Sharp Adams type inequalities for the fractional Laplace-Beltrami operator on noncompact symmetric spaces

Mithun Bhowmik

INSPIRE Faculty, IISc Bangalore
January 5, 2022

17th Discussion Meeting in Harmonic Analysis NISER, Bhubaneswar

Sobolev Inequalities

Let $1 \leq p<n$. Then $\exists S=S_{n, p}>0$ such that

$$
S\left(\int_{\mathbb{R}^{n}}|u|^{p^{*}}\right)^{p / p^{*}} \leq \int_{\mathbb{R}^{n}}|\nabla u|^{p},
$$

holds for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$. Here, $p^{*}=\frac{n p}{n-p}$.

Sobolev Inequalities

Let $1 \leq p<n$. Then $\exists S=S_{n, p}>0$ such that

$$
S\left(\int_{\mathbb{R}^{n}}|u|^{p^{*}}\right)^{p / p^{*}} \leq \int_{\mathbb{R}^{n}}|\nabla u|^{p},
$$

holds for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$. Here, $p^{*}=\frac{n p}{n-p}$.

Equivalently

There exists $C>0$ such that

$$
\sup _{u \in C_{c}^{1}\left(\mathbb{R}^{n}\right), \int_{\mathbb{R}^{n}}|\nabla u|^{p} \leq 1} \int_{\mathbb{R}^{n}}|u|^{p^{*}} \leq C
$$

Sobolev Inequalities

Let $1 \leq p<n$. Then $\exists S=S_{n, p}>0$ such that

$$
S\left(\int_{\mathbb{R}^{n}}|u|^{p^{*}}\right)^{p / p^{*}} \leq \int_{\mathbb{R}^{n}}|\nabla u|^{p},
$$

holds for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$. Here, $p^{*}=\frac{n p}{n-p}$.

Equivalently

There exists $C>0$ such that

$$
\sup _{u \in C_{c}^{1}\left(\mathbb{R}^{n}\right), \int_{\mathbb{R}^{n}}|\nabla u|^{p} \leq 1} \int_{\mathbb{R}^{n}}|u|^{p^{*}} \leq C .
$$

For $p=n$, the inequality fails. Counterexample: let

$$
f(x)=\log \log \left(1+\frac{1}{|x|}\right), x \in B(0,1)
$$

Then $f \in W^{1, n}\left(\mathbb{R}^{n}\right)$ but $f \notin L^{\infty}\left(\mathbb{R}^{n}\right)$.

Sobolev Inequalities

Let $1 \leq p<n$. Then $\exists S=S_{n, p}>0$ such that

$$
S\left(\int_{\mathbb{R}^{n}}|u|^{p^{*}}\right)^{p / p^{*}} \leq \int_{\mathbb{R}^{n}}|\nabla u|^{p},
$$

holds for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$. Here, $p^{*}=\frac{n p}{n-p}$.

Equivalently

There exists $C>0$ such that

$$
\sup _{u \in C_{c}^{1}\left(\mathbb{R}^{n}\right), \int_{\mathbb{R}^{n}}|\nabla u|^{p} \leq 1} \int_{\mathbb{R}^{n}}|u|^{p^{*}} \leq C .
$$

For $p=n$, the inequality fails. Counterexample: let

$$
f(x)=\log \log \left(1+\frac{1}{|x|}\right), x \in B(0,1)
$$

Then $f \in W^{1, n}\left(\mathbb{R}^{n}\right)$ but $f \notin L^{\infty}\left(\mathbb{R}^{n}\right)$.
For $p \in[1, \infty], W^{1, p}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{p}\left(\mathbb{R}^{n}\right): \nabla u \in L^{p}\left(\mathbb{R}^{n}\right)\right\}$.

Moser-Trudinger Inequality

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain. Then $\exists C_{n}>0$ such that

$$
\sup _{u \in C_{c}^{1}(\Omega), \int_{\Omega}|\nabla u|^{n} \leq 1} \int_{\Omega} e^{\alpha|u(x)|^{n /(n-1)}} d x \leq C_{n}|\Omega|
$$

holds for every $\alpha \leq \alpha_{n}=n\left[\omega_{n-1}\right]^{1 /(n-1)}$, where ω_{n-1} is the surface measure of the unit sphere in \mathbb{R}^{n}.
Furthermore, the constant α_{n} is sharp.

