Weighted estimates for maximal product of spherical averages

Kalachand Shuin
（Joint work with Dr．Saurabh Shrivastava and Dr．Luz Roncal） 17th DMHA＠t NISER Bhubaneswar

06．01．2022

Notations

- The n-sphere \mathbb{S}^{n-1} is the set $\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$.

Notations

- The n-sphere \mathbb{S}^{n-1} is the set $\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$.
- Lebesgue measure of a subset $E \subset \mathbb{R}^{n}$ is denoted by $|E|$.

Notations

- The n-sphere \mathbb{S}^{n-1} is the set $\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$.
- Lebesgue measure of a subset $E \subset \mathbb{R}^{n}$ is denoted by $|E|$.
- $\langle f\rangle_{Q}:=\frac{1}{|Q|} \int_{Q}|f(y)| d y$ and $\langle f\rangle_{Q, p}:=\left(\frac{1}{|Q|} \int_{Q}|f(y)|^{p} d y\right)^{\frac{1}{p}}$.

Notations

- The n-sphere \mathbb{S}^{n-1} is the set $\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$.
- Lebesgue measure of a subset $E \subset \mathbb{R}^{n}$ is denoted by $|E|$.
- $\langle f\rangle_{Q}:=\frac{1}{|Q|} \int_{Q}|f(y)| d y$ and $\langle f\rangle_{Q, p}:=\left(\frac{1}{|Q|} \int_{Q}|f(y)|^{p} d y\right)^{\frac{1}{p}}$.
- For any locally integrable function f and a point $x \in \mathbb{R}^{n}$, the Hardy-Littlewood maximal function M is defined as $M f(x):=\sup _{Q \ni x}\langle f\rangle_{Q}$.

Spherical averages and maximal functions

For $r>0$, the spherical average of a continuous function f is defined by

$$
\mathcal{A}_{r} f(x):=\int_{\mathbb{S}^{n-1}} f(x-r y) d \sigma(y)
$$

Spherical averages and maximal functions

For $r>0$, the spherical average of a continuous function f is defined by

$$
\mathcal{A}_{r} f(x):=\int_{\mathbb{S}^{n}-1} f(x-r y) d \sigma(y)
$$

The spherical maximal function is defined by

$$
M_{\text {full }} f(x):=\sup _{r>0}\left|\mathcal{A}_{r} f(x)\right|
$$

Spherical averages and maximal functions

For $r>0$, the spherical average of a continuous function f is defined by

$$
\mathcal{A}_{r} f(x):=\int_{\mathbb{S}^{n-1}} f(x-r y) d \sigma(y)
$$

The spherical maximal function is defined by

$$
M_{\text {full }} f(x):=\sup _{r>0}\left|\mathcal{A}_{r} f(x)\right|
$$

The lacunary spherical maximal function is defined by

$$
M_{l a c} f(x):=\sup _{j \in \mathbb{Z}}\left|\mathcal{A}_{2^{j}} f(x)\right|
$$

L^{p} estimates of $M_{\text {full }}$ and M_{lac}

Theorem (Stein;

Let $n \geq 3$. Then the operator $M_{\text {full }}$ maps $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ if and only if $p>\frac{n}{n-1}$.

Later J. Bourgain [On the spherical maximal function in the plane, IHES 1985]extended the above result to dimension $n=2$, i.e $M_{\text {full }}$ maps $L^{P}\left(\mathbb{R}^{2}\right)$ to $L^{P}\left(\mathbb{R}^{2}\right)$ if and only if $p>2$.

L^{p} estimates of $M_{\text {full }}$ and M_{lac}

Theorem (Stein;
 Let $n \geq 3$. Then the operator $M_{\text {full }}$ maps $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ if and only if $p>\frac{n}{n-1}$.

Later J. Bourgain [On the spherical maximal function in the plane, IHES 1985]extended the above result to dimension $n=2$, i.e $M_{\text {full }}$ maps $L^{p}\left(\mathbb{R}^{2}\right)$ to $L^{p}\left(\mathbb{R}^{2}\right)$ if and only if $p>2$.

> Theorem (Calderón; illinois J. of Math. vol 23, no. 3, 1979
> Coifman and Weiss; Bull. Amer. Math. Soc. 84(1978))
> Let $n \geq 2$. Then the operator $M_{\text {lac }}$ maps $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for $p>1$.

Boundedness of $M_{\text {full }}$ and $M_{\text {lac }}$ w.r.t power weights

$$
\begin{aligned}
& \text { Theorem (J. Duoandikoetxea, L. Vega; J. London Math. Soc. } \\
& 53 \text { (1996)) } \\
& \text { Let } n \geq 2 \text {. Then } \\
& \text { - } M_{\text {full }} \text { is bounded on } L^{p}\left(|x|^{\alpha}\right) \text { for } p>\frac{n}{n-1} \text { and } \\
& 1-n<\alpha<(n-1)(p-1)-1 \text {. The range of } \alpha \text { is sharp } \\
& \text { except possibly at the point } \alpha=1-n \text {. } \\
& \text { - } M_{\text {lac }} \text { is bounded on } L^{p}\left(|x|^{\alpha}\right) \text { if and only if } \\
& 1-n \leq \alpha<(n-1)(p-1) \text { for } 1<p<\infty \text {. }
\end{aligned}
$$

Sparse family and sparse forms

Definition

A collection of cubes \mathcal{S} in \mathbb{R}^{n} is said to be η - sparse $(0<\eta<1)$ if there are sets $\left\{E_{Q} \subset Q: Q \in \mathcal{S}\right\}$ which are pairwise disjoint and satisfy $\left|E_{Q}\right| \geq \eta|Q|$ for all $Q \in \mathcal{S}$.

Sparse family and sparse forms

Definition

A collection of cubes \mathcal{S} in \mathbb{R}^{n} is said to be η - sparse $(0<\eta<1)$ if there are sets $\left\{E_{Q} \subset Q: Q \in \mathcal{S}\right\}$ which are pairwise disjoint and satisfy $\left|E_{Q}\right| \geq \eta|Q|$ for all $Q \in \mathcal{S}$.

Example: Let $\mathcal{S}=\left\{Q^{k} \subset \mathbb{R}^{n}: Q^{k}=\prod_{j=1}^{n}\left[0,2^{k_{j}}\right) ; k_{j} \in \mathbb{Z}\right.$ and $k=$ $\left.\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right\}$ and $E_{Q^{k}}=\prod_{j=1}^{n}\left[2^{k_{j}-1}, 2^{k_{j}}\right)$. Observe that $\left|E_{Q^{k}}\right| \geq \eta\left|Q^{k}\right|$ with $\eta \leq 2^{-n}$. Therefore, \mathcal{S} is a sparse family.

