
Weighted estimates for maximal product of
spherical averages

Kalachand Shuin
(Joint work with Dr. Saurabh Shrivastava and Dr. Luz Roncal)

17th DMHA @t NISER Bhubaneswar

06.01.2022



Notations

The n-sphere Sn−1 is the set {x ∈ Rn : ‖x‖ = 1}.

Lebesgue measure of a subset E ⊂ Rn is denoted by |E |.

〈f 〉Q := 1
|Q|
∫
Q |f (y)|dy and 〈f 〉Q,p :=

(
1
|Q|
∫
Q |f (y)|pdy

) 1
p .

For any locally integrable function f and a point x ∈ Rn, the
Hardy-Littlewood maximal function M is defined as
Mf (x) := supQ3x〈f 〉Q .
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Spherical averages and maximal functions

For r > 0, the spherical average of a continuous function f is
defined by

Ar f (x) :=

∫
Sn−1

f (x − ry)dσ(y).

The spherical maximal function is defined by

Mfull f (x) := sup
r>0
|Ar f (x)|

The lacunary spherical maximal function is defined by

Mlac f (x) := sup
j∈Z
|A2j f (x)|
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Lp estimates of Mfull and Mlac

Theorem (Stein; Proc. Nat. Acad. Sci., vol 73, 1976)

Let n ≥ 3. Then the operator Mfull maps Lp(Rn) to Lp(Rn) if and
only if p > n

n−1 .

Later J. Bourgain [On the spherical maximal function in the plane,
IHES 1985 ]extended the above result to dimension n = 2, i.e Mfull

maps Lp(R2) to Lp(R2) if and only if p > 2.

Theorem (Calderón; illinois J. of Math. vol 23, no. 3, 1979
Coifman and Weiss; Bull. Amer. Math. Soc. 84(1978) )

Let n ≥ 2. Then the operator Mlac maps Lp(Rn) to Lp(Rn) for
p > 1.
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Boundedness of Mfull and Mlac w.r.t power weights

Theorem (J. Duoandikoetxea, L. Vega; J. London Math. Soc. (2)
53 (1996))

Let n ≥ 2. Then

Mfull is bounded on Lp(|x |α) for p > n
n−1 and

1− n < α < (n − 1)(p − 1)− 1. The range of α is sharp
except possibly at the point α = 1− n.

Mlac is bounded on Lp(|x |α) if and only if
1− n ≤ α < (n − 1)(p − 1) for 1 < p <∞.
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Sparse family and sparse forms

Definition

A collection of cubes S in Rn is said to be η- sparse (0 < η < 1) if
there are sets {EQ ⊂ Q : Q ∈ S} which are pairwise disjoint and
satisfy |EQ | ≥ η|Q| for all Q ∈ S.

Example: Let S = {Qk ⊂ Rn : Qk =
∏n

j=1[0, 2kj ); kj ∈ Z and k =

(k1, k2, . . . , kn)} and EQk =
∏n

j=1[2kj−1, 2kj ). Observe that

|EQk | ≥ η|Qk | with η ≤ 2−n. Therefore, S is a sparse family.
Let 1 ≤ r , s <∞. Then for any compactly supported bounded
functions f , g we define the bilinear sparse form as

ΛS,r ,s(f , g) :=
∑
Q∈S
|Q|〈f 〉Q,r 〈g〉Q,s

The trilinear (p, q, r)-sparse form is defined as

ΛS,p,q,r (f , g , h) =
∑
Q∈S
|Q|〈f 〉Q,p〈g〉Q,q〈h〉Q,r .
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M. Lacey’s result on Mlac and Mfull

Theorem (M. Lacey; J. D’Analyse Mathématique, vol 139(2019))

Let n ≥ 2. Then for any compactly supported bounded functions
f , g and (1r ,

1
s ) in the interior of Ln (respectively Fn), the operator

Mlac (respectively Mfull) satisfies the following inequality

〈Tf , g〉 . ΛS,r ,s(f , g),

where T = Mlac (respectively Mfull).
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The triangle Ln

Figure: Ln

where the points are P1 = (0, 1),R = (1, 0) and Q = ( n
n+1 ,

n
n+1).
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The trapezium Fn

Figure: Fn, where P1 = (0, 1),P2 = ( n−1
n , 1n ),P3 = ( n−1

n , n−1
n ) and

P4 = ( n2−n
n2+1 ,

n2−n+2
n2+1 )
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Maximal product of spherical averages

The operator maximal product of spherical averages is defined by

Mfull(f1, f2)(x) := sup
r>0
|Ar f1(x)Ar f2(x)|.