Theorem (Adams, 1988)

Let $\Omega \subset \mathbb{R}^{n}$ be bounded domain $m \in \mathbb{N}$ with $m<n$ and $p=n / m$. Then $\exists c_{0}=c_{0}(n, m)>0$ such that

$$
\sup _{u \in C_{c}^{\infty}(\Omega),\left\|\nabla^{m} u\right\|_{p} \leq 1} \int_{\Omega} e^{\beta|u(x)|^{p^{\prime}}} \leq c_{0}|\Omega|,
$$

for all $\beta \leq \beta_{0}$.
Furthermore, the constant β_{0} is sharp.

Theorem (Adams, 1988)

Let $\Omega \subset \mathbb{R}^{n}$ be bounded domain $m \in \mathbb{N}$ with $m<n$ and $p=n / m$.
Then $\exists c_{0}=c_{0}(n, m)>0$ such that

$$
\sup _{u \in C_{c}^{\infty}(\Omega),\left\|\nabla^{m} u\right\|_{p} \leq 1} \int_{\Omega} e^{\beta|u(x)|^{p^{\prime}}} \leq c_{0}|\Omega|,
$$

for all $\beta \leq \beta_{0}$.
Furthermore, the constant β_{0} is sharp.
Here, $1 / p+1 / p^{\prime}=1$ and

$$
\beta_{0}=\left\{\begin{array}{l}
\frac{n}{\omega_{n-1}}\left[\frac{\pi^{n / 2} 2^{m} \Gamma((m+1) / 2)}{\Gamma((n-m+1) / 2)}\right]^{n /(n-m)}, m \text { is odd; } \\
\frac{n}{\omega_{n-1}}\left[\frac{\pi^{n / 2} 2^{m} \Gamma(m / 2)}{\Gamma((n-m) / 2)}\right]^{n /(n-m)}, m \text { is even. }
\end{array}\right.
$$

Idea of the Proof

Step 1: Riesz potential

Idea of the Proof

Step 1: Riesz potential

Lemma

Let $m \in 2 \mathbb{N}$ and $u \in C_{c}^{m}\left(\mathbb{R}^{n}\right)$ then for $x \in \mathbb{R}^{n}$

$$
u(x)=c_{n, m} \int_{\mathbb{R}^{n}} \frac{\nabla^{m} u(y)}{|x-y|^{n-m}} d y=c_{n, m} I_{m} * \nabla^{m} u(x)
$$

Idea of the Proof

Step 1: Riesz potential

Lemma

Let $m \in 2 \mathbb{N}$ and $u \in C_{c}^{m}\left(\mathbb{R}^{n}\right)$ then for $x \in \mathbb{R}^{n}$

$$
u(x)=c_{n, m} \int_{\mathbb{R}^{n}} \frac{\nabla^{m} u(y)}{|x-y|^{n-m}} d y=c_{n, m} I_{m} * \nabla^{m} u(x)
$$

Using this lemma it is enough to prove that there exists $C>0$ such that

$$
\sup _{f \in L^{p}(\Omega),\|f\|_{p} \leq 1} \int_{\Omega} e^{\beta^{\prime}\left|I_{m} * f\right|^{p^{\prime}}} \leq C|\Omega|,
$$

where $p=n / m$ and $I_{m}(x)=|x|^{m-n}$.

Step 2: O'Niels lemma

For suitable functions f, g on \mathbb{R}^{n} there holds

$$
(f * g)^{*}(t) \leq \frac{1}{t} \int_{0}^{t} f^{*}(s) d s \int_{0}^{t} g^{*}(s) d s+\int_{t}^{\infty} f^{*}(s) g^{*}(s) d s
$$

Step 2: O'Niels lemma

For suitable functions f, g on \mathbb{R}^{n} there holds

$$
(f * g)^{*}(t) \leq \frac{1}{t} \int_{0}^{t} f^{*}(s) d s \int_{0}^{t} g^{*}(s) d s+\int_{t}^{\infty} f^{*}(s) g^{*}(s) d s
$$