Sparse family and sparse forms

Definition

A collection of cubes \mathcal{S} in \mathbb{R}^{n} is said to be η - sparse $(0<\eta<1)$ if there are sets $\left\{E_{Q} \subset Q: Q \in \mathcal{S}\right\}$ which are pairwise disjoint and satisfy $\left|E_{Q}\right| \geq \eta|Q|$ for all $Q \in \mathcal{S}$.
Example: Let $\mathcal{S}=\left\{Q^{k} \subset \mathbb{R}^{n}: Q^{k}=\prod_{j=1}^{n}\left[0,2^{k_{j}}\right) ; k_{j} \in \mathbb{Z}\right.$ and $k=$ $\left.\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right\}$ and $E_{Q^{k}}=\prod_{j=1}^{n}\left[2^{k_{j}-1}, 2^{k_{j}}\right)$. Observe that $\left|E_{Q^{k}}\right| \geq \eta\left|Q^{k}\right|$ with $\eta \leq 2^{-n}$. Therefore, \mathcal{S} is a sparse family. Let $1 \leq r, s<\infty$. Then for any compactly supported bounded functions f, g we define the bilinear sparse form as

$$
\Lambda_{\mathcal{S}, r, s}(f, g):=\sum_{Q \in \mathcal{S}}|Q|\langle f\rangle_{Q, r}\langle g\rangle_{Q, s}
$$

The trilinear (p, q, r)-sparse form is defined as

$$
\Lambda_{\mathcal{S}, p, q, r}(f, g, h)=\sum_{Q \in \mathcal{S}}|Q|\langle f\rangle_{Q, p}\langle g\rangle_{Q, q}\langle h\rangle_{Q, r}
$$

M. Lacey's result on $M_{\text {lac }}$ and $M_{\text {full }}$

Theorem (M. Lacey;

Let $n \geq 2$. Then for any compactly supported bounded functions f, g and $\left(\frac{1}{r}, \frac{1}{s}\right)$ in the interior of L_{n} (respectively $\left.F_{n}\right)$, the operator $M_{\text {lac }}$ (respectively $M_{\text {full }}$) satisfies the following inequality

$$
\langle T f, g\rangle \lesssim \Lambda_{\mathcal{S}, r, s}(f, g)
$$

where $T=M_{\text {lac }}\left(\right.$ respectively $\left.M_{\text {full }}\right)$.

The triangle L_{n}

Figure: L_{n}
where the points are $P_{1}=(0,1), R=(1,0)$ and $Q=\left(\frac{n}{n+1}, \frac{n}{n+1}\right)$.

The trapezium F_{n}

Figure: F_{n}, where $P_{1}=(0,1), P_{2}=\left(\frac{n-1}{n}, \frac{1}{n}\right), P_{3}=\left(\frac{n-1}{n}, \frac{n-1}{n}\right)$ and $P_{4}=\left(\frac{n^{2}-n}{n^{2}+1}, \frac{n^{2}-n+2}{n^{2}+1}\right)$

Maximal product of spherical averages

The operator maximal product of spherical averages is defined by

$$
\mathcal{M}_{\text {full }}\left(f_{1}, f_{2}\right)(x):=\sup _{r>0}\left|\mathcal{A}_{r} f_{1}(x) \mathcal{A}_{r} f_{2}(x)\right| .
$$

Maximal product of spherical averages

The operator maximal product of spherical averages is defined by

$$
\mathcal{M}_{\text {full }}\left(f_{1}, f_{2}\right)(x):=\sup _{r>0}\left|\mathcal{A}_{r} f_{1}(x) \mathcal{A}_{r} f_{2}(x)\right|
$$

Similarly, dyadic maximal product of spherical averages is defined by

$$
\mathcal{M}_{\mathrm{lac}}\left(f_{1}, f_{2}\right)(x):=\sup _{j \in \mathbb{Z}}\left|\mathcal{A}_{2^{j}} f_{1}(x) \mathcal{A}_{2^{j}} f_{2}(x)\right|
$$

Maximal product of spherical averages

The operator maximal product of spherical averages is defined by

$$
\mathcal{M}_{\text {full }}\left(f_{1}, f_{2}\right)(x):=\sup _{r>0}\left|\mathcal{A}_{r} f_{1}(x) \mathcal{A}_{r} f_{2}(x)\right| .
$$

Similarly, dyadic maximal product of spherical averages is defined by

$$
\mathcal{M}_{\mathrm{lac}}\left(f_{1}, f_{2}\right)(x):=\sup _{j \in \mathbb{Z}}\left|\mathcal{A}_{2^{j}} f_{1}(x) \mathcal{A}_{2^{j}} f_{2}(x)\right|
$$

The bilinear spherical maximal operator is defined by

$$
\mathcal{M}_{s p h}\left(f_{1}, f_{2}\right)(x):=\sup _{r>0} \int_{\mathbb{S}^{2 n-1}}\left|f_{1}(x-r y) f_{2}(x-r z)\right| d \sigma_{2 n-1}(y, z)
$$

Boundedness of bilinear spherical maximal function

Lemma (E. Jeong, S. Lee;
Let $n \geq 2$. Then

$$
\begin{array}{ll}
& \mathcal{M}_{\text {sph }}(f, g)(x) \lesssim M f(x) M_{\text {full }} g(x) \\
\text { and } \quad \mathcal{M}_{\text {sph }}(f, g)(x) \lesssim M_{\text {full }} f(x) M g(x),
\end{array}
$$

where M is the Hardy-Littlewood maximal function.

Theorem (E. Jeong, S. Lee; J. Funct. Anal. 2020)
Let $n \geq 2$. Let $1 \leq p, q \leq \infty$ and $0<r \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Then the following inequality

$$
\begin{equation*}
\left\|\mathcal{M}_{\mathrm{sph}}(f, g)\right\|_{L^{r}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{q}\left(\mathbb{R}^{n}\right)} \tag{1}
\end{equation*}
$$

holds if and only if $r>\frac{n}{2 n-1}$ except the case $(p, q, r)=(1, \infty, 1)$ or $(\infty, 1,1)$.

