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By a measure µ we will always mean a complex or a signed Borel

measure such that |µ|(K ) <∞ for all compact sets K .

If µ(E ) ≥ 0, for all measurable sets E then µ will be called a

positive measure.

Our motivation is a classical theorem of Fatou regarding boundary

behavior of Poisson integrals of measures defined in the unit disc of

C. However, we prefer to present the results for the upper half space:

Rn+1
+ = {(x , y)|x ∈ Rn, y > 0}.

Fatou proved his result for n = 1.
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Poisson kernel

The Poisson kernel of Rn+1
+ :

P(x , y) = y−nP(x/y , 1) = cn
y

(y 2 + ‖x‖2)
n+1

2

, (x , y) ∈ Rn+1
+ .

The Poisson integral P[µ] of µ:

P[µ](x , y) =

∫
Rn

P(x − ξ, y) dµ(ξ),

whenever the integral above converges absolutely for (x , y) ∈ Rn+1
+ .
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Fatou’s theorem

Theorem (Fatou, 1906)

Suppose that µ is a measure on R with distribution function F . If

F ′(x0) = L, then P[µ] has nontangential limit L at x0, that is,

lim
(x ,y)→(x0,0)
‖x−x0‖<αy

P[µ](x , y) = L,

for all α > 0.
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Result of Loomis

As shown by Loomis [Loo43], converse of the theorem above

fails in general but it holds true if µ is positive.

If u is a positive harmonic function in Rn+1
+ , then ∃ unique

C ≥ 0, µ ≥ 0 such that

u(x , y) = Cy + P[µ](x , y), (x , y) ∈ Rn+1
+ ,

Theorem (Loomis)

If u is a positive harmonic function in R2
+, then

lim
(x ,y)→(x0,0)
‖x−x0‖<αy

u(x , y) = L, for all α > 0 =⇒ F ′(x0) = L.
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Result of Ramey-Ullrich

Higher dimensional interpretation of F ′ is a issue here. Ramey

and Ullrich interpreted F ′ as the strong derivative of µ.

The measure µ on Rn has strong derivative L ∈ C, at x0 ∈ Rn, if

lim
r→0

µ(x0 + rB)

m(rB)
= L = Dµ(x0),

holds for every open ball B , where rB = {rx | x ∈ B}, r > 0.

Theorem (Ramey-Ullrich[RU88])

Suppose that u is positive and harmonic in Rn+1
+ with boundary

measure µ. Then

lim(x ,y)→(x0,0)
‖x−x0‖<αy

u(x , y) = L, for all α > 0 ⇐⇒ Dµ(x0) = L.
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Heat equation in Rn+1
+

The heat equation in Rn+1
+ :

∆u(x , t) = ∂
∂t
u(x , t), (x , t) ∈ Rn+1

+ .

The heat kernel (aka the Gauss-Weierstrass kernel):

W (x , t) = w√t(x) = (4πt)−
n
2 e−

‖x‖2

4t , (x , t) ∈ Rn+1
+ , where

w(x) = W (x , 1).

The Gauss-Weierstrass integral of a measure µ on Rn:

W [µ](x , t) = µ ∗ w√t(x) =
∫
Rn W (x − y , t) dµ(y),

whenever the integral exists.

If W [|µ|](x0, t0) <∞, then W [µ](x , t) exists in the strip

Rn × (0, t0) and solves the heat equation there.
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Result of Gehring

As W (x , t) = w√t(x), it is natural to investigate the boundary

behavior of solutions of the heat equation in the parabolic region:

P(x0, α) = {(x , t) ∈ Rn+1
+ | ‖x − x0‖2 < αt}.

Theorem (Gehring[Geh60], 1960)

Suppose µ is a measure on R with distribution function F such that

W [µ] is well-defined in R× (0, t0).

i) If F ′(x0) = L, then W [µ] has parabolic limit L at x0, that is

lim(x ,y)→(x0,0)
(x ,t)∈P(x0,α)

W [µ](x , t) = L, for all α > 0.

ii) Further assume that µ is positive. If W [µ] has parabolic limit L

at x0, then F ′(x0) = L.
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Parabolic convergence of solution of the heat

equation in Rn+1
+

If u is a positive solution then u = W [µ], for some µ ≥ 0 on Rn.

Theorem
Suppose µ is as above. Then u has parabolic limit L at x0, that is

lim (x ,t)→(x0,0)
(x ,t)∈P(x0,α)

u(x , t) = L, for all α > 0, if and only if Dµ(x0) = L.

• In fact, Brossard and Chevalier[BC90] proved the above theorem

for measures µ satisfying

sup(x ,t)∈B(0,1)×(0,t0) (W [|µ|](x , t)− |W [µ](x , t)|) <∞.
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Stratified Lie groups

A stratified Lie group (G , ◦) is a connected, simply connected

nilpotent Lie group whose Lie algebra g admits a vector space

decomposition g = V1 ⊕ V2 ⊕ · · · ⊕ Vl , such that

[V1,Vj ] = Vj+1, 1 ≤ j < l , [V1,Vl ] = 0.