Here, f^{*} denotes the non-increasing rearrangement of f defined as

$$
f^{*}(t)=\inf \left\{s>0: \lambda_{f}(s) \leq t\right\}
$$

where the distribution function λ_{f} of f is

$$
\lambda_{f}(s)=|\{|f|>s\}| .
$$

Step 2: O'Niels lemma

For suitable functions f, g on \mathbb{R}^{n} there holds

$$
(f * g)^{*}(t) \leq \frac{1}{t} \int_{0}^{t} f^{*}(s) d s \int_{0}^{t} g^{*}(s) d s+\int_{t}^{\infty} f^{*}(s) g^{*}(s) d s
$$

Here, f^{*} denotes the non-increasing rearrangement of f defined as

$$
f^{*}(t)=\inf \left\{s>0: \lambda_{f}(s) \leq t\right\}
$$

where the distribution function λ_{f} of f is

$$
\lambda_{f}(s)=|\{|f|>s\}| .
$$

A direct calculation gives us the relation

$$
I_{m}^{*}(t) \leq\left(\frac{\omega_{n-1}}{n t}\right)^{1 / p^{\prime}}, \text { for } t>0
$$

- Using O'Niel's lemma it follows that

$$
\begin{aligned}
& \frac{1}{|\Omega|} \int_{\Omega} e^{\beta\left|I_{m} * f(x)\right|^{p^{\prime}}} d x \leq \frac{1}{|\Omega|} \int_{0}^{|\Omega|} e^{\left.\beta \mid I_{m} * f\right)\left.^{*}(t)\right|^{p^{\prime}}} d t \\
\leq & \left(\frac{\omega_{n-1}}{n t}\right)^{1 / p^{\prime}}\left(\int_{0}^{t} f^{*}(s) d s+\int_{t}^{|\Omega|} f^{*}(s) s^{-1 / p^{\prime}}\right) .
\end{aligned}
$$

- Using O'Niel's lemma it follows that

$$
\begin{aligned}
& \frac{1}{|\Omega|} \int_{\Omega} e^{\beta\left|I_{m} * f(x)\right|^{p^{\prime}}} d x \leq \frac{1}{|\Omega|} \int_{0}^{|\Omega|} e^{\left.\beta \mid I_{m} * f\right)\left.^{*}(t)\right|^{p^{\prime}}} d t \\
\leq & \left(\frac{\omega_{n-1}}{n t}\right)^{1 / p^{\prime}}\left(\int_{0}^{t} f^{*}(s) d s+\int_{t}^{|\Omega|} f^{*}(s) s^{-1 / p^{\prime}}\right) .
\end{aligned}
$$

- Changing the variable as

$$
\phi(s)=|\Omega|^{1 / p} f^{*}\left(|\Omega| e^{-s / p}\right)
$$

reduces to the one variable problem of showing the existence of $C_{p}>0$ which satisfies

$$
\|\phi\|_{L^{p}(\mathbb{R})} \leq 1 \Longrightarrow \int_{0}^{\infty} e^{-F(t)} d t \leq C_{p}
$$

where

$$
\begin{aligned}
& F(t)=t-\int_{0}^{\infty} a(s, t) \phi(s) d s \\
& a(s, t)=p e^{(t-s) / p^{\prime}}, \text { if } s>t
\end{aligned}
$$

Moser-Trudinger inequality on \mathbb{R}^{n}

- On \mathbb{R}^{n}, Moser-Trudinger inequality does not hold because

$$
\int_{\mathbb{R}^{n}} e^{\alpha|u(x)|^{p^{\prime}}} \geq \int_{\mathbb{R}^{n}} 1=\infty
$$

Moser-Trudinger inequality on \mathbb{R}^{n}

- On \mathbb{R}^{n}, Moser-Trudinger inequality does not hold because

$$
\int_{\mathbb{R}^{n}} e^{\alpha|u(x)|^{\rho^{\prime}}} \geq \int_{\mathbb{R}^{n}} 1=\infty
$$

- One can modify the exponential function and look for inequalities of the form:

There exists $c>0$ such that

$$
\sup _{u \in C_{c}^{k}\left(\mathbb{R}^{n}\right), \int_{\mathbb{R}^{n}}\left(\left|\nabla^{k} u\right|^{p}+|u|^{p}\right) \leq 1} \int_{\mathbb{R}^{n}} \Phi_{p}\left(\beta_{0}|u(x)|^{p^{\prime}}\right)<\infty,
$$

where

$$
\Phi_{p}(t)=e^{t}-\sum_{j=0}^{[p]-1} \frac{t^{j}}{j!} .
$$

Question:

What about these inequalities on Riemannian manifolds?

