratified Lie group is the Heisenberg group $H^n = \mathbb{R}^{2n} \oplus \mathbb{R}$. A basis for \mathbb{R}^{2n} is given by

$$X_j = rac{\partial}{\partial x_j} + 2y_j rac{\partial}{\partial s}, \ \ Y_j = rac{\partial}{\partial y_j} - 2x_j rac{\partial}{\partial s}, \ \ 1 \leq j \leq n.$$

 $\{X_j, Y_j\}_{1 \leq j \leq n}$ generates the Lie algebra of H^n as

$$[X_j, Y_j] = -4 \frac{\partial}{\partial s}, \quad 1 \leq j \leq n.$$

The simplest nontrivial example of a stratified Lie group is the Heisenberg group $H^n = \mathbb{R}^{2n} \oplus \mathbb{R}$. A basis for \mathbb{R}^{2n} is given by

$$X_j = rac{\partial}{\partial x_j} + 2y_j rac{\partial}{\partial s}, \ \ Y_j = rac{\partial}{\partial y_j} - 2x_j rac{\partial}{\partial s}, \ \ 1 \leq j \leq n.$$

 $\{X_j, Y_j\}_{1 \leq j \leq n}$ generates the Lie algebra of H^n as

$$[X_j, Y_j] = -4 \frac{\partial}{\partial s}, \quad 1 \le j \le n.$$

The heat equation on G: $\mathcal{H}u(x,t) = 0$, $(x,t) \in G \times (0,\infty)$.

The fundamental solution (heat kernel) of \mathcal{H} :

 $\Gamma(x, t; \xi) := \Gamma(\xi^{-1} \circ x, t)$, where Γ is a smooth, strictly positive function on $G \times (0, \infty)$ satisfying the following properties:

(i)
$$\Gamma(x, t) = \Gamma(x^{-1}, t);$$

(ii)
$$\Gamma(\delta_r(x), r^2 t) = r^{-Q} \Gamma(x, t);$$

(iii)
$$\int_G \Gamma(x, t) dm(x) = 1;$$

$$C_0^{-1}t^{-\frac{Q}{2}}\exp\left(-\frac{c_0d_{\mathcal{L}}(x)^2}{t}
ight) \leq \Gamma(x,t) \leq c_0t^{-\frac{Q}{2}}\exp\left(-\frac{d_{\mathcal{L}}(x)^2}{c_0t}
ight)$$

The heat equation on $G: \mathcal{H}u(x,t) = 0$, $(x,t) \in G \times (0,\infty)$. The fundamental solution (heat kernel) of \mathcal{H} :

 $\Gamma(x, t; \xi) := \Gamma(\xi^{-1} \circ x, t)$, where Γ is a smooth, strictly positive function on $G \times (0, \infty)$ satisfying the following properties:

(i)
$$\Gamma(x, t) = \Gamma(x^{-1}, t);$$

(ii) $\Gamma(\delta_r(x), r^2 t) = r^{-Q} \Gamma(x, t);$
(iii) $\int_G \Gamma(x, t) dm(x) = 1;$

$$C_0^{-1}t^{-\frac{Q}{2}}\exp\left(-\frac{c_0d_{\mathcal{L}}(x)^2}{t}
ight) \leq \Gamma(x,t) \leq c_0t^{-\frac{Q}{2}}\exp\left(-\frac{d_{\mathcal{L}}(x)^2}{c_0t}
ight)$$

The heat equation on $G: \mathcal{H}u(x,t) = 0$, $(x,t) \in G \times (0,\infty)$. The fundamental solution (heat kernel) of \mathcal{H} :

 $\Gamma(x, t; \xi) := \Gamma(\xi^{-1} \circ x, t)$, where Γ is a smooth, strictly positive function on $G \times (0, \infty)$ satisfying the following properties:

(i)
$$\Gamma(x,t) = \Gamma(x^{-1},t);$$

(ii) $\Gamma(\delta_r(x), r^2 t) = r^{-Q} \Gamma(x,t);$
(iii) $\int_G \Gamma(x,t) dm(x) = 1;$
(iv) [Particlicit et al. 2002] Following Coursian estimates

$$c_0^{-1}t^{-\frac{Q}{2}}\exp\left(-\frac{c_0d_{\mathcal{L}}(x)^2}{t}\right) \leq \Gamma(x,t) \leq c_0t^{-\frac{Q}{2}}\exp\left(-\frac{d_{\mathcal{L}}(x)^2}{c_0t}\right)$$

