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Sobolev Inequalities

Let 1 ≤ p <n. Then ∃ S = Sn,p > 0 such that

S

(∫
Rn

|u|p∗
)p/p∗

≤
∫
Rn

|∇u|p,

holds for all u ∈ C 1
c (Rn). Here, p∗ = np

n−p .

Equivalently

There exists C > 0 such that

sup
u∈C1

c (Rn),
∫
Rn |∇u|p≤1

∫
Rn

|u|p∗ ≤ C .

For p = n, the inequality fails. Counterexample: let

f (x) = log log(1 +
1

|x |
), x ∈ B(0, 1).

Then f ∈W 1,n(Rn) but f /∈ L∞(Rn).
For p ∈ [1,∞], W 1,p(Rn) = {u ∈ Lp(Rn) : ∇u ∈ Lp(Rn)}.
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Moser-Trudinger Inequality

Let Ω ⊂ Rn be a bounded domain. Then ∃ Cn > 0 such that

sup
u∈C1

c (Ω),
∫

Ω |∇u|n≤1

∫
Ω
eα|u(x)|n/(n−1)

dx ≤ Cn|Ω|,

holds for every α ≤ αn = n[ωn−1]1/(n−1), where ωn−1 is the surface
measure of the unit sphere in Rn.
Furthermore, the constant αn is sharp.



Theorem (Adams, 1988)

Let Ω ⊂ Rn be bounded domain m ∈ N with m < n and p = n/m.
Then ∃ c0 = c0(n,m) > 0 such that

sup
u∈C∞c (Ω),‖∇mu‖p≤1

∫
Ω
eβ|u(x)|p′ ≤ c0|Ω|,

for all β ≤ β0.
Furthermore, the constant β0 is sharp.

Here, 1/p + 1/p′ = 1 and

β0 =


n

ωn−1

[
πn/22mΓ((m+1)/2)

Γ((n−m+1)/2)

]n/(n−m)
, m is odd;

n
ωn−1

[
πn/22mΓ(m/2)

Γ((n−m)/2)

]n/(n−m)
, m is even.
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Idea of the Proof

Step 1: Riesz potential

Lemma

Let m ∈ 2N and u ∈ Cm
c (Rn) then for x ∈ Rn

u(x) = cn,m

∫
Rn

∇mu(y)

|x − y |n−m
dy = cn,m Im ∗ ∇mu(x).

Using this lemma it is enough to prove that there exists C > 0
such that

sup
f ∈Lp(Ω),‖f ‖p≤1

∫
Ω
eβ
′|Im∗f |p

′
≤ C |Ω|,

where p = n/m and Im(x) = |x |m−n.
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Step 2: O’Niels lemma

For suitable functions f , g on Rn there holds

(f ∗ g)∗(t) ≤ 1

t

∫ t

0
f ∗(s) ds

∫ t

0
g∗(s) ds +

∫ ∞
t

f ∗(s)g∗(s) ds.

Here, f ∗ denotes the non-increasing rearrangement of f defined
as

f ∗(t) = inf{s > 0 : λf (s) ≤ t},

where the distribution function λf of f is

λf (s) = |{|f | > s}|.

A direct calculation gives us the relation

I ∗m(t) ≤
(ωn−1

nt

)1/p′

, for t > 0.
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Using O’Niel’s lemma it follows that

1

|Ω|

∫
Ω
eβ|Im∗f (x)|p′ dx ≤ 1

|Ω|

∫ |Ω|
0

eβ|Im∗f )∗(t)|p′ dt

≤
(ωn−1

nt

)1/p′
(∫ t

0
f ∗(s)ds +

∫ |Ω|
t

f ∗(s) s−1/p′

)
.

Changing the variable as

φ(s) = |Ω|1/pf ∗(|Ω|e−s/p)

reduces to the one variable problem of showing the existence
of Cp > 0 which satisfies

‖φ‖Lp(R) ≤ 1 =⇒
∫ ∞

0
e−F (t) dt ≤ Cp,

where

F (t) = t −
∫ ∞

0
a(s, t)φ(s) ds,

a(s, t) = p e(t−s)/p′ , if s > t.
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Moser-Trudinger inequality on Rn

On Rn, Moser-Trudinger inequality does not hold because∫
Rn

eα|u(x)|p′ ≥
∫
Rn

1 =∞.

One can modify the exponential function and look for
inequalities of the form:

There exists c > 0 such that

sup
u∈C k

c (Rn),
∫
Rn(|∇ku|p+|u|p)≤1

∫
Rn

Φp(β0|u(x)|p′) <∞,

where

Φp(t) = et −
[p]−1∑
j=0

t j

j!
.
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Question:

What about these inequalities on Riemannian manifolds?

Moser established the inequality for the first order derivatives
on S2 (Indiana Univ. Math. 1971).

L. Fontana proved Moser-Trudinger and Adams inequalities on
compact Riemannian manifolds (Comment. Math. Helv. 68
(1993)).

Q. Yang et al. Sharp Moser-Trudinger inequalities on
Riemannian manifolds with negative curvature (Ann. Math.
Pura Appl. 2016).

K. Sandeep et al. Adams inequalities on hyperbolic spaces of
even dimensions (JFA, 2016) and on certain manifolds with
bounded Ricci curvature (IMRN, 2020).