- Moser established the inequality for the first order derivatives on S^{2} (Indiana Univ. Math. 1971).

Question:

What about these inequalities on Riemannian manifolds?

- Moser established the inequality for the first order derivatives on S^{2} (Indiana Univ. Math. 1971).
- L. Fontana proved Moser-Trudinger and Adams inequalities on compact Riemannian manifolds (Comment. Math. Helv. 68 (1993)).

Question:

What about these inequalities on Riemannian manifolds?

- Moser established the inequality for the first order derivatives on S^{2} (Indiana Univ. Math. 1971).
- L. Fontana proved Moser-Trudinger and Adams inequalities on compact Riemannian manifolds (Comment. Math. Helv. 68 (1993)).
- Q. Yang et al. Sharp Moser-Trudinger inequalities on Riemannian manifolds with negative curvature (Ann. Math. Pura Appl. 2016).

Question:

What about these inequalities on Riemannian manifolds?

- Moser established the inequality for the first order derivatives on S^{2} (Indiana Univ. Math. 1971).
- L. Fontana proved Moser-Trudinger and Adams inequalities on compact Riemannian manifolds (Comment. Math. Helv. 68 (1993)).
- Q. Yang et al. Sharp Moser-Trudinger inequalities on Riemannian manifolds with negative curvature (Ann. Math. Pura Appl. 2016).
- K. Sandeep et al. Adams inequalities on hyperbolic spaces of even dimensions (JFA, 2016) and on certain manifolds with bounded Ricci curvature (IMRN, 2020).

Question:

What about these inequalities on Riemannian manifolds?

- Moser established the inequality for the first order derivatives on S^{2} (Indiana Univ. Math. 1971).
- L. Fontana proved Moser-Trudinger and Adams inequalities on compact Riemannian manifolds (Comment. Math. Helv. 68 (1993)).
- Q. Yang et al. Sharp Moser-Trudinger inequalities on Riemannian manifolds with negative curvature (Ann. Math. Pura Appl. 2016).
- K. Sandeep et al. Adams inequalities on hyperbolic spaces of even dimensions (JFA, 2016) and on certain manifolds with bounded Ricci curvature (IMRN, 2020).
- G. Lu et al. Sharp Adams inequalities of any fractional order on real hyperbolic spaces of dimension ≥ 3 (Trans. Amer. Math. Soc. 2020).

Our Aim:

To establish sharp Adams type inequalities on the Sobolev spaces $W^{\alpha, n / \alpha}$ of any positive fractional order $\alpha<n$ on Riemannian symmetric spaces of noncompact type of all dimension $n \geq 3$ and of arbitrary rank.

Symmetric spaces of noncompact type:

- Let G be a noncompact, connected, semisimple Lie group with finite center and let K be a maximal compact subgroup of G.

An example

- Let $G=\operatorname{SL}(2, \mathbb{R}), K=\mathrm{SO}(2)$.

Symmetric spaces of noncompact type:

- Let G be a noncompact, connected, semisimple Lie group with finite center and let K be a maximal compact subgroup of G.
- Let $X=G / K$ be a Riemannian symmetric space of noncompact type. This is a noncompact Riemannian manifold.

An example

- Let $G=\operatorname{SL}(2, \mathbb{R}), K=\mathrm{SO}(2)$.
- We have $X=G / K \cong \mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$. The metric on \mathbb{H}^{2} is given by $d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}$.

Symmetric spaces of noncompact type:

- Let G be a noncompact, connected, semisimple Lie group with finite center and let K be a maximal compact subgroup of G.
- Let $X=G / K$ be a Riemannian symmetric space of noncompact type. This is a noncompact Riemannian manifold.
- Let \mathfrak{g} and \mathfrak{k} denote the Lie algebras of G and K respectively. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the Cartan decomposition of \mathfrak{g}.

An example

- Let $G=\operatorname{SL}(2, \mathbb{R}), K=\mathrm{SO}(2)$.
- We have $X=G / K \cong \mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$. The metric on \mathbb{H}^{2} is given by $d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}$.