[V1,Vj ] = spanR {[X ,Y ] | X ∈ V1,Y ∈ Vj}.
The Lie algebra g is eqquiped with a cannonical family of dilations

{δr | r ∈ (0,∞)}, which are Lie algebra automophisms defined by

δr

(
l∑

j=1

Xj

)
=

l∑
j=1

r jXj , Xj ∈ Vj .
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Homogeneous norm

A stratified Lie group G always admits a homogeneous norm which is

a continuous function d : G → [0,∞), satisfying the following:

i) d is smooth on G \ {0};
ii) d(δr (x)) = rd(x), for all r ∈ (0,∞), x ∈ G ;

iii) d(x−1) = d(x), for all x ∈ G ;

iv) d(x) = 0, if and only if x = 0.

d(x ◦ y) ≤ C (d(x) + d(y)).

C−1d1(x) ≤ d2(x) ≤ Cd1(x).

d-ball: Bd(x , s) = {x1 ∈ G | d(x−1 ◦ x1) < s}.
Fact: m (Bd(x , s)) = sQm(B(0, 1)), where Q =

∑l
j=1 j dim Vj .
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Sub-Laplacian

We identify g as the Lie algebra of all left G -invariant vector fields on

G and fix a basis {X1,X2, · · · ,XN1} for V1, which generates g as a

Lie algebra. The second order differential operator L =
∑N1

j=1 X
2
j is

called a sub-Laplacian on G .

There exists a homogeneous norm dL on G such that dL(·)2−Q

is the fundamental solution of L.

H = L− ∂
∂t

is the heat operator associated to the sub-Laplacian

L.

Since {X1,X2, · · · ,XN1} generates g as a Lie algebra,

Hörmander’s theorem =⇒ L and H are hypoelliptic.
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Heisenberg group

The simplest nontrivial example of a stratified Lie group is the

Heisenberg group Hn = R2n ⊕ R.

A basis for R2n is given by

Xj =
∂

∂xj
+ 2yj

∂

∂s
, Yj =

∂

∂yj
− 2xj

∂

∂s
, 1 ≤ j ≤ n.

{Xj ,Yj}1≤j≤n generates the Lie algebra of Hn as

[Xj ,Yj ] = −4
∂

∂s
, 1 ≤ j ≤ n.

The sub-Laplacian
∑n

j=1 X
2
j + Y 2

j also known as the Kohn Laplacian.
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Heat kernel on stratified Lie groups

The heat equation on G : Hu(x , t) = 0, (x , t) ∈ G × (0,∞).

The fundamental solution (heat kernel) of H:

Γ(x , t; ξ) := Γ(ξ−1 ◦ x , t), where Γ is a smooth, strictly positive

function on G × (0,∞) satisfying the following properties:

(i) Γ(x , t) = Γ(x−1, t);

(ii) Γ(δr (x), r 2t) = r−QΓ(x , t);

(iii)
∫
G

Γ(x , t) dm(x) = 1;

(iv) [Bonfiglioli et al., 2002] Following Gaussian estimates hold.

c−1
0 t−

Q
2 exp

(
−c0dL(x)2

t

)
≤ Γ(x , t) ≤ c0t

−Q
2 exp

(
−dL(x)2

c0t

)
.
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Parabolic convergence and strong derivative

A function u defined on G × (0, t0), for some t0 ∈ (0,∞], is said

to have parabolic limit L ∈ C, at x0 ∈ G , if for each α ∈ (0,∞)

lim
t→0

(x ,t)∈P(x0,α)

u(x , t) = L,

where P(x0, α) = {(x , t) ∈ G × (0,∞) | (dL(x−1
0 ◦ x))2 < αt}.

Given a measure µ on G , we say that µ has strong derivative

L ∈ C, at x0 ∈ G , if

lim
r→0

µ(x0 ◦ δr (B))

m(x0 ◦ δr (B))
= L,

holds for every dL-ball B in G .
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Main result

Lemma (Bonfiglioli-Uguzzoni[BU05], 2005)

Let u ≥ 0 be a solution of the heat equation in the strip G × (0,T ).

Then there exists a unique positive measure µ on G such that

u(x , t) = Γ[µ](x , t) =
∫
G

Γ(ξ−1 ◦ x , t) dµ(ξ), (x , t) ∈ G × (0,T ).

Theorem ( ,[Sar21a])

Suppose that u is as above, and that x0 ∈ G, L ∈ [0,∞). Then the

following statements are equivalent.

(i) u has parabolic limit L at x0.

(ii) µ has strong derivative L at x0.
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Some auxilary results I

Suppose {µj | j ∈ N}, µ are positive measures. If Γ[µj ]→ Γ[µ]

normally, i.e, uniformly on every compact set in G × (0,∞), then∫
G

f dµj →
∫
G

f dµ

for all f ∈ Cc(G ).

Suppose that L ∈ [0,∞), and that∫
G

f dµj →
∫
G

f dµ,

for all f ∈ Cc(G ). Then µ = Lm if and only if µj(B)→ Lm(B)

for every dL-ball B .
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Some auxilary results II

MHL(µ)(x0) = supr>0 µ(B(x0, r))/m(B(x0, r)).