Theorem (E. Jeong, S. Lee;

Let $n \geq 2$. Let $1 \leq p, q \leq \infty$ and $0<r \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Then the following inequality

$$
\begin{equation*}
\left\|\mathcal{M}_{\text {sph }}(f, g)\right\|_{L^{r}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{q}\left(\mathbb{R}^{n}\right)} \tag{1}
\end{equation*}
$$

holds if and only if $r>\frac{n}{2 n-1}$ except the case $(p, q, r)=(1, \infty, 1)$ or $(\infty, 1,1)$. In addition, the weak type estimates holds in terms of Lorentz spaces. i.e.

$$
\begin{equation*}
\left\|\mathcal{M}_{\text {sph }}(f, g)\right\|_{L^{r, u}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{L^{p, s}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{q, t}\left(\mathbb{R}^{n}\right)} \tag{2}
\end{equation*}
$$

holds in the following cases

- If $p=r=1$ with $u=t=\infty$ and $s=1$.
- For $n \geq 3$, if $p=1, q=\frac{n}{n-1}$ then (2) holds with $u=\infty$ and $s=t=1$.
- For $n \geq 3$, if $1<p<\frac{n}{n-1}, r=\frac{n}{2 n-1}$, then (2) holds with $u=\infty$ and s, t satisfy $\frac{1}{s}+\frac{1}{t}=\frac{2 n-1}{n}$ and $s, t>0$.

Bilinear $A_{\vec{p}, \vec{r}}$ weights

Definition (K.Li, J.M. Martell, S. Ombrosi; Adv. in Math. 2020)

Let $\vec{p}=\left(p_{1}, p_{2}\right)$ and $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p}, 1 \leq p_{1}, p_{2}<\infty$. For a tuple $\vec{r}=\left(r_{1}, r_{2}, r_{3}\right)$ with $r_{i} \leq p_{i}, i=1,2$, and $r_{3}^{\prime}>p$, where
$1 \leq r_{1}, r_{2}, r_{3}<\infty$, we say that $\vec{w}=\left(w_{1}, w_{2}\right) \in A_{\vec{p}, \vec{r}}$ if
$0<w_{i}<\infty$ a.e. for $i=1,2$ and

$$
[\vec{w}]_{A_{\vec{p}, r}}:=\sup _{Q \subset \mathbb{R}^{n}}\left\langle v_{w}^{\frac{r_{3}^{\prime}}{r_{3}^{\prime}-p}}\right\rangle_{Q}^{\frac{1}{p}-\frac{1}{r_{3}^{\prime}}} \prod_{i=1}^{2}\left\langle w_{i}^{\frac{r_{i}}{r_{i}-p_{i}}}\right\rangle_{Q}^{\frac{1}{r_{i}}-\frac{1}{p_{i}}}<\infty
$$

where $v_{w}:=\prod_{i=1}^{2} w_{i}^{p / p_{i}}$. When $r_{3}=1$, the term corresponding to v_{w} needs to be replaced by $\left\langle v_{w}\right\rangle_{Q}^{1 / p}$. Analogously, when $p_{i}=r_{i}$, the term corresponding to w_{i} needs to be replaced by ess $\sup _{Q} w_{i}^{-1 / p_{i}}$.

Bilinear $A_{\vec{p}, \vec{r}}$ weights

Definition (K.Li, J.M. Martell, S. Ombrosi; Adv. in Math., 2020)

Let $\vec{p}=\left(p_{1}, p_{2}\right)$ and $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p}, 1 \leq p_{1}, p_{2}<\infty$. For a tuple $\vec{r}=\left(r_{1}, r_{2}, r_{3}\right)$ with $r_{i} \leq p_{i}, i=1,2$, and $r_{3}^{\prime}>p$, where $1 \leq r_{1}, r_{2}, r_{3}<\infty$, we say that $\vec{w}=\left(w_{1}, w_{2}\right) \in A_{\vec{p}, \vec{r}}$ if $0<w_{i}<\infty$ a.e. for $i=1,2$ and

$$
[\vec{w}]_{A_{\vec{p}, r}}:=\sup _{Q \subset \mathbb{R}^{n}}\left\langle v_{w}^{\frac{r_{3}^{\prime}}{r_{3}^{\prime}-p}}\right\rangle_{Q}^{\frac{1}{p}-\frac{1}{r_{3}^{\prime}}} \prod_{i=1}^{2}\left\langle w_{i}^{\frac{r_{i}}{r_{i}-p_{i}}}\right\rangle_{Q}^{\frac{1}{r_{i}}-\frac{1}{p_{i}}}<\infty
$$

where $v_{w}:=\prod_{i=1}^{2} w_{i}^{p / p_{i}}$. When $r_{3}=1$, the term corresponding to v_{w} needs to be replaced by $\left\langle v_{w}\right\rangle_{Q}^{1 / p}$. Analogously, when $p_{i}=r_{i}$, the term corresponding to w_{i} needs to be replaced by ess $\sup _{Q} w_{i}^{-1 / p_{i}}$.

When $\vec{r}=(1,1,1)$, the weight class $A_{\vec{p}, \vec{r}}$ coinsides with $A_{\vec{p}}$, which was introduced by Lerner et al. Adv. in Math., 2009

Theorem 1: Weighted boundedness of $\mathcal{M}_{\mathrm{lac}}$ and $\mathcal{M}_{\text {full }}$

Theorem (-, S. Shrivastava, L. Roncal;

Let $n \geq 2$. For $i=1,2$, let $\left(\frac{1}{r_{i}}, \frac{1}{s_{i}}\right)$ be in the interior of L_{n} (respectively F_{n}). Assume that $t=\frac{s_{1} s_{2}}{s_{1}+s_{2}-s_{1} s_{2}}>1$. Then for all $\vec{q}=\left(q_{1}, q_{2}\right), \frac{1}{q}=\frac{1}{q_{1}}+\frac{1}{q_{2}}$ with $r_{i}<q_{i}, i=1,2$, and $t^{\prime}>q$, the operator $\mathcal{M}_{\text {lac }}$ (respectively $\mathcal{M}_{\text {full }}$) extends to a bounded operator from $L^{q_{1}}\left(w_{1}\right) \times L^{q_{2}}\left(w_{2}\right) \rightarrow L^{q}\left(v_{w}\right)$, i.e.,

$$
\left\|\mathcal{M}\left(f_{1}, f_{2}\right)\right\|_{L^{q}\left(v_{w}\right)} \leq C\left([\vec{w}]_{A_{\vec{q}, \vec{r}}}\right) \prod_{i=1}^{2}\left\|f_{i}\right\|_{L^{q_{i}}\left(w_{i}\right)}
$$

where $\mathcal{M}:=\mathcal{M}_{\text {lac }}\left(\right.$ respectively $\left.\mathcal{M}_{\text {full }}\right)$ and $\vec{w}=\left(w_{1}, w_{2}\right) \in A_{\vec{q}, \vec{r}}$ with $\vec{r}=\left(r_{1}, r_{2}, t\right)$. weights

Theorem (-, S. Shrivastava, L. Roncal;

Fourier Anal. Appl. 2021)