Symmetric spaces of noncompact type:

- Let G be a noncompact, connected, semisimple Lie group with finite center and let K be a maximal compact subgroup of G.
- Let $X=G / K$ be a Riemannian symmetric space of noncompact type. This is a noncompact Riemannian manifold.
- Let \mathfrak{g} and \mathfrak{k} denote the Lie algebras of G and K respectively. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the Cartan decomposition of \mathfrak{g}.
- We fix a maximal abelian subspace \mathfrak{a} of \mathfrak{p}. Let $A=\exp \mathfrak{a}$.

The dimension of $\operatorname{dim} \mathfrak{a}$ is called rank of X.

An example

- Let $G=\operatorname{SL}(2, \mathbb{R}), K=\mathrm{SO}(2)$.
- We have $X=G / K \cong \mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$. The metric on \mathbb{H}^{2} is given by $d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}$.
- We have $A \equiv \mathbb{R}$. The rank of \mathbb{H}^{2} is 1 .

Symmetric spaces of noncompact type:

- Let G be a noncompact, connected, semisimple Lie group with finite center and let K be a maximal compact subgroup of G.
- Let $X=G / K$ be a Riemannian symmetric space of noncompact type. This is a noncompact Riemannian manifold.
- Let \mathfrak{g} and \mathfrak{k} denote the Lie algebras of G and K respectively. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the Cartan decomposition of \mathfrak{g}.
- We fix a maximal abelian subspace \mathfrak{a} of \mathfrak{p}. Let $A=\exp \mathfrak{a}$.

The dimension of $\operatorname{dim} \mathfrak{a}$ is called rank of X.

- Let Δ denotes the Laplace-Beltrami operator on X.

An example

- Let $G=\operatorname{SL}(2, \mathbb{R}), K=\mathrm{SO}(2)$.
- We have $X=G / K \cong \mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$. The metric on \mathbb{H}^{2} is given by $d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}$.
- We have $A \equiv \mathbb{R}$. The rank of \mathbb{H}^{2} is 1 .
-

$$
\Delta f(x, y)=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f
$$

Sobolev space on X

Let $\alpha>0$ and $1<p<\infty$. The Sobolev space $W^{\alpha, p}(X)$ is the image of $L^{p}(X)$ under the operator $(-\Delta)^{-\alpha / 2}$, equipped with the norm

$$
\|f\|_{W^{\alpha, p}(X)}=\left\|(-\Delta)^{\alpha / 2} f\right\|_{L^{p}(X)} .
$$

Theorem (M. Bhowmik 2021)

Let $n \geq 3,0<\alpha<n$ and $p=n / \alpha$. Suppose $\Omega \subset X$ with $|\Omega|<\infty$. Then there exists $C=C(n, \alpha)$ such that

$$
\frac{1}{|\Omega|} \int_{\Omega} e^{\beta_{0}|u(x)| p^{\prime}} d x \leq C
$$

for any $u \in W^{\alpha, p}(X)$ with $\int_{X}\left|(-\Delta)^{\alpha / 2} u(x)\right|^{p} d x \leq 1$.

Theorem (M. Bhowmik 2021)

Let $n \geq 3,0<\alpha<n$ and $p=n / \alpha$. Suppose $\Omega \subset X$ with $|\Omega|<\infty$. Then there exists $C=C(n, \alpha)$ such that

$$
\frac{1}{|\Omega|} \int_{\Omega} e^{\beta_{0}|u(x)| p^{\prime}} d x \leq C
$$

for any $u \in W^{\alpha, p}(X)$ with $\int_{X}\left|(-\Delta)^{\alpha / 2} u(x)\right|^{p} d x \leq 1$.

- Here, $\beta_{0}=\beta_{0}(n, \alpha)=\frac{n}{\omega_{n-1}}\left[\frac{\pi^{n / 2} 2^{\alpha} \Gamma(\alpha / 2)}{\Gamma((n-\alpha) / 2)}\right]^{p^{\prime}}$.

Theorem (M. Bhowmik 2021)

Let $n \geq 3,0<\alpha<n$ and $p=n / \alpha$. Suppose $\Omega \subset X$ with $|\Omega|<\infty$. Then there exists $C=C(n, \alpha)$ such that

$$
\frac{1}{|\Omega|} \int_{\Omega} e^{\beta_{0}|u(x)| p^{\prime}} d x \leq C
$$

for any $u \in W^{\alpha, p}(X)$ with $\int_{X}\left|(-\Delta)^{\alpha / 2} u(x)\right|^{p} d x \leq 1$.