Similarly, dyadic maximal product of spherical averages is defined
by

Mlac(f1, f2)(x) := sup
j∈Z
|A2j f1(x)A2j f2(x)|.

The bilinear spherical maximal operator is defined by

Msph(f1, f2)(x) := sup
r>0

∫
S2n−1

|f1(x − ry)f2(x − rz)|dσ2n−1(y , z)
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Boundedness of bilinear spherical maximal function

Lemma (E. Jeong, S. Lee; J. Funct. Anal. 2020)

Let n ≥ 2. Then

Msph(f , g)(x) . Mf (x)Mfullg(x)

and Msph(f , g)(x) . Mfullf (x)Mg(x),

where M is the Hardy-Littlewood maximal function.
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Theorem (E. Jeong, S. Lee; J. Funct. Anal. 2020)

Let n ≥ 2. Let 1 ≤ p, q ≤ ∞ and 0 < r ≤ ∞ with 1
p + 1

q = 1
r .

Then the following inequality

‖Msph(f , g)‖Lr (Rn) . ‖f ‖Lp(Rn)‖g‖Lq(Rn) (1)

holds if and only if r > n
2n−1 except the case (p, q, r) = (1,∞, 1)

or (∞, 1, 1).

In addition, the weak type estimates holds in terms of
Lorentz spaces. i.e.

‖Msph(f , g)‖Lr,u(Rn) . ‖f ‖Lp,s(Rn)‖g‖Lq,t(Rn) (2)

holds in the following cases

If p = r = 1 with u = t =∞ and s = 1.

For n ≥ 3, if p = 1, q = n
n−1 then (2) holds with u =∞ and

s = t = 1.

For n ≥ 3, if 1 < p < n
n−1 , r = n

2n−1 , then (2) holds with

u =∞ and s, t satisfy 1
s + 1

t = 2n−1
n and s, t > 0.
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Bilinear A~p,~r weights

Definition (K.Li, J.M. Martell, S. Ombrosi; Adv. in Math., 2020)

Let ~p = (p1, p2) and 1
p1

+ 1
p2

= 1
p , 1 ≤ p1, p2 <∞. For a tuple

~r = (r1, r2, r3) with ri ≤ pi , i = 1, 2, and r ′3 > p, where
1 ≤ r1, r2, r3 <∞, we say that ~w = (w1,w2) ∈ A~p,~r if
0 < wi <∞ a.e. for i = 1, 2 and

[~w ]A~p,~r := sup
Q⊂Rn

〈v
r′3

r′
3
−p

w 〉
1
p
− 1

r′
3

Q

2∏
i=1

〈w
ri

ri−pi
i 〉

1
ri
− 1

pi
Q <∞,

where vw :=
∏2

i=1 w
p/pi
i . When r3 = 1, the term corresponding to

vw needs to be replaced by 〈vw 〉1/pQ . Analogously, when pi = ri , the

term corresponding to wi needs to be replaced by ess supQ w
−1/pi
i .

When ~r = (1, 1, 1), the weight class A~p,~r coinsides with A~p, which
was introduced by Lerner et al. Adv. in Math., 2009
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Theorem 1: Weighted boundedness ofMlac andMfull

Theorem (-, S. Shrivastava, L. Roncal;J. Fourier Anal. Appl. 2021)

Let n ≥ 2. For i = 1, 2, let ( 1
ri
, 1
si

) be in the interior of Ln
(respectively Fn). Assume that t = s1s2

s1+s2−s1s2 > 1. Then for all

~q = (q1, q2), 1
q = 1

q1
+ 1

q2
with ri < qi , i = 1, 2, and t ′ > q, the

operator Mlac (respectively Mfull) extends to a bounded operator
from Lq1(w1)× Lq2(w2)→ Lq(vw ), i.e.,

‖M(f1, f2)‖Lq(vw ) ≤ C ([~w ]A~q,~r )
2∏

i=1

‖fi‖Lqi (wi ),

where M :=Mlac (respectively Mfull) and ~w = (w1,w2) ∈ A~q,~r
with ~r = (r1, r2, t).
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Theorem 2: Boundedness ofMlac w.r.t power (or radial)
weights

Theorem (-, S. Shrivastava, L. Roncal;J. Fourier Anal. Appl. 2021)

Let n ≥ 2. The operator Mlac is bounded from Lp(|x |α)× Lp(|x |β)

to Lp/2(|x |
α+β
2 ) with 1 < p ≤ 2n

2n−1 for α, β satisfying:

(1− n)p < α, β < (n − 1)(p − 1) and α + β > 2(1− n)(n − (n − 1)p).