Let $n \geq 2$. The operator $\mathcal{M}_{\text {lac }}$ is bounded from $L^{p}\left(|x|^{\alpha}\right) \times L^{p}\left(|x|^{\beta}\right)$ to $L^{p / 2}\left(|x|^{\frac{\alpha+\beta}{2}}\right)$ with $1<p \leq \frac{2 n}{2 n-1}$ for α, β satisfying:
$(1-n) p<\alpha, \beta<(n-1)(p-1)$ and $\alpha+\beta>2(1-n)(n-(n-1) p)$. weights

Theorem (-, S. Shrivastava, L. Roncal;

Let $n \geq 2$. The operator $\mathcal{M}_{\text {lac }}$ is bounded from $L^{p}\left(|x|^{\alpha}\right) \times L^{p}\left(|x|^{\beta}\right)$ to $L^{p / 2}\left(|x|^{\frac{\alpha+\beta}{2}}\right)$ with $1<p \leq \frac{2 n}{2 n-1}$ for α, β satisfying:
$(1-n) p<\alpha, \beta<(n-1)(p-1)$ and $\alpha+\beta>2(1-n)(n-(n-1) p)$.
Define

- $\mathcal{R}_{p}=\left\{\omega_{a}(x)=|x|^{a}: 1-n \leq a<(n-1)(p-1)\right\}$.

Sparse domination of $\mathcal{M}_{\text {lac }}$ and $\mathcal{M}_{\text {full }}$

Theorem (-,S. Shrivastava, L. Roncal;

Let $n \geq 2$. For $i=1,2$, let $\left(\frac{1}{r_{i}}, \frac{1}{s_{i}}\right)$ be in the interior of L_{n} (respectively F_{n}) and $\rho_{i}>r_{i}$. Then for any non-negative compactly supported bounded functions f_{1}, f_{2} and h, there exists a sparse collection $\mathcal{S}=\mathcal{S}_{\rho_{1}, \rho_{2}, t}$ such that

$$
\left\langle\mathcal{M}\left(f_{1}, f_{2}\right), h\right\rangle \leq C \wedge_{\mathcal{S}_{\rho_{1}, \rho_{2}, t}}\left(f_{1}, f_{2}, h\right)
$$

where $t:=\frac{s_{1} s_{2}}{s_{1}+s_{2}-s_{1} s_{2}}>1$ and $\mathcal{M}:=\mathcal{M}_{\text {lac }}$ (respectively $\left.\mathcal{M}_{\text {full }}\right)$.

Sharpness of sparse domination

Sharpness of sparse bound for $\mathcal{M}_{\text {lac }}$:

- $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{n}{t} \leq n$
- $\frac{1}{r_{1}}+\frac{n}{s_{1}}+\frac{1}{r_{2}}+\frac{n}{s_{2}} \leq 2 n$
- $\frac{n}{r_{1}}+\frac{1}{s_{1}}+\frac{n}{r_{2}}+\frac{1}{s_{2}} \leq 2 n$.

Sharpness of sparse domination

Sharpness of sparse bound for $\mathcal{M}_{\text {lac }}$:

- $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{n}{t} \leq n$
- $\frac{1}{r_{1}}+\frac{n}{s_{1}}+\frac{1}{r_{2}}+\frac{n}{s_{2}} \leq 2 n$
- $\frac{n}{r_{1}}+\frac{1}{s_{1}}+\frac{n}{r_{2}}+\frac{1}{s_{2}} \leq 2 n$.

Sharpness of sparse bound for $\mathcal{M}_{\text {full }}$:

- $r_{1}, r_{2}>\frac{n}{n-1}$
- $\frac{1}{r_{1}}+\frac{n}{s_{1}}+\frac{1}{r_{2}}+\frac{n}{s_{2}} \leq 2 n$
- $\frac{n+1}{r_{1}}+\frac{n-1}{s_{1}}+\frac{n+1}{r_{2}}+\frac{n-1}{s_{2}} \leq 4(n-1)$.

Proof of Theorem 2

Step I: Let $1<\tilde{p}_{1}=\tilde{p}_{2} \leq \frac{2 n}{2 n-1}$. Now consider
$\frac{2 n}{2 n-1}<p_{1}, p_{2}<\infty, \frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$, and $\left(\frac{1}{r_{i}}, \frac{1}{s_{i}}\right) \in L_{n}, i=1,2$ with $t=\frac{s_{1} s_{2}}{s_{1}+s_{2}-s_{1} s_{2}}>1$. For $\vec{r}=\left(r_{1}, r_{2}, t\right)<\vec{p}:=\left(p_{1}, p_{2}, p\right)$, let
$\vec{w}=\left(w_{1}, w_{2}\right) \in A_{\overrightarrow{\vec{r}}, \vec{r}}$. By Theorem 1 we have

$$
\begin{equation*}
\left\|\mathcal{M}_{\text {lac }}\left(f_{1}, f_{2}\right)\right\|_{L^{p}(w)} \leq C_{1}\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} . \tag{3}
\end{equation*}
$$

Proof of Theorem 2

Step I: Let $1<\tilde{p}_{1}=\tilde{p}_{2} \leq \frac{2 n}{2 n-1}$. Now consider
$\frac{2 n}{2 n-1}<p_{1}, p_{2}<\infty, \frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$, and $\left(\frac{1}{r_{i}}, \frac{1}{s_{i}}\right) \in L_{n}, i=1,2$ with $t=\frac{s_{1} s_{2}}{s_{1}+s_{2}-s_{1} s_{2}}>1$. For $\vec{r}=\left(r_{1}, r_{2}, t\right)<\vec{p}:=\left(p_{1}, p_{2}, p\right)$, let
$\vec{w}=\left(w_{1}, w_{2}\right) \in A_{\overrightarrow{\vec{r}}, \vec{r}}$. By Theorem 1 we have

$$
\begin{equation*}
\left\|\mathcal{M}_{\text {lac }}\left(f_{1}, f_{2}\right)\right\|_{L^{p}(w)} \leq C_{1}\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} . \tag{3}
\end{equation*}
$$

Also, note that using the product type estimates we get,

$$
\begin{equation*}
\left\|\mathcal{M}_{\mathrm{lac}}\left(f_{1}, f_{2}\right)\right\|_{L^{q}(v)} \leq C_{2}\left\|f_{1}\right\|_{L^{q_{1}}\left(v_{1}\right)}\left\|f_{2}\right\|_{L^{q_{2}}\left(v_{2}\right)} \tag{4}
\end{equation*}
$$

$v=v_{1}^{\frac{q}{q_{1}}} v_{2}^{\frac{q}{q_{2}}}$ and $\left(\frac{1}{t_{i}}, \frac{1}{\eta_{i}}\right) \in L_{n}$ for some $\eta_{i} \in(1, \infty)$ and
$1<t_{i}<q_{i}<\eta_{i}^{\prime}$, for $i=1,2$.