- Here, $\beta_{0}=\beta_{0}(n, \alpha)=\frac{n}{\omega_{n-1}}\left[\frac{\pi^{n / 2} 2^{\alpha} \Gamma(\alpha / 2)}{\Gamma((n-\alpha) / 2)}\right]^{p^{\prime}}$.

Theorem (M. Bhowmik 2021)

Let $n \geq 3,0<\alpha<n$ and $p=n / \alpha$. Then there exists $C=C(n, \alpha)$ such that

$$
\int_{X} \Phi_{p}\left(\beta_{0}(n, \alpha)|u(x)|^{p^{\prime}}\right) d x \leq C
$$

for any $u \in W^{\alpha, p}(X)$ with $\int_{X}\left|(-\Delta)^{\alpha / 2} u(x)\right|^{p} d x \leq 1$.

Sketch of the proof

- Let $k_{\zeta, \alpha}$ be the kernel of the operator $\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{-\alpha / 2}$, for $0<\alpha<n$ and $\zeta>0$.

Sketch of the proof

- Let $k_{\zeta, \alpha}$ be the kernel of the operator $\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{-\alpha / 2}$, for $0<\alpha<n$ and $\zeta>0$.

Theorem (Anker-Ji, 1999)
For large $|x|$

$$
k_{\zeta, \alpha}(x) \lesssim|x|^{(\alpha-I-1) / 2-\left|\Sigma_{0}^{+}\right|} \phi_{0}(x) e^{-\zeta|x|}
$$

Sketch of the proof

- Let $k_{\zeta, \alpha}$ be the kernel of the operator $\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{-\alpha / 2}$, for $0<\alpha<n$ and $\zeta>0$.

Theorem (Anker-Ji, 1999)

For large $|x|$

$$
k_{\zeta, \alpha}(x) \lesssim|x|^{(\alpha-l-1) / 2-\left|\Sigma_{0}^{+}\right|} \phi_{0}(x) e^{-\zeta|x|} .
$$

Lemma

There exists ϵ satisfying $0<\epsilon<\min \{1, n-\alpha\}$ such that

$$
k_{\zeta, \alpha}(x) \leq \frac{1}{\gamma(\alpha)} \frac{1}{|x|^{n-\alpha}}+\mathcal{O}\left(\frac{1}{|x|^{n-\alpha-\epsilon}}\right), \quad 0<|x|<1
$$

where $\gamma(\alpha)=\frac{2^{\alpha} \pi^{n / 2} \Gamma(\alpha / 2)}{\Gamma((n-\alpha) / 2)}, \quad$ for $0<\alpha<n$.

Lemma

- For large t

$$
\left[k_{\zeta, \alpha}\right]^{*}(t) \lesssim t^{-1 / 2-\zeta^{\prime} / 2|\rho|}(\log t)^{2|\rho| / /\left(\zeta^{\prime}+|\rho|\right)},
$$

where $\zeta^{\prime} \in(0, \zeta)$.

Lemma

- For large t

$$
\left[k_{\zeta, \alpha}\right]^{*}(t) \lesssim t^{-1 / 2-\zeta^{\prime} / 2|\rho|}(\log t)^{2|\rho| / /\left(\zeta^{\prime}+|\rho|\right)},
$$

where $\zeta^{\prime} \in(0, \zeta)$.

- For small t

$$
\left[k_{\zeta, \alpha}\right]^{*}(t) \leq \frac{1}{\gamma(\alpha)}\left(\frac{n t}{\omega_{n-1}}\right)^{(\alpha-n) / n}+\mathcal{O}\left(t^{(\alpha+\epsilon-n) / n}\right) .
$$