The heat equation on $G: \mathcal{H}u(x,t) = 0$, $(x,t) \in G \times (0,\infty)$. The fundamental solution (heat kernel) of \mathcal{H} :

 $\Gamma(x, t; \xi) := \Gamma(\xi^{-1} \circ x, t)$, where Γ is a smooth, strictly positive function on $G \times (0, \infty)$ satisfying the following properties:

(i)
$$\Gamma(x,t) = \Gamma(x^{-1},t);$$

(ii) $\Gamma(\delta_r(x), r^2 t) = r^{-Q} \Gamma(x,t);$
(iii) $\int_G \Gamma(x,t) dm(x) = 1;$
(iv) [Particlicit et al. 2002] Following Coursian estimates

$$c_0^{-1}t^{-\frac{Q}{2}}\exp\left(-\frac{c_0d_{\mathcal{L}}(x)^2}{t}\right) \leq \Gamma(x,t) \leq c_0t^{-\frac{Q}{2}}\exp\left(-\frac{d_{\mathcal{L}}(x)^2}{c_0t}\right)$$

Parabolic convergence and strong derivative

 A function u defined on G × (0, t₀), for some t₀ ∈ (0,∞], is said to have parabolic limit L ∈ C, at x₀ ∈ G, if for each α ∈ (0,∞)

$$\lim_{\substack{t\to 0\\ x,t)\in P(x_0,\alpha)}} u(x,t) = L,$$

where $P(x_0, \alpha) = \{(x, t) \in G \times (0, \infty) \mid (d_{\mathcal{L}}(x_0^{-1} \circ x))^2 < \alpha t\}.$

 Given a measure µ on G, we say that µ has strong derivative L ∈ C, at x₀ ∈ G, if

$$\lim_{r\to 0} \frac{\mu(x_0 \circ \delta_r(B))}{m(x_0 \circ \delta_r(B))} = L,$$

holds for every $d_{\mathcal{L}}$ -ball B in G.

Parabolic convergence and strong derivative

 A function u defined on G × (0, t₀), for some t₀ ∈ (0,∞], is said to have parabolic limit L ∈ C, at x₀ ∈ G, if for each α ∈ (0,∞)

$$\lim_{\substack{t\to 0\\ x,t)\in P(x_0,\alpha)}} u(x,t) = L,$$

where $P(x_0, \alpha) = \{(x, t) \in G \times (0, \infty) \mid (d_{\mathcal{L}}(x_0^{-1} \circ x))^2 < \alpha t\}.$

• Given a measure μ on G, we say that μ has strong derivative $L \in \mathbb{C}$, at $x_0 \in G$, if

$$\lim_{r\to 0}\frac{\mu(x_0\circ\delta_r(B))}{m(x_0\circ\delta_r(B))}=L,$$

holds for every $d_{\mathcal{L}}$ -ball B in G.

Main result

Lemma (Bonfiglioli-Uguzzoni[BU05], 2005)

Let $u \ge 0$ be a solution of the heat equation in the strip $G \times (0, T)$. Then there exists a unique positive measure μ on G such that $u(x,t) = \Gamma[\mu](x,t) = \int_G \Gamma(\xi^{-1} \circ x, t) d\mu(\xi), \quad (x,t) \in G \times (0, T).$

Theorem (_,[Sar21a])

Suppose that u is as above, and that $x_0 \in G$, $L \in [0, \infty)$. Then the following statements are equivalent.

(i) u has parabolic limit L at x_0 .

(ii) μ has strong derivative L at x_0 .

Main result

Lemma (Bonfiglioli-Uguzzoni[BU05], 2005)

Let $u \ge 0$ be a solution of the heat equation in the strip $G \times (0, T)$. Then there exists a unique positive measure μ on G such that $u(x,t) = \Gamma[\mu](x,t) = \int_G \Gamma(\xi^{-1} \circ x, t) d\mu(\xi), \quad (x,t) \in G \times (0, T).$

Theorem (_,[Sar21a])

Suppose that u is as above, and that $x_0 \in G$, $L \in [0, \infty)$. Then the following statements are equivalent.