Proof continued...

We consider the linearised operator $\mathcal{M}_{\text {lac }}$ as follows

$$
\mathcal{M}_{\text {lac }}\left(f_{1}, f_{2}\right)(x)=\mathcal{A}_{\tau(x)} f_{1}(x) \mathcal{A}_{\tau(x)} f_{2}(x)
$$

where τ is a measurable function from \mathbb{R}^{n} to $[0, \infty)$.

Proof continued...

We consider the linearised operator $\mathcal{M}_{\text {lac }}$ as follows

$$
\mathcal{M}_{\text {lac }}\left(f_{1}, f_{2}\right)(x)=\mathcal{A}_{\tau(x)} f_{1}(x) \mathcal{A}_{\tau(x)} f_{2}(x)
$$

where τ is a measurable function from \mathbb{R}^{n} to $[0, \infty)$. For $z \in S:=\{z \in \mathbb{C}: 0 \leq \operatorname{Re}(z) \leq 1\}$, consider the functions

$$
\frac{1}{l(z)}:=\frac{1-z}{p}+\frac{z}{q}, \quad \frac{1}{l_{i}(z)}:=\frac{1-z}{p_{i}}+\frac{z}{q_{i}}, \quad i=1,2 .
$$

Choose $\theta \in(0,1)$ such that

$$
\frac{1}{l(\theta)}:=\frac{1-\theta}{p}+\frac{\theta}{q}=\frac{1}{\tilde{p}}, \quad \frac{1}{l_{i}(\theta)}:=\frac{1-\theta}{p_{i}}+\frac{\theta}{q_{i}}=\frac{1}{\tilde{p}_{i}}, \quad i=1,2 .
$$

Proof continued...

Note that for any linear operator T and a positive number $k \in(0,1)$ satisfying $\frac{k}{p}+\frac{k}{q}<1$ and $k<\tilde{p}$, we can write the following

Proof continued...

Note that for any linear operator T and a positive number $k \in(0,1)$ satisfying $\frac{k}{p}+\frac{k}{q}<1$ and $k<\tilde{p}$, we can write the following

$$
\left.\|T f\|_{L^{\tilde{p}}}^{k}=\left\||T f|^{k}\right\|_{L^{\frac{\tilde{p}}{k}}}=\left.\sup _{\substack{g \in \mathcal{L}^{\frac{p}{p}}\left(\mathbb{R}^{n}\right) \\\|g g\|^{\frac{\tilde{p}}{}}\left(\underset{\mathbb{R}^{p}}{ }=1\right.}}\left|\int_{\mathbb{R}^{n}}\right| T f\right|^{k} g \right\rvert\, .
$$

Consider

$$
\begin{array}{lll}
\widetilde{v}_{N}(x)=v(x), & \text { if } \quad v(x) \leq N \quad \text { and } \quad \widetilde{v}_{N}(x)=N, & \text { if } \quad v(x)>N \\
\widetilde{w}_{N}(x)=w(x), \quad \text { if } \quad w(x) \leq N \quad \text { and } \quad \widetilde{w}_{N}(x)=N, \quad \text { if } \quad w(x)>N .
\end{array}
$$

Let f_{1}, f_{2} be finite simple functions and g be a non-negative finite simple function such that $\left\|f_{i}\right\|_{L^{\tilde{p}_{1}}\left(\mathbb{R}^{n}\right)}=1$, for $i=1,2$ and $\|g\|_{L^{\frac{\tilde{p}}{\bar{p}}\left(\mathbb{R}^{n}\right)}}=1$.

Let f_{1}, f_{2} be finite simple functions and g be a non-negative finite simple function such that $\left\|f_{i}\right\|_{L^{\tilde{p}_{1}}\left(\mathbb{R}^{n}\right)}=1$, for $i=1,2$ and $\|g\|_{L^{\frac{\tilde{p}}{\bar{p}-k}\left(\mathbb{R}^{n}\right)}}=1$.
Now consider the following function

$$
\begin{equation*}
\psi(z):=\int_{\mathbb{R}^{n}}\left|\mathcal{A}_{\tau(x)} f_{1, z}(x) \mathcal{A}_{\tau(x)} f_{2, z}(x) \widetilde{v}_{N}^{\frac{z}{q}} \widetilde{w}_{N}^{\frac{1-z}{p}} g^{\frac{\left(1-\frac{k}{l(z)}\right)}{k\left(1-\frac{k}{p}\right)}}\right|^{k} d x \tag{5}
\end{equation*}
$$

where

$$
f_{j, z}(x):=\left|f_{j}(x)\right|^{\frac{\tilde{p}_{j}}{j_{j}}} e^{i u_{j}}\left(v_{j}+\epsilon\right)^{\frac{-z}{q_{j}}}\left(w_{j}+\epsilon\right)^{\frac{z-1}{p_{j}}}, \quad j=1,2,
$$

for $z \in S, \epsilon>0$ and $u_{j} \in[0,2 \pi]$.

Note that we have the following expression for $\psi(\theta), \theta \in(0,1)$,
$\psi(\theta)=\int_{\mathbb{R}^{n}}\left|\prod_{j=1}^{2} \mathcal{A}_{\tau(x)}\left(f_{j}\left(v_{j}+\epsilon\right)^{-\frac{\theta}{q_{j}}}\left(w_{j}+\epsilon\right)^{\frac{\theta-1}{p_{j}}}\right)(x) \widetilde{v}_{N}^{\frac{\theta}{q}} \widetilde{w}_{N}^{\frac{1-\theta}{p}}\right|^{k} g(x) d x$.
For each $x \in \mathbb{R}^{n}$, the functions $\mathcal{A}_{\tau(x)} f_{j, z}(x), \widetilde{v}_{N}^{\frac{z}{q}}(x), \widetilde{w}_{N}^{\frac{1-z}{p}}(x)$ and $g^{\frac{\left(1-\frac{k}{(I z)}\right)}{k\left(1-\frac{k}{p}\right)}}(x)$ are analytic in the domain $\{z \in \mathbb{C}: 0<\operatorname{Re}(z)<1\}$. Also, using the Hölder's inequality with exponents $\frac{p}{k}$ and $\frac{p}{p-k}$, it is easy to see that ψ is a bounded function.