- Let $u \in W^{\alpha, p}(X)$ and we write $f=\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u$. Then clearly $u=f * k_{\zeta, \alpha}$ and by the hypothesis $\|f\|_{p} \leq 1$.
- Let $u \in W^{\alpha, p}(X)$ and we write $f=\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u$. Then clearly $u=f * k_{\zeta, \alpha}$ and by the hypothesis $\|f\|_{p} \leq 1$.
- By O'Neil's lemma for $t>0$

$$
u^{*}(t) \leq \frac{1}{t} \int_{0}^{t} f^{*}(s) d s \int_{0}^{t} k_{\zeta, \alpha}^{*}(s) d s+\int_{t}^{\infty} f^{*}(s) k_{\zeta, \alpha}^{*}(s) d s
$$

- Let $u \in W^{\alpha, p}(X)$ and we write $f=\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u$. Then clearly $u=f * k_{\zeta, \alpha}$ and by the hypothesis $\|f\|_{p} \leq 1$.
- By O'Neil's lemma for $t>0$

$$
u^{*}(t) \leq \frac{1}{t} \int_{0}^{t} f^{*}(s) d s \int_{0}^{t} k_{\zeta, \alpha}^{*}(s) d s+\int_{t}^{\infty} f^{*}(s) k_{\zeta, \alpha}^{*}(s) d s
$$

- We now change the variables

$$
\begin{aligned}
& \phi(t)=\left(|\Omega| e^{-t}\right)^{1 / p} f^{*}\left(|\Omega| e^{-t}\right) \\
& \psi(t)=\beta_{0}(n, \alpha)^{1 / p^{\prime}}\left(|\Omega| e^{-t}\right)^{1 / p^{\prime}} k_{\zeta, \alpha}^{*}\left(|\Omega| e^{-t}\right)
\end{aligned}
$$

- Let $u \in W^{\alpha, p}(X)$ and we write $f=\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u$.

Then clearly $u=f * k_{\zeta, \alpha}$ and by the hypothesis $\|f\|_{p} \leq 1$.

- By O'Neil's lemma for $t>0$

$$
u^{*}(t) \leq \frac{1}{t} \int_{0}^{t} f^{*}(s) d s \int_{0}^{t} k_{\zeta, \alpha}^{*}(s) d s+\int_{t}^{\infty} f^{*}(s) k_{\zeta, \alpha}^{*}(s) d s
$$

- We now change the variables

$$
\begin{aligned}
& \phi(t)=\left(|\Omega| e^{-t}\right)^{1 / p} f^{*}\left(|\Omega| e^{-t}\right) \\
& \psi(t)=\beta_{0}(n, \alpha)^{1 / p^{\prime}}\left(|\Omega| e^{-t}\right)^{1 / p^{\prime}} k_{\zeta, \alpha}^{*}\left(|\Omega| e^{-t}\right)
\end{aligned}
$$

- To get

$$
\begin{aligned}
& \frac{1}{|\Omega|} \int_{\Omega} \exp \left(\beta_{0}(n, \alpha)|u(x)|^{p^{\prime}}\right) d x \\
\leq & \frac{1}{|\Omega|} \int_{0}^{|\Omega|} \exp \left(\beta_{0}(n, \alpha)\left|u^{*}(t)\right|^{p \prime}\right) d t \\
\leq & \int_{0}^{\infty} e^{-F(t)} d t
\end{aligned}
$$

where $F(t)$ is equals to

$$
t-\left(e^{t} \int_{t}^{\infty} e^{-s / p^{\prime}} \phi(s) d s \int_{t}^{\infty} e^{-s / p} \psi(s) d s+\int_{-\infty}^{t} \phi(s) \psi(s) d s\right)^{p^{\prime}}
$$

Sketch of the proof

- Let $u \in W^{\alpha, p}$ with $\int_{X}\left|\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u(x)\right|^{p} d x \leq 1$.

Sketch of the proof

- Let $u \in W^{\alpha, p}$ with $\int_{X}\left|\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u(x)\right|^{p} d x \leq 1$.
- We write $X=X \backslash \Omega(u) \cup \Omega(u)$, where

$$
\Omega(u)=\{x \in X:|u(x)| \geq 1\} .
$$

Sketch of the proof

- Let $u \in W^{\alpha, p}$ with $\int_{X}\left|\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u(x)\right|^{p} d x \leq 1$.
- We write $X=X \backslash \Omega(u) \cup \Omega(u)$, where

$$
\Omega(u)=\{x \in X:|u(x)| \geq 1\} .
$$

- By Anker's multiplier theorem

$$
\int_{X}|u(x)|^{p} d x \leq S_{p} \int_{X}\left|\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u(x)\right|^{p} d x \leq S_{p}
$$

provided $\zeta>2|\rho||1 / 2-1 / p|$.