- (i) u has parabolic limit L at x_0 .
- (ii) μ has strong derivative L at x_0 .

Some auxilary results I

Suppose {μ_j | j ∈ ℕ}, μ are positive measures. If Γ[μ_j] → Γ[μ] normally, i.e, uniformly on every compact set in G × (0,∞), then

$$\int_G f \ d\mu_j o \int_G f \ d\mu$$

for all $f \in C_c(G)$.

• Suppose that $L \in [0, \infty)$, and that

$$\int_G f \ d\mu_j \to \int_G f \ d\mu,$$

for all $f \in C_c(G)$. Then $\mu = Lm$ if and only if $\mu_j(B) \to Lm(B)$ for every $d_{\mathcal{L}}$ -ball B.

Some auxilary results I

Suppose {μ_j | j ∈ ℕ}, μ are positive measures. If Γ[μ_j] → Γ[μ] normally, i.e, uniformly on every compact set in G × (0,∞), then

$$\int_G f \ d\mu_j \to \int_G f \ d\mu$$

for all $f \in C_c(G)$.

• Suppose that $L \in [0,\infty)$, and that

$$\int_G f \ d\mu_j \to \int_G f \ d\mu,$$

for all $f \in C_c(G)$. Then $\mu = Lm$ if and only if $\mu_j(B) \to Lm(B)$ for every $d_{\mathcal{L}}$ -ball B.

Some auxilary results II

• $M_{HL}(\mu)(x_0) = \sup_{r>0} \mu(B(x_0, r)) / m(B(x_0, r)).$

Maximal inequality:

 $c_n M_{HL}(\mu)(x_0) \leq \sup_{t>0} \Gamma[\mu](x_0, t^2) \leq \sup_{(x,t)\in P(x_0,\alpha)} \Gamma[\mu](x,t) \leq c_\alpha M_{HL}(\mu)(x_0),$

Let {u_j} be a sequence of solutions of the heat equation in G × (0,∞). If {u_j} is locally bounded, then it has a subsequence which converges to some solution v normally. This result was recently proved by Bär[BÏ3].

Some auxilary results II

- $M_{HL}(\mu)(x_0) = \sup_{r>0} \mu(B(x_0, r))/m(B(x_0, r)).$ $\frac{Maximal inequality:}{c_n M_{HL}(\mu)(x_0) \le \sup_{t>0} \Gamma[\mu](x_0, t^2) \le \sup_{(x,t)\in P(x_0,\alpha)} \Gamma[\mu](x, t) \le c_\alpha M_{HL}(\mu)(x_0),$
- Let {u_j} be a sequence of solutions of the heat equation in G × (0,∞). If {u_j} is locally bounded, then it has a subsequence which converges to some solution v normally. This result was recently proved by Bär[BÏ3].

Some auxilary results II

- $M_{HL}(\mu)(x_0) = \sup_{r>0} \mu(B(x_0, r))/m(B(x_0, r)).$ $\frac{Maximal inequality:}{c_n M_{HL}(\mu)(x_0) \le \sup_{t>0} \Gamma[\mu](x_0, t^2) \le \sup_{(x,t)\in P(x_0,\alpha)} \Gamma[\mu](x, t) \le c_\alpha M_{HL}(\mu)(x_0),$
- Let {u_j} be a sequence of solutions of the heat equation in G × (0,∞). If {u_j} is locally bounded, then it has a subsequence which converges to some solution v normally. This result was recently proved by Bär[Bï3].

- One can reduce to the case $x_0 = 0$, and $\mu(\mathbb{R}^n) < \infty$.
- Fix a $d_{\mathcal{L}}$ -ball B_0 , a sequence $\{r_j\}$ of positive numbers with $r_j \to 0$. Set $L_j = \mu \left(\delta_{r_j}(B_0) \right) / m \left(\delta_{r_j}(B_0) \right)$.
- $\mu(\mathbb{R}^n) < \infty, \ u(0, t^2) \to L \text{ as } t \to 0$ $\implies L_j \leq CM_{HL}(\mu)(0) \leq C' \sup_{0 < t < \infty} \Gamma[\mu](0, t^2) < \infty$
- Take convergent subsequence of $\{L_j\}$ and denote it also by $\{L_j\}$. Using corresponding r_j 's, define $u_j(x, t) = u\left(\delta_{r_j}(x), r_j^2 t\right)$.