Note that we have the following expression for $\psi(\theta), \theta \in(0,1)$,

$$
\psi(\theta)=\int_{\mathbb{R}^{n}}\left|\prod_{j=1}^{2} \mathcal{A}_{\tau(x)}\left(f_{j}\left(v_{j}+\epsilon\right)^{-\frac{\theta}{q_{j}}}\left(w_{j}+\epsilon\right)^{\frac{\theta-1}{p_{j}}}\right)(x) \widetilde{v}_{N}^{\frac{\theta}{q}} \widetilde{w}_{N}^{\frac{1-\theta}{p}}\right|^{k} g(x) d x
$$

For each $x \in \mathbb{R}^{n}$, the functions $\mathcal{A}_{\tau(x)} f_{j, z}(x), \widetilde{v}_{N}^{\frac{z}{q}}(x), \widetilde{w}_{N}^{\frac{1-z}{p}}(x)$ and $g^{\frac{\left(1-\frac{k}{l(z)}\right)}{k\left(1-\frac{k}{p}\right)}}(x)$ are analytic in the domain $\{z \in \mathbb{C}: 0<\operatorname{Re}(z)<1\}$. Also, using the Hölder's inequality with exponents $\frac{p}{k}$ and $\frac{p}{p-k}$, it is easy to see that ψ is a bounded function.
Moreover, the Hölder's inequality with exponents $\frac{p}{k}$ and $\frac{p}{p-k}$ and the fact that $\left\|f_{i}\right\|_{\tilde{\rho}^{\tilde{p}_{i}\left(\mathbb{R}^{n}\right)}}=1, i=1,2$ and $\|g\|_{L^{\frac{\tilde{p}}{p}-k}\left(\mathbb{R}^{n}\right)}=1$, yield that

$$
|\psi(i t)| \leq C_{1}^{k}
$$

Similarly, using the Hölder's inequality with exponents $\frac{q}{k}$ and $\frac{q}{q-k}$, we get

$$
|\psi(1+i t)| \leq C_{2}^{k}
$$

We invoke the maximum modulus principle for subharmonic functions to deduce that
$|\psi(\theta)|=\int_{\mathbb{R}^{n}}\left|\prod_{j=1}^{2} \mathcal{A}_{\tau(x)}\left(f_{j} v_{j, \epsilon}^{-\frac{\theta}{q_{j}}} w_{j, \epsilon}^{\frac{\theta-1}{P_{j}}}\right)(x) \widetilde{v}_{N}^{\frac{\theta}{q}} \widetilde{w}_{N}^{\frac{1-\theta}{p}}\right|^{k} g(x) d x \leq C_{1}^{k(1-\theta)} C_{2}^{k \theta}$.
Here we have used the notation $v_{j, \epsilon}=v_{j}+\epsilon$ and $w_{j, \epsilon}=w_{j}+\epsilon$ for $j=1,2$.

We invoke the maximum modulus principle for subharmonic functions to deduce that

$$
|\psi(\theta)|=\int_{\mathbb{R}^{n}}\left|\prod_{j=1}^{2} \mathcal{A}_{\tau(x)}\left(f_{j} v_{j, \epsilon}^{-\frac{\theta}{q_{j}}} w_{j, \epsilon}^{\frac{\theta-1}{p_{j}}}\right)(x) \widetilde{v}_{N}^{\frac{\theta}{q}} \widetilde{w}_{N}^{\frac{1-\theta}{p}}\right|^{k} g(x) d x \leq C_{1}^{k(1-\theta)} C_{2}^{k \theta}
$$

Here we have used the notation $v_{j, \epsilon}=v_{j}+\epsilon$ and $w_{j, \epsilon}=w_{j}+\epsilon$ for $j=1,2$. Therefore, using a duality argument we obtain that

$$
\begin{gathered}
\left(\int_{\mathbb{R}^{n}}\left(\left|\mathcal{A}_{\tau(x)}\left(f_{1} v_{1, \epsilon}^{-\frac{\theta}{q_{1}}} w_{1, \epsilon}^{\frac{\theta-1}{p_{1}}}\right)(x) \mathcal{A}_{\tau(x)}\left(f_{2} v_{2, \epsilon}^{-\frac{\theta}{q_{2}}} w_{2, \epsilon}^{\frac{\theta-1}{p_{2}}}\right)(x)\right| \widetilde{v}_{N}^{\frac{\theta}{\bar{q}}} \widetilde{w}_{N}^{\frac{1-\theta}{p}}\right)^{\tilde{p}} d x\right)^{\frac{1}{\bar{p}}} \\
\leq C\left(\int_{\mathbb{R}^{n}}\left|f_{1}\right|^{\tilde{p}_{1}}\right)^{\frac{1}{\bar{p}_{1}}}\left(\int_{\mathbb{R}^{n}}\left|f_{2}\right|^{\tilde{p}_{2}}\right)^{\frac{1}{\bar{p}_{2}}}
\end{gathered}
$$

Since the set of finite simple functions is dense in $L^{s}\left(\mathbb{R}^{n}\right), 1 \leq s<\infty$, we get the above estimate for all $L^{\tilde{p}_{1}}\left(\mathbb{R}^{n}\right)$ functions f_{1} and f_{2} (note that we have assumed $\tilde{p}_{1}=\tilde{p}_{2}$).

Since the set of finite simple functions is dense in $L^{s}\left(\mathbb{R}^{n}\right), 1 \leq s<\infty$, we get the above estimate for all $L^{\tilde{p}_{1}}\left(\mathbb{R}^{n}\right)$ functions f_{1} and f_{2} (note that we have assumed $\tilde{p}_{1}=\tilde{p}_{2}$). Next, recall that the constants C_{1}, C_{2} are independent of ϵ, N and τ. Let $\epsilon \rightarrow 0$ and $N \rightarrow \infty$ and replace f_{i} by $f_{i} v_{i}^{\frac{\theta}{q_{i}}} w_{i}^{\frac{1-\theta}{p_{i}}}, i=1,2$, in the above to get that

$$
\begin{aligned}
& \left(\int_{\mathbb{R}^{n}}\left(\left|\mathcal{A}_{\tau(x)}\left(f_{1}\right)(x) \mathcal{A}_{\tau(x)}\left(f_{2}\right)(x)\right| v^{\frac{\theta}{q}} w^{\frac{1-\theta}{\rho}}\right)^{\tilde{p}} d x\right)^{\frac{1}{\bar{p}}} \\
& \quad \leq C\left(\int_{\mathbb{R}^{n}}\left|f_{1}\right|^{\tilde{p}_{1}}\left(v_{1}^{\frac{\theta}{q_{1}}} w_{1}^{\frac{1-\theta}{\rho_{1}}}\right)^{\tilde{p}_{1}}\right)^{\frac{1}{\tilde{p}_{1}}}\left(\int_{\mathbb{R}^{n}}\left|f_{2}\right|^{\tilde{\rho_{2}}}\left(v_{2}^{\frac{\theta}{q_{2}}} w_{2}^{\frac{1-\theta}{\rho_{2}}}\right)^{\tilde{\rho}_{2}}\right)^{\frac{1}{\tilde{p}_{2}}}
\end{aligned}
$$