- Therefore,

$$
|\Omega(u)|=\int_{\Omega(u)} d x \leq \int_{X}|u(x)|^{p} d x \leq S_{p}
$$

Sketch of the proof

- Let $u \in W^{\alpha, p}$ with $\int_{X}\left|\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u(x)\right|^{p} d x \leq 1$.
- We write $X=X \backslash \Omega(u) \cup \Omega(u)$, where

$$
\Omega(u)=\{x \in X:|u(x)| \geq 1\} .
$$

- By Anker's multiplier theorem

$$
\int_{X}|u(x)|^{p} d x \leq S_{p} \int_{X}\left|\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u(x)\right|^{p} d x \leq S_{p}
$$

provided $\zeta>2|\rho||1 / 2-1 / p|$.

- Therefore,

$$
|\Omega(u)|=\int_{\Omega(u)} d x \leq \int_{X}|u(x)|^{p} d x \leq S_{p}
$$

- On $X \backslash \Omega(u)$

$$
\int_{X \backslash \Omega(u)} \Phi_{p}\left(\beta_{0}(n, \alpha)|u(x)|^{p^{\prime}}\right) d x \leq \sum_{k=[p]}^{\infty} \frac{\beta_{0}(n, \alpha)^{k}}{k!}\|u\|_{p}^{p}<\infty
$$

Sketch of the proof

- Let $u \in W^{\alpha, p}$ with $\int_{X}\left|\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u(x)\right|^{p} d x \leq 1$.
- We write $X=X \backslash \Omega(u) \cup \Omega(u)$, where

$$
\Omega(u)=\{x \in X:|u(x)| \geq 1\} .
$$

- By Anker's multiplier theorem

$$
\int_{X}|u(x)|^{p} d x \leq S_{p} \int_{X}\left|\left(-\Delta-|\rho|^{2}+\zeta^{2}\right)^{\alpha / 2} u(x)\right|^{p} d x \leq S_{p}
$$

provided $\zeta>2|\rho||1 / 2-1 / p|$.

- Therefore,

$$
|\Omega(u)|=\int_{\Omega(u)} d x \leq \int_{X}|u(x)|^{p} d x \leq S_{p}
$$

- On $X \backslash \Omega(u)$

$$
\int_{X \backslash \Omega(u)} \Phi_{p}\left(\beta_{0}(n, \alpha)|u(x)|^{p^{\prime}}\right) d x \leq \sum_{k=[p]}^{\infty} \frac{\beta_{0}(n, \alpha)^{k}}{k!}\|u\|_{p}^{p}<\infty
$$

- By first theorem we complete the proof.

Bibliography

嗇 Adams，D．R．；A sharp inequality of J．Moser for higher order derivatives，Ann．of Math． 128 （2）（1988），385－398．

國 Bhowmik，M．；Sharp Adams type inequalities for the fractional Laplace－Beltrami operator on noncompact symmetric spaces， arXiv：2106．08794．
E Bertrand，J．；Sandeep，K．；Sharp Green＇s Function Estimates on Hadamard Manifolds and Adams Inequality，International Mathematics Research Notices（2020）， doi：10．1093／imrn／rnaa216．
Fontana，L．；Sharp borderline Sobolev inequalities on compact Riemannian manifolds，Comment．Math．Helv． 68 （1993）， 415－454．
圊 Li，J．；Lu，G．；Yang，Q．；Sharp Adams and Hardy－Adams inequalities of any fractional order on hyperbolic spaces of all dimensions，Trans．Amer．Math．Soc． 373 （2020），3483－3513．

R Moser，J．；A sharp form of an inequality by N．Trudinger， Indiana Univ．Math．J． 20 （1970／71），1077－1092．
圊 Trudinger，Neil S．；On imbeddings into Orlicz spaces and some applications，J．Math．Mech．17，1967，473－483．
－Yang，Q．；Su，D．；Kong，Y．；Sharp Moser－Trudinger inequalities on Riemannian manifolds with negative curvature， Ann．Mat．Pura Appl．（4） 195 （2016），no．2，459－471．

Thank you