Define

Rp = {ωa(x) = |x |a : 1− n ≤ a < (n − 1)(p − 1)}.
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Sparse domination ofMlac andMfull

Theorem (-,S. Shrivastava, L. Roncal; J. Fourier Anal. Appl. 2021)

Let n ≥ 2. For i = 1, 2, let ( 1
ri
, 1
si

) be in the interior of Ln
(respectively Fn) and ρi > ri . Then for any non-negative
compactly supported bounded functions f1, f2 and h, there exists a
sparse collection S = Sρ1,ρ2,t such that

〈M(f1, f2), h〉 ≤ CΛSρ1,ρ2,t (f1, f2, h),

where t := s1s2
s1+s2−s1s2 > 1 and M :=Mlac (respectively Mfull).
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Sharpness of sparse domination

Sharpness of sparse bound for Mlac:
1
r1

+ 1
r2

+ n
t ≤ n

1
r1

+ n
s1

+ 1
r2

+ n
s2
≤ 2n

n
r1

+ 1
s1

+ n
r2

+ 1
s2
≤ 2n.

Sharpness of sparse bound for Mfull:

r1, r2 >
n

n−1
1
r1

+ n
s1

+ 1
r2

+ n
s2
≤ 2n

n+1
r1

+ n−1
s1

+ n+1
r2

+ n−1
s2
≤ 4(n − 1).
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Proof of Theorem 2

Step I: Let 1 < p̃1 = p̃2 ≤ 2n
2n−1 . Now consider

2n
2n−1 < p1, p2 <∞, 1

p = 1
p1

+ 1
p2
, and ( 1

ri
, 1
si

) ∈ Ln, i = 1, 2 with
t = s1s2

s1+s2−s1s2 > 1. For ~r = (r1, r2, t) < ~p := (p1, p2, p), let
~w = (w1,w2) ∈ A~p,~r . By Theorem 1 we have

‖Mlac(f1, f2)‖Lp(w) ≤ C1‖f1‖Lp1 (w1)‖f2‖Lp2 (w2). (3)

Also, note that using the product type estimates we get,

‖Mlac(f1, f2)‖Lq(v) ≤ C2‖f1‖Lq1 (v1)‖f2‖Lq2 (v2), (4)

for 1 < qi < p̃i ,
1
q = 1

q1
+ 1

q2
, vi ∈

(
A qi

ti

∩ RH(φ′
lac

( 1
ti

)

qi

)′ ) ∪Rqi ,

v = v
q
q1
1 v

q
q2
2 and ( 1

ti
, 1
ηi

) ∈ Ln for some ηi ∈ (1,∞) and

1 < ti < qi < η′i , for i = 1, 2.
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Proof continued...

We consider the linearised operator Mlac as follows

Mlac(f1, f2)(x) = Aτ(x)f1(x)Aτ(x)f2(x),

where τ is a measurable function from Rn to [0,∞).

For
z ∈ S := {z ∈ C : 0 ≤ Re(z) ≤ 1}, consider the functions

1

l(z)
:=

1− z

p
+

z

q
,

1

li (z)
:=

1− z

pi
+

z

qi
, i = 1, 2.

Choose θ ∈ (0, 1) such that

1

l(θ)
:=

1− θ
p

+
θ

q
=

1

p̃
,

1

li (θ)
:=

1− θ
pi

+
θ

qi
=

1

p̃i
, i = 1, 2.
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Proof continued...

Note that for any linear operator T and a positive number
k ∈ (0, 1) satisfying k

p + k
q < 1 and k < p̃, we can write the

following

‖Tf ‖kLp̃ = ‖|Tf |k‖
L
p̃
k

= sup

g∈L
p̃

p̃−k (Rn)
‖g‖

L

p̃
p̃−k (Rn)

=1

∣∣∣ ∫
Rn

|Tf |kg
∣∣∣.

Consider

ṽN(x) = v(x), if v(x) ≤ N and ṽN(x) = N, if v(x) > N,

w̃N(x) = w(x), if w(x) ≤ N and w̃N(x) = N, if w(x) > N.
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Let f1, f2 be finite simple functions and g be a non-negative finite
simple function such that ‖fi‖Lp̃1 (Rn) = 1, for i = 1, 2 and
‖g‖

L
p̃

p̃−k (Rn)
= 1.