Since the set of finite simple functions is dense in $L^{s}\left(\mathbb{R}^{n}\right), 1 \leq s<\infty$, we get the above estimate for all $L^{\tilde{p}_{1}}\left(\mathbb{R}^{n}\right)$ functions f_{1} and f_{2} (note that we have assumed $\tilde{p}_{1}=\tilde{p}_{2}$). Next, recall that the constants C_{1}, C_{2} are independent of ϵ, N and τ. Let $\epsilon \rightarrow 0$ and $N \rightarrow \infty$ and replace f_{i} by $f_{i} v_{i}^{\frac{\theta}{q_{i}}} w_{i}^{\frac{1-\theta}{p_{i}}}, i=1,2$, in the above to get that

$$
\begin{aligned}
& \left(\int_{\mathbb{R}^{n}}\left(\left|\mathcal{A}_{\tau(x)}\left(f_{1}\right)(x) \mathcal{A}_{\tau(x)}\left(f_{2}\right)(x)\right|^{\frac{\theta}{q}} w^{\frac{1-\theta}{p}}\right)^{\tilde{p}} d x\right)^{\frac{1}{\tilde{p}}} \\
& \quad \leq C\left(\int_{\mathbb{R}^{n}}\left|f_{1}\right|^{\tilde{p}_{1}}\left(v_{1}^{\frac{\theta}{q_{1}}} w_{1}^{\frac{1-\theta}{\rho_{1}}}\right)^{\tilde{p}_{1}}\right)^{\frac{1}{\tilde{p}_{1}}}\left(\int_{\mathbb{R}^{n}}\left|f_{2}\right|^{\tilde{\rho}_{2}}\left(v_{2}^{\frac{\theta}{q_{2}}} w_{2}^{\frac{1-\theta}{p_{2}}}\right)^{\tilde{\rho}_{2}}\right)^{\frac{1}{\tilde{p}_{2}}}
\end{aligned}
$$

Since the constant C is independent of τ, therefore we get the boundedness of the operator $\mathcal{M}_{\text {lac }}$, i.e.

$$
\begin{align*}
& \left(\int_{\mathbb{R}^{n}}\left(\left|\mathcal{M}_{\mathrm{lac}}\left(f_{1}, f_{2}\right)(x)\right| v^{\frac{\theta}{q}} w^{\frac{1-\theta}{p}}\right)^{\tilde{p}} d x\right)^{\frac{1}{\tilde{p}}} \\
& \leq C\left(\int_{\mathbb{R}^{n}}\left|f_{1}\right|^{\tilde{p}_{1}}\left(v_{1}^{\frac{\theta}{q_{1}}} w_{1}^{\frac{1-\theta}{p_{1}}}\right)^{\tilde{p}_{1}}\right)^{\frac{1}{\tilde{p}_{1}}}\left(\int_{\mathbb{R}^{n}}\left|f_{2}\right|^{\tilde{p}_{2}}\left(v_{2}^{\frac{\theta}{q_{2}}} w_{2}^{\frac{1-\theta}{p_{2}}}\right)^{\tilde{p}_{2}}\right)^{\frac{1}{\tilde{p}_{2}}} \tag{6}
\end{align*}
$$

Step II: For $\epsilon>0$, let $p_{1}=p_{2}=\frac{2 n}{2 n-1}+2 \epsilon, r_{1}=r_{2}=\frac{2 n}{2 n-1}+\epsilon$ and $\left(\frac{1}{r_{i}}, \frac{1}{s_{i}}\right) \in L_{n}$. Check that for this choice of $\left(\frac{1}{r_{i}}, \frac{1}{s_{i}}\right)$, $t=\frac{s_{1} s_{2}}{s_{1}+s_{2}-s_{1} s_{2}}>1$ and set $\vec{r}=\left(r_{1}, r_{2}, r_{3}\right)$ with $r_{3}=t$. Let $\vec{w}=\left(|x|^{\alpha^{\prime}},|x|^{\beta^{\prime}}\right) \in A_{\vec{p}, \vec{r}}$ and note that the estimate (3) holds for bilinear $A_{\vec{p}, \vec{r}}$ weights. Next, for $0<\delta<\tilde{p}_{1}-1$, choose $q_{1}=q_{2}=\tilde{p}_{1}-\delta$ and $\vec{v}=\left(|x|^{a},|x|^{b}\right)$ with $1-n \leq a, b<(n-1)\left(\tilde{p}_{1}-\delta-1\right)$. Then we know that the estimate (4) holds for $\mathcal{M}_{\text {lac }}$.

Step II: For $\epsilon>0$, let $p_{1}=p_{2}=\frac{2 n}{2 n-1}+2 \epsilon, r_{1}=r_{2}=\frac{2 n}{2 n-1}+\epsilon$ and $\left(\frac{1}{r_{i}}, \frac{1}{s_{i}}\right) \in L_{n}$. Check that for this choice of $\left(\frac{1}{r_{i}}, \frac{1}{s_{i}}\right)$, $t=\frac{s_{1} s_{2}}{s_{1}+s_{2}-s_{1} s_{2}}>1$ and set $\vec{r}=\left(r_{1}, r_{2}, r_{3}\right)$ with $r_{3}=t$. Let $\vec{w}=\left(|x|^{\alpha^{\prime}},|x|^{\beta^{\prime}}\right) \in A_{\vec{p}, \vec{r}}$ and note that the estimate (3) holds for bilinear $A_{\vec{p}, \vec{r}}$ weights. Next, for $0<\delta<\tilde{p}_{1}-1$, choose $q_{1}=q_{2}=\tilde{p}_{1}-\delta$ and $\vec{v}=\left(|x|^{a},|x|^{b}\right)$ with $1-n \leq a, b<(n-1)\left(\tilde{p}_{1}-\delta-1\right)$. Then we know that the estimate (4) holds for $\mathcal{M}_{\text {lac }}$. Therefore, by the previous steps the operator $\mathcal{M}_{\text {lac }}$ satisfies the estimate (6) for the above choice of exponents and we get

$$
\begin{align*}
& \left(\int\left|\mathcal{M}_{\text {lac }}\left(f_{1}, f_{2}\right)\right|^{\tilde{p}}\left(|x|^{\frac{(a+b) \theta}{\tilde{p}_{1}-\delta}}+\frac{\left(\alpha^{\prime}+\beta^{\prime}\right)(1-\theta)(2 n-1)}{2(n+\epsilon(2 n-1))}\right)^{\tilde{p}}\right)^{\frac{1}{\tilde{p}}} \\
\lesssim & \left(\int\left(\left|f_{1}\right||x|^{\frac{a \theta}{\tilde{p}_{1}-\delta}+\frac{\alpha^{\prime}(1-\theta)(2 n-1)}{2 n+2 \epsilon(2 n-1)}}\right)^{\tilde{p}_{1}}\right)^{\frac{1}{\tilde{p}_{1}}}\left(\int\left(\left|f_{2}\right||x|^{\frac{b \theta}{\tilde{p}_{2}-\delta}+\frac{\beta^{\prime}(1-\theta)(2 n-1)}{2 n+2 \epsilon(2 n-1)}}\right)^{\tilde{p}_{2}}\right)^{\frac{1}{\tilde{p}_{2}}} \tag{7}
\end{align*}
$$