- One can reduce to the case $x_0 = 0$, and $\mu(\mathbb{R}^n) < \infty$.
- Fix a $d_{\mathcal{L}}$ -ball B_0 , a sequence $\{r_j\}$ of positive numbers with $r_j \rightarrow 0$. Set $L_j = \mu \left(\delta_{r_j}(B_0) \right) / m \left(\delta_{r_j}(B_0) \right)$.
- $\mu(\mathbb{R}^n) < \infty, \ u(0, t^2) \to L \text{ as } t \to 0$ $\implies L_j \leq CM_{HL}(\mu)(0) \leq C' \sup_{0 < t < \infty} \Gamma[\mu](0, t^2) < \infty.$
- Take convergent subsequence of $\{L_j\}$ and denote it also by $\{L_j\}$. Using corresponding r_j 's, define $u_j(x, t) = u\left(\delta_{r_j}(x), r_j^2 t\right)$.

- One can reduce to the case $x_0 = 0$, and $\mu(\mathbb{R}^n) < \infty$.
- Fix a $d_{\mathcal{L}}$ -ball B_0 , a sequence $\{r_j\}$ of positive numbers with $r_j \rightarrow 0$. Set $L_j = \mu \left(\delta_{r_j}(B_0) \right) / m \left(\delta_{r_j}(B_0) \right)$.
- $\mu(\mathbb{R}^n) < \infty, \ u(0, t^2) \to L \text{ as } t \to 0$ $\implies L_j \leq CM_{HL}(\mu)(0) \leq C' \sup_{0 < t < \infty} \Gamma[\mu](0, t^2) < \infty.$
- Take convergent subsequence of $\{L_j\}$ and denote it also by $\{L_j\}$. Using corresponding r_j 's, define $u_j(x, t) = u\left(\delta_{r_j}(x), r_j^2 t\right)$.

- One can reduce to the case $x_0 = 0$, and $\mu(\mathbb{R}^n) < \infty$.
- Fix a $d_{\mathcal{L}}$ -ball B_0 , a sequence $\{r_j\}$ of positive numbers with $r_j \rightarrow 0$. Set $L_j = \mu \left(\delta_{r_j}(B_0) \right) / m \left(\delta_{r_j}(B_0) \right)$.
- $\mu(\mathbb{R}^n) < \infty, \ u(0, t^2) \to L \text{ as } t \to 0$ $\implies L_j \leq CM_{HL}(\mu)(0) \leq C' \sup_{0 < t < \infty} \Gamma[\mu](0, t^2) < \infty.$
- Take convergent subsequence of $\{L_j\}$ and denote it also by $\{L_j\}$. Using corresponding r_j 's, define $u_j(x, t) = u\left(\delta_{r_j}(x), r_j^2 t\right)$.

- One can reduce to the case $x_0 = 0$, and $\mu(\mathbb{R}^n) < \infty$.
- Fix a $d_{\mathcal{L}}$ -ball B_0 , a sequence $\{r_j\}$ of positive numbers with $r_j \rightarrow 0$. Set $L_j = \mu \left(\delta_{r_j}(B_0) \right) / m \left(\delta_{r_j}(B_0) \right)$.
- $\mu(\mathbb{R}^n) < \infty, \ u(0, t^2) \to L \text{ as } t \to 0$ $\implies L_j \leq CM_{HL}(\mu)(0) \leq C' \sup_{0 < t < \infty} \Gamma[\mu](0, t^2) < \infty.$
- Take convergent subsequence of $\{L_j\}$ and denote it also by $\{L_j\}$. Using corresponding r_j 's, define $u_j(x, t) = u(\delta_{r_j}(x), r_j^2 t)$.

