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Notation:

@ Volume mean value operator B,f is given by

. 1
B = 1507 /B(X,r) Fy)dy
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Notation:

@ Volume mean value operator B,f is given by
B,f(x) -—1/ F(y) dy = F  my(x)
' . |B(X7r)’ B(x,r) '

where
1

my(y) = WXB(W)(Y)-
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Notation:

@ Volume mean value operator B,f is given by
B,f(x) -—1/ F(y) dy = F  my(x)
' . |B(X7r)’ B(x,r) '

where
1

my(y) = WXB(W)(Y)-

@ Heat kernel on R": hy(x) := e P4t (t>0,x e R).

(4mt)"/?
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Notation:

@ Volume mean value operator B,f is given by
B,f(x) -—1/ F(y) dy = F  my(x)
' . |B(X7r)’ B(x,r) '

where
1

my(y) = WXB(W)(Y)-

@ Heat kernel on R": hy(x) := e P4t (t>0,x e R).

(4rt)"
o u(x,t) = (ef)(x) := f * he(x)
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Notation:

@ Volume mean value operator B,f is given by

S =f*xm.(x
B (%)= 1B r)y/B(m () dy=1om ()

where 1
my(y) = WXB(W)(Y)-
@ Heat kernel on R": hy(x) := G :)nﬂe*"(‘z/“, (t>0,x eR").

o u(x,t) = (e®f)(x) := f * he(x) solves the heat equation:

Oru = Au,
u(x,0) = f(x).
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Theorem 1 ( Repnikov and Eidel’'man, [5], 1966 ).

Let f € L*°(R") and x, € R" be fixed. Then

lim % m,(xo) =L if and only if lim f % hs(x,) = L.
t—00

r—o0
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Theorem 1 ( Repnikov and Eidel’'man, [5], 1966 ).

Let f € L*°(R") and x, € R" be fixed. Then

lim f % m,(xo) = L if and only if tILm fxhe(x,) = L.

r—o0

@ The above result was generalized by Li [3] to complete n-dimensional
Riemannian manifolds M with nonnegative Ricci curvature satisfying

lim inf&n’r)‘ > 0. (1)

r—oo r
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Theorem 1 ( Repnikov and Eidel’'man, [5], 1966 ).

Let f € L>*(R") and x, € R" be fixed. Then

lim % my(xo) = L if and only if lim £ x hy(xo) = L.

r—o0

@ The above result was generalized by Li [3] to complete n-dimensional
Riemannian manifolds M with nonnegative Ricci curvature satisfying

B
fiminf BN g (1)
r—o0 rn
@ Using Bishop—Gromov comparison theorem one can show that the

geodesic ball B(x, r) has polynomial volume growth.
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Theorem 1 ( Repnikov and Eidel’'man, [5], 1966 ).

Let f € L>*(R") and x, € R" be fixed. Then

lim % my(xo) = L if and only if lim £ x hy(xo) = L.

r—o0

@ The above result was generalized by Li [3] to complete n-dimensional
Riemannian manifolds M with nonnegative Ricci curvature satisfying

lim inf&n’r)‘ > 0. (1)

r—o0 r

@ Using Bishop—Gromov comparison theorem one can show that the
geodesic ball B(x, r) has polynomial volume growth.

@ The proof of Li's result relies on the above result of Repnikov et al.
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Theorem 2 (Naik—Sarkar—Ray, [4], 2021).

Let S be a Damek—Ricci space and f € L*°(S). Then for any x, € S,

rILngo fxm,(x,) = L implies tll>no10 fxhe(xo) =L,

where L is a constant.
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Theorem 2 (Naik—Sarkar—Ray, [4], 2021).

Let S be a Damek—Ricci space and f € L*°(S). Then for any x, € S,

rILngo fxm,(x,) = L implies tlLrT;o fxhe(xo) =L,

where L is a constant.

@ The converse of above theorem is not true in Damek—Ricci space.
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Theorem 2 (Naik—Sarkar—Ray, [4], 2021).

Let S be a Damek—Ricci space and f € L*°(S). Then for any x, € S,

lim fxm,(xo) =L implies lim f x hy(x,) = L,
r—00 t—0o0

where L is a constant.

@ The converse of above theorem is not true in Damek—Ricci space.

Question: Can one replace the boundeded ness condition of f in Repnikov
and Eidel’'man’s Theorem 1 by any other suitable growth condition 7
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Theorem 3 (Naik—Sarkar—Ray, [4], 2021).