Now, we show that the exponents of weights in the estimate above may be chosen suitably so that they satisfy the following conditions, i.e. $\vec{w}=\left(|x|^{\alpha^{\prime}},|x|^{\beta^{\prime}}\right) \in A_{\vec{p}, \vec{r}}$. This implies that

$$
\begin{aligned}
& \quad|x|^{\frac{\alpha^{\prime} \theta_{1}(2 n-1)}{2 n+2 \epsilon(2 n-1)}} \in A_{\left(\frac{1-r}{r}\right) \theta_{1}}, \quad|x|^{\frac{\beta^{\prime} \theta_{2}(2 n-1)}{2 n+2 \epsilon(2 n-1)}} \in A_{\left(\frac{1-r}{r}\right) \theta_{2}}, \\
& \text { and } \quad|x|^{\frac{\left(\alpha^{\prime}+\beta^{\prime}\right) \delta_{3}(2 n-1)}{2 n+2 \epsilon(2 n-1)}} \in A_{\frac{1-r}{r} \delta_{3}},
\end{aligned}
$$

where

$$
\frac{1}{\delta_{i}}=\frac{1}{r_{i}}-\frac{1}{p_{i}}, \quad \frac{1}{\theta_{i}}=\frac{1-r}{r}-\frac{1}{\delta_{i}} \quad \text { and } \quad p_{3}=p^{\prime}, \quad i=1,2,3 .
$$

Substituting the values of the various parameters, we obtain

$$
\begin{aligned}
\frac{1-r}{r} & =\frac{(2 n-2)(1+\epsilon(2 n-1))}{2 n+\epsilon(2 n-1)} \\
\frac{1}{\theta_{i}} & =\frac{\epsilon(2 n-1)(2 n-2)-1}{2 n+\epsilon(2 n-1)}+\frac{2 n-1}{2 n+2 \epsilon(2 n-1)}, \quad \text { for } \quad i=1,2 \\
\frac{1}{\delta_{3}} & =\frac{\epsilon(2 n-1)^{2}}{2 n+\epsilon(2 n-1)}+\frac{2 n-1}{n+\epsilon(2 n-1)}-1
\end{aligned}
$$

Substituting the values of the various parameters, we obtain

$$
\begin{aligned}
\frac{1-r}{r} & =\frac{(2 n-2)(1+\epsilon(2 n-1))}{2 n+\epsilon(2 n-1)} \\
\frac{1}{\theta_{i}} & =\frac{\epsilon(2 n-1)(2 n-2)-1}{2 n+\epsilon(2 n-1)}+\frac{2 n-1}{2 n+2 \epsilon(2 n-1)}, \quad \text { for } \quad i=1,2 \\
\frac{1}{\delta_{3}} & =\frac{\epsilon(2 n-1)^{2}}{2 n+\epsilon(2 n-1)}+\frac{2 n-1}{n+\epsilon(2 n-1)}-1
\end{aligned}
$$

Since ϵ can be chosen arbitrarily small, therefore taking $\epsilon \rightarrow 0$ we get $(1-n) \frac{2 n}{2 n-1}<\alpha^{\prime}, \beta^{\prime}<0$ and $(1-n) \frac{2 n}{2 n-1}<\alpha^{\prime}+\beta^{\prime}<0$. Now taking $\delta \rightarrow \tilde{p}_{1}-1$, we get $\theta=\frac{2 n}{\tilde{p}_{1}}-(2 n-1)$. Since the range of α^{\prime} and β^{\prime} is an open set, we get that $\mathcal{M}_{\text {lac }}$ is bounded from $L^{\tilde{p}_{1}}\left(|x|^{\alpha}\right) \times L^{\tilde{p}_{2}}\left(|x|^{\beta}\right)$ to $L^{\tilde{p}}\left(|x|^{\frac{\alpha+\beta}{2}}\right)$ for α, β satisfying

$$
(1-n) \tilde{p}_{1}<\alpha, \beta<0 \quad \text { and } \quad \alpha+\beta>2(1-n)\left(n-(n-1) \tilde{p}_{1}\right) .
$$

Further, using the product-type weighted boundedness of $\mathcal{M}_{\text {lac }}$ for $\tilde{p}_{1}=\tilde{p}_{2}$, we get $\mathcal{M}_{\text {lac }}$ is bounded from $L^{\tilde{p}_{1}}\left(|x|^{a}\right) \times L^{\tilde{p}_{2}}\left(|x|^{b}\right)$ to $L^{\tilde{p}}\left(|x|^{\frac{a+b}{2}}\right)$ for $1-n \leq a, b<(n-1)\left(\tilde{p}_{1}-1\right)$.
This proves the desired result for the operator $\mathcal{M}_{\text {lac }}$.

References

R. P. Calderón; Lacunary spherical means, Illinois J. of Math. vol. 23, no. 3, 1979, 476-484

围 R. Coifman and G. Weiss; Book review, Littlewood-Paley and multiplier theory, Bull. Amer. Math. Soc. 84(1978) 242-250

圊 J. Duoandikoetxea and L. Vega; Spherical means and weighted inequalities, J. London Math. Soc. (2) 53 (1996), no. 2, 343-353.
E- E. Jeong; S. Lee, Maximal estimates for the bilinear spherical averages and the bilinear Bochner-Riesz operators, J. Funct. Anal. vol 279, 2020;
https://doi.org/10.1016/j.jfa.2020.108629

References

嗇 M. Lacey; Sparse bounds for spherical maximal functions, J. D'Analyse Mathématique, vol. 139 (2019)

囯 K. Li, J. M. Martell and S. Ombrosi; Extrapolation for multi-linear Muckenhoupt classes and applications to the bilinear Hilbert transform, Adv. in Math. vol. 373, (2020) 107286. https://doi.org/10.1016/j.aim.2020.107286

R L. Roncal, S. Shrivastava and K. Shuin; Bilinear spherical maximal functions of product type, J. Fourier Anal. Appl. 139(2021)
E.M. Stein; Maximal functions, spherical means, Proc. Nat. Acad. Sci., vol. 73, 1976, p. 2174-2175

THANK YOU!

