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For p = n, the inequality fails. Counterexample: let
1

f(x) = loglog(1 +
x|

), x € B(0,1).

Then f € WLA(R") but f ¢ L®(R").
For p € [1,00], WLP(R™) = {u € LP(R") : Vu € LP(R")}.



Moser-Trudinger Inequality

Let Q C R"” be a bounded domain. Then 3 C,, > 0 such that

sup / el g i)
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holds for every o < vy = n[wn_l]l/(”_l), where w,_1 is the surface
measure of the unit sphere in R”.
Furthermore, the constant «,, is sharp.
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Here, 1/p+1/p’ =1 and
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Step 1: Riesz potential

Lemma
Let m € 2N and u € C"(R") then for x € R"

o) = o [ W)y — o s V().
R

n |x = y|nmm

Using this lemma it is enough to prove that there exists C > 0
such that

/
sup /eﬁl"m*” < €19,
FeLP(R),[/f][,<1JQ

where p = n/m and I,(x) = |x|"~".
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Here, f* denotes the non-increasing rearrangement of f defined

f(t) = inf{s > 0: A¢(s) < t},

where the distribution function A\r of f is
Ar(s) = HIf| > s},
A direct calculation gives us the relation

Wn—1

1/p'
) , fort > 0.

In(t) < (

nt



@ Using O'Niel’s lemma it follows that

€2 /
6|Im>kf(X)‘ X < — eB“m*f)*(t)‘p dt

(wzgl)l/p (/ot F(s)ds + /t m‘ f*(s) sl/p’>.




@ Using O'Niel’s lemma it follows that

fof ,
At g« L [T Bl 0P g
\Q\/ \Q\

(wzgl)l/p (/0 Fi(s)ds + /t . f*(s) sl/p’>.

@ Changing the variable as
b(s) = QM PF(|Q]e*/P)

reduces to the one variable problem of showing the existence
of C, > 0 which satisfies

6]l o(e <1:»/ A g < C,,

where
F(t) =t — /0 " a(s. 1)(s) d,

a(s,t) = p e™9/P if s > t.
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@ On R", Moser-Trudinger inequality does not hold because

/eau(x)v’Z/ |- oo

@ One can modify the exponential function and look for
inequalities of the form:

There exists ¢ > 0 such that

sup | @alalul”) <,

uE€ CE(RM), [ (V< ulP+]ulP) <1

where
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To establish sharp Adams type inequalities on the Sobolev spaces
W/ of any positive fractional order o« < n on Riemannian
symmetric spaces of noncompact type of all dimension n > 3 and
of arbitrary rank.
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An example

o Let G = SL(2,R), K = SO(2).

@ We have X = G/K =2 H? = {(x,y) € R? | y > 0}. The
dx2—|—dy2
2 .

metric on H? is given by ds® =

@ We have A=R. The rank of H? is 1.

o
82 82
2
Af(xy) = (50 + 5,2)F




Sobolev space on X

Let « > 0 and 1 < p < oo. The Sobolev space W*P(X) is the
image of LP(X) under the operator (—A)~%/2, equipped with the
norm

IFllwarxy = I1(=D)*2F|l 1o(x)-
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Theorem (M. Bhowmik 2021)

Let n>3,0 < a < nandp=n/a. Then there exists C = C(n, «)
such that

@, (50(n,a)yu(x)|P’) dx < C,

for any u € WP(X) with [, |(—A)¥?u(x)|P dx < 1.
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Theorem (Anker-Ji, 1999)

For large |x]|

ke.a(x) S |x|@==02=1%1 go(x) e=¢IK,

_4
ENE

There exists € satisfying 0 < ¢ < min{1, n — a} such that

1 1 1
— + 0| ———— |, 0<|x| <1,
v(a) x|~ | x|n—a—e

where (o)) = 21&;605(/%2), for 0 < a < n.
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@ fFor large t

[kl (t) < t=1/2=C'/2lel (1og t)2lPl/(C"+ll),

where ¢’ € (0, ().
@ For small t

1 nt (a_n)/n oOT€E—N)/ n
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@ By O'Neil's lemma for t >0
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0
@ We now change the variables

(1) = (IQe ) /PF(|Qle");
¥(t) = Bo(m, @) 7P (1Qle” )P Ko (1Q0e7Y).
@ To get

’%'/ﬂexp (Bo(n. )u()lP) dx

1 [l o
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< / T e FO gt
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where F(t) is equals to

/
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Sketch of the proof
o Let u€ WP with [ [(—A — |p|*> + () 2u(x)|P dx < 1.
o We write X = X\Q(u) UQ(u), where
Q(u) ={x e X :|u(x)| > 1}.
@ By Anker’'s multiplier theorem
[ 16GP ax <5, [ (-8 1o + ) u() dx < S,
X X

provided ¢ > 2|p||1/2 —1/p|.
@ [ herefore,

Q(u)| = /Q(u) dx < /X lu(x)|P dx < Sp.
e On X\Q(v)
= n, « k
[ @ (naduar) ax < 3 B0 e <o

k=|p]

@ By first theorem we complete the proof.
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