Now consider the following function

ψ(z) :=

∫
Rn

∣∣∣Aτ(x)f1,z(x)Aτ(x)f2,z(x)ṽ
z
q

N w̃
1−z
p

N g

(1− k
l(z)

)

k(1− k
p̃ )
∣∣∣kdx , (5)

where

fj ,z(x) := |fj(x)|
p̃j

lj (z) e iuj (vj + ε)
−z
qj (wj + ε)

z−1
pj , j = 1, 2,

for z ∈ S , ε > 0 and uj ∈ [0, 2π].
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Note that we have the following expression for ψ(θ), θ ∈ (0, 1),

ψ(θ) =

∫
Rn

∣∣ 2∏
j=1

Aτ(x)(fj(vj+ε)
− θ

qj (wj+ε)
θ−1
pj )(x)ṽ

θ
q

N w̃
1−θ
p

N

∣∣kg(x)dx .

For each x ∈ Rn, the functions Aτ(x)fj ,z(x), ṽ
z
q

N (x), w̃
1−z
p

N (x) and

g

(1− k
l(z)

)

k(1− k
p̃ ) (x) are analytic in the domain {z ∈ C : 0 < Re(z) < 1}.

Also, using the Hölder’s inequality with exponents p
k and p

p−k , it is
easy to see that ψ is a bounded function.

Moreover, the Hölder’s inequality with exponents p
k and p

p−k and
the fact that ‖fi‖Lp̃i (Rn) = 1, i = 1, 2 and ‖g‖

L
p̃

p̃−k (Rn)
= 1, yield

that
|ψ(it)| ≤ C k

1 .

Similarly, using the Hölder’s inequality with exponents q
k and q

q−k ,
we get

|ψ(1 + it)| ≤ C k
2 .
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We invoke the maximum modulus principle for subharmonic
functions to deduce that

|ψ(θ)| =

∫
Rn

∣∣ 2∏
j=1

Aτ(x)(fjv
− θ

qj

j ,ε w
θ−1
pj

j ,ε )(x)ṽ
θ
q

N w̃
1−θ
p

N

∣∣kg(x)dx ≤ C
k(1−θ)
1 C kθ

2 .

Here we have used the notation vj ,ε = vj + ε and wj ,ε = wj + ε for
j = 1, 2.

Therefore, using a duality argument we obtain that

(∫
Rn

(∣∣Aτ(x)(f1v− θ
q1

1,ε w
θ−1
p1

1,ε )(x)Aτ(x)(f2v
− θ

q2
2,ε w

θ−1
p2

2,ε )(x)
∣∣ṽ θqN w̃ 1−θ

p

N

)p̃
dx
) 1

p̃

≤ C
(∫

Rn

|f1|p̃1
) 1

p̃1

(∫
Rn

|f2|p̃2
) 1

p̃2 .
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Since the set of finite simple functions is dense in
Ls(Rn), 1 ≤ s <∞, we get the above estimate for all Lp̃1(Rn)
functions f1 and f2 (note that we have assumed p̃1 = p̃2).

Next,
recall that the constants C1,C2 are independent of ε, N and τ . Let

ε→ 0 and N →∞ and replace fi by fiv
θ
qi
i w

1−θ
pi

i , i = 1, 2, in the
above to get that(∫

Rn

(∣∣Aτ(x)(f1)(x)Aτ(x)(f2)(x)
∣∣v θqw 1−θ

p

)p̃
dx
) 1

p̃

≤ C
(∫

Rn

|f1|p̃1(v
θ
q1
1 w

1−θ
p1

1 )p̃1
) 1

p̃1

(∫
Rn

|f2|p̃2(v
θ
q2
2 w

1−θ
p2

2 )p̃2
) 1

p̃2 .

Since the constant C is independent of τ , therefore we get the
boundedness of the operator Mlac, i.e.(∫

Rn

(∣∣Mlac(f1, f2)(x)
∣∣v θqw 1−θ

p

)p̃
dx
) 1

p̃

≤ C
(∫

Rn

|f1|p̃1(v
θ
q1
1 w

1−θ
p1

1 )p̃1
) 1

p̃1

(∫
Rn

|f2|p̃2(v
θ
q2
2 w

1−θ
p2

2 )p̃2
) 1

p̃2 . (6)
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Step II: For ε > 0, let p1 = p2 = 2n
2n−1 + 2ε, r1 = r2 = 2n

2n−1 + ε

and ( 1
ri
, 1
si

) ∈ Ln. Check that for this choice of ( 1
ri
, 1
si

),
t = s1s2

s1+s2−s1s2 > 1 and set ~r = (r1, r2, r3) with r3 = t. Let

~w = (|x |α′ , |x |β′) ∈ A~p,~r and note that the estimate (3) holds for
bilinear A~p,~r weights. Next, for 0 < δ < p̃1 − 1, choose
q1 = q2 = p̃1 − δ and ~v = (|x |a, |x |b) with
1− n ≤ a, b < (n − 1)(p̃1 − δ − 1). Then we know that the
estimate (4) holds for Mlac.