Maximal inequality:

cnMHL(µ)(x0) ≤ supt>0 Γ[µ](x0, t
2) ≤ sup(x ,t)∈P(x0,α) Γ[µ](x , t) ≤

cαMHL(µ)(x0),

Let {uj} be a sequence of solutions of the heat equation in

G × (0,∞). If {uj} is locally bounded, then it has a

subsequence which converges to some solution v normally. This

result was recently proved by Bär[B1̈3].
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Sketch of the proof

Step 1:

One can reduce to the case x0 = 0, and µ(Rn) <∞.

Fix a dL-ball B0, a sequence {rj} of positive numbers with

rj → 0. Set Lj = µ
(
δrj (B0)

)
/m
(
δrj (B0)

)
.

µ(Rn) <∞, u(0, t2)→ L as t → 0

=⇒ Lj ≤ CMHL(µ)(0) ≤ C ′ sup0<t<∞ Γ[µ](0, t2) <∞.

Take convergent subsequence of {Lj} and denote it also by

{Lj}.Using corresponding rj ’s, define uj(x , t) = u
(
δrj (x), r 2

j t
)
.
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Step 2:

P(0, α) is invariant under the action (r , (x , t))→ (δrj (x), r 2
j t).

{uj} is a sequence of solutions with supj ‖uj‖L∞(K) <∞, for all

compact set K ⊂ G × (0,∞).

Use Bär’s result to get a subsequence {ujk} such that ujk → v

normally.

Fix (x0, t0). Choose η > 0 such that (x0, t0) ∈ P(0, α). Since

rjk → 0, v(x0, t0) = limk→∞ u
(
δrjk (x0), r 2

jk
t0

)
= L.
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Step 3:

Set µk(E ) = r−Qjk
µ(δrjk (E )). Then ujk = Γ[µk ]→ L = Γ[Lm]

normally.

µrjk
(B)→ Lm(B) for every dL-ball B .

Put B = B0 to conclude that Ljk = µ(δrjk (B0))/m(δrjk (B0))→ L.

Every convergent subsequence of the bounded sequence {Lj}
has limit L. Hence, Lj → L.

µ has strong derivative L at 0.

Jayanta SarkarISI Kolkata Pointwise Fatou theorem and its converse for solutions of the heat equation on a stratified Lie group21 / 26



Step 3:

Set µk(E ) = r−Qjk
µ(δrjk (E )). Then ujk = Γ[µk ]→ L = Γ[Lm]

normally.

µrjk
(B)→ Lm(B) for every dL-ball B .

Put B = B0 to conclude that Ljk = µ(δrjk (B0))/m(δrjk (B0))→ L.

Every convergent subsequence of the bounded sequence {Lj}
has limit L. Hence, Lj → L.

µ has strong derivative L at 0.

Jayanta SarkarISI Kolkata Pointwise Fatou theorem and its converse for solutions of the heat equation on a stratified Lie group21 / 26



Step 3:

Set µk(E ) = r−Qjk
µ(δrjk (E )). Then ujk = Γ[µk ]→ L = Γ[Lm]

normally.

µrjk
(B)→ Lm(B) for every dL-ball B .

Put B = B0 to conclude that Ljk = µ(δrjk (B0))/m(δrjk (B0))→ L.

Every convergent subsequence of the bounded sequence {Lj}
has limit L. Hence, Lj → L.

µ has strong derivative L at 0.

Jayanta SarkarISI Kolkata Pointwise Fatou theorem and its converse for solutions of the heat equation on a stratified Lie group21 / 26



Step 3:

Set µk(E ) = r−Qjk
µ(δrjk (E )). Then ujk = Γ[µk ]→ L = Γ[Lm]

normally.

µrjk
(B)→ Lm(B) for every dL-ball B .

Put B = B0 to conclude that Ljk = µ(δrjk (B0))/m(δrjk (B0))→ L.

Every convergent subsequence of the bounded sequence {Lj}
has limit L. Hence, Lj → L.

µ has strong derivative L at 0.

Jayanta SarkarISI Kolkata Pointwise Fatou theorem and its converse for solutions of the heat equation on a stratified Lie group21 / 26



Step 3:

Set µk(E ) = r−Qjk
µ(δrjk (E )). Then ujk = Γ[µk ]→ L = Γ[Lm]

normally.

µrjk
(B)→ Lm(B) for every dL-ball B .

Put B = B0 to conclude that Ljk = µ(δrjk (B0))/m(δrjk (B0))→ L.

Every convergent subsequence of the bounded sequence {Lj}
has limit L. Hence, Lj → L.

µ has strong derivative L at 0.

Jayanta SarkarISI Kolkata Pointwise Fatou theorem and its converse for solutions of the heat equation on a stratified Lie group21 / 26



Remark

Work in progress to see whether this theorem can be proved for more

general class of measures satisfying Brossard-Chevalier type condition:

sup
(x ,t)∈B×(0,t0)

(Γ[|µ|](x , t)− |Γ[µ](x , t)|) <∞,

where B is a dL-ball around 0, and t0 > 0.
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