- One can reduce to the case $x_0 = 0$, and $\mu(\mathbb{R}^n) < \infty$.
- Fix a $d_{\mathcal{L}}$ -ball B_0 , a sequence $\{r_j\}$ of positive numbers with $r_j \rightarrow 0$. Set $L_j = \mu \left(\delta_{r_j}(B_0) \right) / m \left(\delta_{r_j}(B_0) \right)$.
- $\mu(\mathbb{R}^n) < \infty, \ u(0, t^2) \to L \text{ as } t \to 0$ $\implies L_j \leq CM_{HL}(\mu)(0) \leq C' \sup_{0 < t < \infty} \Gamma[\mu](0, t^2) < \infty.$
- Take convergent subsequence of $\{L_j\}$ and denote it also by $\{L_j\}$. Using corresponding r_j 's, define $u_j(x, t) = u\left(\delta_{r_j}(x), r_j^2 t\right)$.

Step 2:

- $P(0, \alpha)$ is invariant under the action $(r, (x, t)) \rightarrow (\delta_{r_j}(x), r_j^2 t)$.
- {u_j} is a sequence of solutions with sup_j ||u_j||_{L∞(K)} < ∞, for all compact set K ⊂ G × (0,∞).
- Use Bär's result to get a subsequence $\{u_{j_k}\}$ such that $u_{j_k} \to v$ normally.
- Fix (x_0, t_0) . Choose $\eta > 0$ such that $(x_0, t_0) \in P(0, \alpha)$. Since $r_{j_k} \to 0$, $v(x_0, t_0) = \lim_{k \to \infty} u\left(\delta_{r_{j_k}}(x_0), r_{j_k}^2 t_0\right) = L$.

Step 2:

- $P(0, \alpha)$ is invariant under the action $(r, (x, t)) \rightarrow (\delta_{r_j}(x), r_j^2 t)$.
- {u_j} is a sequence of solutions with sup_j ||u_j||_{L∞(K)} < ∞, for all compact set K ⊂ G × (0,∞).
- Use Bär's result to get a subsequence $\{u_{j_k}\}$ such that $u_{j_k} \rightarrow v$ normally.
- Fix (x_0, t_0) . Choose $\eta > 0$ such that $(x_0, t_0) \in P(0, \alpha)$. Since $r_{j_k} \to 0$, $v(x_0, t_0) = \lim_{k \to \infty} u\left(\delta_{r_{j_k}}(x_0), r_{j_k}^2 t_0\right) = L$.

- Set $\mu_k(E) = r_{j_k}^{-Q} \mu(\delta_{r_{j_k}}(E))$. Then $u_{j_k} = \Gamma[\mu_k] \to L = \Gamma[Lm]$ normally.
- $\mu_{r_{i_{k}}}(B) \rightarrow Lm(B)$ for every $d_{\mathcal{L}}$ -ball B.
- Put $B = B_0$ to conclude that $L_{j_k} = \mu(\delta_{r_{j_k}}(B_0))/m(\delta_{r_{j_k}}(B_0)) \rightarrow L$.
- Every convergent subsequence of the bounded sequence $\{L_j\}$ has limit L. Hence, $L_j \rightarrow L$.
- μ has strong derivative L at 0.

- Set $\mu_k(E) = r_{j_k}^{-Q} \mu(\delta_{r_{j_k}}(E))$. Then $u_{j_k} = \Gamma[\mu_k] \to L = \Gamma[Lm]$ normally.
- $\mu_{r_{j_k}}(B) \to Lm(B)$ for every $d_{\mathcal{L}}$ -ball B.

• Put $B = B_0$ to conclude that $L_{j_k} = \mu(\delta_{r_{j_k}}(B_0))/m(\delta_{r_{j_k}}(B_0)) \rightarrow L$.

- Every convergent subsequence of the bounded sequence $\{L_j\}$ has limit L. Hence, $L_j \rightarrow L$.
- μ has strong derivative L at 0.

- Set $\mu_k(E) = r_{j_k}^{-Q} \mu(\delta_{r_{j_k}}(E))$. Then $u_{j_k} = \Gamma[\mu_k] \to L = \Gamma[Lm]$ normally.
- $\mu_{r_{j_k}}(B) \to Lm(B)$ for every $d_{\mathcal{L}}$ -ball B.
- Put $B = B_0$ to conclude that $L_{j_k} = \mu(\delta_{r_{j_k}}(B_0))/m(\delta_{r_{j_k}}(B_0)) \to L$.
- Every convergent subsequence of the bounded sequence $\{L_j\}$ has limit L. Hence, $L_j \rightarrow L$.
- μ has strong derivative L at 0.