Therefore, by the previous steps the
operator Mlac satisfies the estimate (6) for the above choice of
exponents and we get

(∫ ∣∣∣Mlac(f1, f2)
∣∣∣p̃(|x |

(a+b)θ
p̃1−δ

+ (α′+β′)(1−θ)(2n−1)
2(n+ε(2n−1)) )p̃

) 1
p̃

.
(∫

(|f1||x |
aθ

p̃1−δ
+α′(1−θ)(2n−1)

2n+2ε(2n−1) )p̃1
) 1

p̃1

(∫
(|f2||x |

bθ
p̃2−δ

+β′(1−θ)(2n−1)
2n+2ε(2n−1) )p̃2

) 1
p̃2

(7)
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Now, we show that the exponents of weights in the estimate above
may be chosen suitably so that they satisfy the following
conditions, i.e. ~w = (|x |α′ , |x |β′) ∈ A~p,~r . This implies that

|x |
α′θ1(2n−1)
2n+2ε(2n−1) ∈ A( 1−r

r
)θ1
, |x |

β′θ2(2n−1)
2n+2ε(2n−1) ∈ A( 1−r

r
)θ2
,

and |x |
(α′+β′)δ3(2n−1)

2n+2ε(2n−1) ∈ A 1−r
r
δ3
,

where

1

δi
=

1

ri
− 1

pi
,

1

θi
=

1− r

r
− 1

δi
and p3 = p′, i = 1, 2, 3.
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Substituting the values of the various parameters, we obtain

1− r

r
=

(2n − 2)(1 + ε(2n − 1))

2n + ε(2n − 1)
,

1

θi
=
ε(2n − 1)(2n − 2)− 1

2n + ε(2n − 1)
+

2n − 1

2n + 2ε(2n − 1)
, for i = 1, 2,

1

δ3
=

ε(2n − 1)2

2n + ε(2n − 1)
+

2n − 1

n + ε(2n − 1)
− 1.

Since ε can be chosen arbitrarily small, therefore taking ε→ 0 we
get (1− n) 2n

2n−1 < α′, β′ < 0 and (1− n) 2n
2n−1 < α′ + β′ < 0.

Now taking δ → p̃1 − 1, we get θ = 2n
p̃1
− (2n− 1). Since the range

of α′ and β′ is an open set, we get that Mlac is bounded from

Lp̃1(|x |α)× Lp̃2(|x |β) to Lp̃(|x |
α+β
2 ) for α, β satisfying

(1− n)p̃1 < α, β < 0 and α + β > 2(1− n)
(
n − (n − 1)p̃1

)
.
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Substituting the values of the various parameters, we obtain

1− r

r
=

(2n − 2)(1 + ε(2n − 1))

2n + ε(2n − 1)
,

1

θi
=
ε(2n − 1)(2n − 2)− 1

2n + ε(2n − 1)
+

2n − 1

2n + 2ε(2n − 1)
, for i = 1, 2,

1

δ3
=

ε(2n − 1)2

2n + ε(2n − 1)
+

2n − 1

n + ε(2n − 1)
− 1.

Since ε can be chosen arbitrarily small, therefore taking ε→ 0 we
get (1− n) 2n

2n−1 < α′, β′ < 0 and (1− n) 2n
2n−1 < α′ + β′ < 0.

Now taking δ → p̃1 − 1, we get θ = 2n
p̃1
− (2n− 1). Since the range

of α′ and β′ is an open set, we get that Mlac is bounded from

Lp̃1(|x |α)× Lp̃2(|x |β) to Lp̃(|x |
α+β
2 ) for α, β satisfying

(1− n)p̃1 < α, β < 0 and α + β > 2(1− n)
(
n − (n − 1)p̃1

)
.
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Further, using the product-type weighted boundedness of Mlac for
p̃1 = p̃2, we get Mlac is bounded from Lp̃1(|x |a)× Lp̃2(|x |b) to

Lp̃(|x |
a+b
2 ) for 1− n ≤ a, b < (n − 1)(p̃1 − 1).

This proves the desired result for the operator Mlac.
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THANK YOU!
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