G. Lu et al. Sharp Adams inequalities of any fractional order
on real hyperbolic spaces of dimension ≥ 3 (Trans. Amer.
Math. Soc. 2020).
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Our Aim:

To establish sharp Adams type inequalities on the Sobolev spaces
W α,n/α of any positive fractional order α < n on Riemannian
symmetric spaces of noncompact type of all dimension n ≥ 3 and
of arbitrary rank.



Symmetric spaces of noncompact type:

Let G be a noncompact, connected, semisimple Lie group with
finite center and let K be a maximal compact subgroup of G .

Let X = G/K be a Riemannian symmetric space of
noncompact type. This is a noncompact Riemannian
manifold.

Let g and k denote the Lie algebras of G and K respectively.
Let g = k + p be the Cartan decomposition of g.

We fix a maximal abelian subspace a of p. Let A = exp a.
The dimension of dim a is called rank of X .

Let ∆ denotes the Laplace-Beltrami operator on X .

An example

Let G = SL(2,R),K = SO(2).

We have X = G/K ∼= H2 = {(x , y) ∈ R2 | y > 0}. The

metric on H2 is given by ds2 = dx2+dy2

y2 .

We have A ≡ R. The rank of H2 is 1.

∆f (x , y) = y2(
∂2

∂x2
+

∂2

∂y2
)f .
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Sobolev space on X

Let α > 0 and 1 < p <∞. The Sobolev space W α,p(X ) is the
image of Lp(X ) under the operator (−∆)−α/2, equipped with the
norm

‖f ‖Wα,p(X ) = ‖(−∆)α/2f ‖Lp(X ).



Theorem (M. Bhowmik 2021)

Let n ≥ 3, 0 < α < n and p = n/α. Suppose Ω ⊂ X with
|Ω| <∞. Then there exists C = C (n, α) such that

1

|Ω|

∫
Ω
eβ0|u(x)|p′ dx ≤ C ,

for any u ∈W α,p(X ) with
∫
X |(−∆)α/2u(x)|p dx ≤ 1.

• Here, β0 = β0(n, α) = n
ωn−1

[
πn/22αΓ(α/2)
Γ((n−α)/2)

]p′
.

Theorem (M. Bhowmik 2021)

Let n ≥ 3, 0 < α < n and p = n/α. Then there exists C = C (n, α)
such that ∫

X
Φp

(
β0(n, α)|u(x)|p′

)
dx ≤ C ,

for any u ∈W α,p(X ) with
∫
X |(−∆)α/2u(x)|p dx ≤ 1.
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Sketch of the proof

Let kζ,α be the kernel of the operator (−∆− |ρ|2 + ζ2)−α/2,
for 0 < α < n and ζ > 0.

Theorem (Anker-Ji, 1999)

For large |x |

kζ,α(x) . |x |(α−l−1)/2−|Σ+
0 | φ0(x) e−ζ|x |.

Lemma

There exists ε satisfying 0 < ε < min{1, n − α} such that

kζ,α(x) ≤ 1

γ(α)

1

|x |n−α
+O

(
1

|x |n−α−ε

)
, 0 < |x | < 1,

where γ(α) = 2α πn/2 Γ(α/2)
Γ((n−α)/2) , for 0 < α < n.
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Lemma

For large t

[kζ,α]∗(t) . t−1/2−ζ′/2|ρ| (log t)2|ρ|l/(ζ′+|ρ|),

where ζ ′ ∈ (0, ζ).

For small t

[kζ,α]∗(t) ≤ 1
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Let u ∈W α,p(X ) and we write f = (−∆− |ρ|2 + ζ2)α/2u.
Then clearly u = f ∗ kζ,α and by the hypothesis ‖f ‖p ≤ 1.
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t
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∫ t
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∫ ∞
t
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To get
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|Ω|

∫
Ω

exp
(
β0(n, α)|u(x)|p′

)
dx

≤ 1

|Ω|

∫ |Ω|
0

exp
(
β0(n, α)|u∗(t)|p′

)
dt

≤
∫ ∞

0
e−F (t) dt,

where F (t) is equals to
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(
et
∫ ∞
t

e−s/p
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∫ ∞
t

e−s/pψ(s)ds +

∫ t
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φ(s)ψ(s)ds

)p′
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Sketch of the proof

Let u ∈W α,p with
∫
X |(−∆− |ρ|2 + ζ2)α/2u(x)|p dx ≤ 1.

We write X = X\Ω(u) ∪ Ω(u), where

Ω(u) = {x ∈ X : |u(x)| ≥ 1}.
By Anker’s multiplier theorem∫

X
|u(x)|p dx ≤ Sp

∫
X
|(−∆− |ρ|2 + ζ2)α/2u(x)|p dx ≤ Sp,

provided ζ > 2|ρ||1/2− 1/p|.
Therefore,

|Ω(u)| =

∫
Ω(u)

dx ≤
∫
X
|u(x)|p dx ≤ Sp.

On X\Ω(u)∫
X\Ω(u)

Φp

(
β0(n, α)|u(x)|p′

)
dx ≤

∞∑
k=[p]

β0(n, α)k

k!
‖u‖pp <∞.

By first theorem we complete the proof.
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