- Set $\mu_k(E) = r_{j_k}^{-Q} \mu(\delta_{r_{j_k}}(E))$. Then $u_{j_k} = \Gamma[\mu_k] \to L = \Gamma[Lm]$ normally.
- $\mu_{r_{j_k}}(B) \to Lm(B)$ for every $d_{\mathcal{L}}$ -ball B.
- Put $B = B_0$ to conclude that $L_{j_k} = \mu(\delta_{r_{j_k}}(B_0))/m(\delta_{r_{j_k}}(B_0)) \to L$.
- Every convergent subsequence of the bounded sequence $\{L_j\}$ has limit *L*. Hence, $L_j \rightarrow L$.
- μ has strong derivative L at 0.

- Set $\mu_k(E) = r_{j_k}^{-Q} \mu(\delta_{r_{j_k}}(E))$. Then $u_{j_k} = \Gamma[\mu_k] \to L = \Gamma[Lm]$ normally.
- $\mu_{r_{j_k}}(B) \to Lm(B)$ for every $d_{\mathcal{L}}$ -ball B.
- Put $B = B_0$ to conclude that $L_{j_k} = \mu(\delta_{r_{j_k}}(B_0))/m(\delta_{r_{j_k}}(B_0)) \rightarrow L$.
- Every convergent subsequence of the bounded sequence {L_j} has limit L. Hence, L_j → L.
- μ has strong derivative L at 0.

Work in progress to see whether this theorem can be proved for more general class of measures satisfying Brossard-Chevalier type condition:

$$\sup_{(x,t)\in B\times(0,t_0)}\left(\Gamma[|\mu|](x,t)-|\Gamma[\mu](x,t)|\right)<\infty,$$

where *B* is a $d_{\mathcal{L}}$ -ball around 0, and $t_0 > 0$.

Remark

Work in progress to see whether this theorem can be proved for more general class of measures satisfying Brossard-Chevalier type condition:

$$\sup_{(x,t)\in B\times(0,t_0)}\left(\mathsf{\Gamma}[|\mu|](x,t)-|\mathsf{\Gamma}[\mu](x,t)|\right)<\infty,$$

where *B* is a $d_{\mathcal{L}}$ -ball around 0, and $t_0 > 0$.

References I

Christian Bär.

Some properties of solutions to weakly hypoelliptic equations. *Int. J. Differ. Equ.*, pages Art. ID 526390, 8, 2013. doi:10.1155/2013/526390.

- Jean Brossard and Lucien Chevalier.
 Problème de Fatou ponctuel et dérivabilité des mesures.
 Acta Math., 164(3-4):237-263, 1990.
 doi:10.1007/BF02392755.
- A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni. Uniform Gaussian estimates for the fundamental solutions for heat operators on Carnot groups. Adv. Differential Equations, 7(10):1153–1192, 2002.

References II

Andrea Bonfiglioli and Francesco Uguzzoni.

Representation formulas and Fatou-Kato theorems for heat operators on stratified groups.

Rend. Mat. Appl. (7), 25(1):53-67, 2005.

F. W. Gehring.

The boundary behavior and uniqueness of solutions of the heat equation.

Trans. Amer. Math. Soc., 94:337–364, 1960. doi:10.2307/1993430.

Lynn H. Loomis.

The converse of the Fatou theorem for positive harmonic functions.

Trans. Amer. Math. Soc., 53:239–250, 1943. doi:10.2307/1990345.

References III

Wade Ramey and David Ullrich. On the behavior of harmonic functions near a boundary point. *Trans. Amer. Math. Soc.*, 305(1):207–220, 1988. doi:10.2307/2001049.

Jayanta Sarkar.
 Boundary behavior of positive solutions of the heat equation on a stratified Lie group.
 2021.
 arXiv:2012.11234.

Jayanta Sarkar.

On parabolic convergence of positive solutions of the heat equation.

Complex Variables and Elliptic Equations, 0(0):1–17, 2021. doi:10.1080/17476933.2021.1882432.

Thank you!