Let f, g be measurable functions on S such that f € L*°(S) and

lim f*m,(x) = g(x), foralmost every x € S.
r—00

Then Ag = 0.
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Theorem 3 (Naik—Sarkar—Ray, [4], 2021).

Let f,g be measurable functions on S such that f € L*>°(S) and

lim f*m,(x) = g(x), foralmost every x € S.
r—00

Then Ag = 0.

| A\

Proof.
@ Applying Theorem 2 we get

lim f % hs(x) = g(x),

S—00

for almost every x € S.
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Let f,g be measurable functions on S such that f € L*>°(S) and

lim f*m,(x) = g(x), foralmost every x € S.
r—00

Then Ag = 0.

| A\

Proof.
@ Applying Theorem 2 we get

lim f % hs(x) = g(x),

S—00

for almost every x € S. Owing to (2) we have

lim % hs *x he(x) = g * ht(x),

S$§—00
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Theorem 3 (Naik—Sarkar—Ray, [4], 2021).

Let f,g be measurable functions on S such that f € L*>°(S) and

lim f*m,(x) = g(x), foralmost every x € S.
r—00

Then Ag = 0.

| A\

Proof.
@ Applying Theorem 2 we get

lim f % hs(x) = g(x),

S—00
for almost every x € S. Owing to (2) we have
ILm f x hs x he(x) = g * ht(x),

= slg‘r;o fx hspe(x) = g * he(x),
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Proof Contd.

Thus g x hy = g for any t > 0.
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Proof Contd.

Thus g x hy = g for any t > 0.
Hence

Ag = A(g * hy)
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Proof Contd.

Thus g x hy = g for any t > 0.
Hence

Ag = A(g * hy) = 0¢(g * ht)
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Proof Contd.

Thus g x hy = g for any t > 0.
Hence

Ag = A(g * hy) = 0:(g * ht) = Org = 0.
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Proof Contd.

Thus g x hy = g for any t > 0.
Hence

Ag = A(g* ht) = 0:(g x hy) = 0:g = 0.

DJ
Proposition 1.

Let f € L°(R") and x, € R" be fixed.

V.
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Proof Contd.

Thus g x hy = g for any t > 0.
Hence

Ag = A(g* ht) = 0:(g x hy) = 0:g = 0.

| D
\

Proposition 1.
Let f € L>*(R") and x, € R" be fixed. If

lim fxm(x,) =1L
r—o0

for a constant L, then for any x € R"

rILrgo fxm.(x)=L.

V.
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Thus g x hy = g for any t > 0.
Hence
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Proposition 1.
Let f € L>*(R") and x, € R" be fixed. If

lim fxm(x,) =1L
r—o0

for a constant L, then for any x € R"

rILrgo fxm.(x)=L.

V.
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Proof

@ First assume that x, = 0.
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Proof

@ First assume that x, = 0.

f %« m.(0) — f % my(x)
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Proof

@ First assume that x, = 0.

f %« m.(0) — f % my(x)

1
B ‘B(O, r)’ </B(o,r) f(y) W= /B(x,r) f(y) dy)
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Proof

@ First assume that x, = 0.

fxm.(0) —fx my(x)

1
B ‘B(O, r)’ </B(o,r) f(y) W= /B(x,r) f(y) dy)

1 / '
= = fy dy+/ f(y)dy
|B(o, r)| [( B(o,r)\B(x,r) ¥ B(o0,r)NB(x,r)
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Proof

@ First assume that x, = 0.

fxm.(0) —fx my(x)

1 /
= S fy dy—/ f(y)dy
‘B(O, r)’ ( B(o,r) ( ) B(x,r) ( )
1 / '
= = fy dy+/ f(y)dy
|B(o, r)| K B(o,r)\B(x,r) ¥ B(o0,r)NB(x,r)

- (/ f(y)dy+/ f(y)dy>]
B(x,r)\B(o,r) B(o,r)NB(x,r)
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Proof

@ First assume that x, = 0.

fxm.(0) —fx my(x)

: /
= — f(y dy—/ f(y)dy
‘B(O, r)’ ( B(o,r) ( ) B(x,r) ( )
1 / '
= — f(y dy+/ f(y)dy
|B(o, )| K B(o,r)\B(x.r) ¥ B(0,r)NB(x,r) ¥) )
- (/ f(y)dy+/ f(y)dy>]
B(x,r)\B(o,r) B(o,r)NB(x,r)

: /
= fy dy—/ f(y)dy
|B(o, r)| ( B(o0,r)\B(x,r) ) B(x,r)\B(o,r) )
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|f x* m,(0) — f % m,(x)|
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1

f*m.(0)—fxm(x / f(y)ldy
| ( ) ( )| |B(O,I’)| B(o,r)AB(X,r)| ( )’

IN
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1

B |B(O I’)| B(o,r)AB(x,r)
171 [0 NAB( )
1B(0,r)]

£ % mp(0) — F % mi(x)] [f(y)l dy

IN
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1

f*m.(0)—fxm(x < f(y)ldy
| ( ) ( )| |B(O I’)| B(orAB(xr)| ( )’
|B(o, r)AB(x, r)|
<
= Il=""150.1)
|A(r = Ix[, r + [x])|
<
= M= 5 00,

where A(r — |x|, r + |x|) is the annulus centered at o with inner radius
r — |x| and outer radius r + |x]|.
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N |B(O I’)| B(o,r)AB(x,r)
||f”oo| (0, r)AB(x,r)|
|B(o, r))]
[A(r — Ix|, r + |x])]
|B(o, r)]

£ % mp(0) — F % mi(x)] [f(y)l dy

IN

IN

1Flloo

where A(r — |x|,r + |x|) is the annulus centered at o with inner radius
r — |x| and outer radius r + |x]|.
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IN

IN

1Flloo
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1

fxm,(0)—f*m/(x < — f(y)| dy
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<
= If=""100, 1)
[A(r = [x], r + |x])|
<
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1

fxm,(0)—f*m/(x < — f(y)| dy
| ( ) ( )| ’B(O, r)| B(o,r)AB(x,r)| ( )|
|B(o, r)AB(x, r))]
<
= If=""100, 1)
[A(r = [x], r + |x])|
<
= M= 5 00,

where A(r — |x|, r + |x|) is the annulus centered at o with inner radius
r — |x| and outer radius r + |x|.

op=xp—ox=r—]|x|




1
|f ’ mr(O) s m’(X)| = ’B(O, r)| B(o,r)AB(x,r) |f(y)| dy
HfHOO‘B(Oa I‘)AB(X, r)‘
|B(o, r)|
[A(r = [x], r + |x])|
|B(o, r)]

IN

IN

1Flloo

where A(r — |x|, r + |x|) is the annulus centered at o with inner radius
r — |x| and outer radius r + |x|.

op=xp—ox=r—]|x|

0q = ox +xq = r + |x|.
q




1

fxm,(0)—f*m/(x < — f(y)| dy
| ( ) ( )| ’B(O? r)| B(o,r)AB(x,r)| ( )|
|B(o, r)AB(x, r))]
<
= If=""100, 1)
[A(r = [x], r + |x])|
<
= M= 500, 1)

where A(r — |x|,r + |x|) is the annulus centered at o with inner radius
r — |x| and outer radius r + |x|.

op=xp—ox=r—]|x|
oq =ox+xq =r+ |x|.
B(o, r)AB(x,r) C A(r — |x]|, r + |x|).
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Thus we get

A(r = Ix|, r + [x1)]
B(o,n)]

5 mp(0) — F 5 my ()] < [ Fll
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Thus we get

A(r = IxI, r + Ix])|

£ 5 m(0) — £ ¢ me(x)] < [[Foc) 3)

|B(o, r)]
Since ., ,
A= Ixlr+ XDl (r+ XD = (r = Ix])
|B(o, r)] rn
goes to zero as r — 0o, by taking limsup in bothsides of (3) we get our
desired result. ]
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Thus we get

A(r = IxI, r + Ix])|

£ 5 m(0) — £ ¢ me(x)] < [[Foc) 3)

|B(o, r)]
Since ., ,
A= Ixlr+ XDl (r+ XD = (r = Ix])
|B(o, r)] rn
goes to zero as r — 0o, by taking limsup in bothsides of (3) we get our
desired result. ]

@ In a Damek—Ricci space,

A = Il 7+ Ixl)]_ et — ot

B0, )| e’

_ ool _ galx]

doesn't go to zero as r — 0.
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Notation:

@ We fix the identity element e of the group S as the origin o.
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Notation:

@ We fix the identity element e of the group S as the origin o.

@ Let p denotes the half of the limit of the mean curvature of geodesic
spheres as radius of the sphere tends to infinity.
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Notation:

@ We fix the identity element e of the group S as the origin o.

@ Let p denotes the half of the limit of the mean curvature of geodesic
spheres as radius of the sphere tends to infinity.

@ For A € C, Elementary spherical function ¢} is the unique smooth
radial eigenfunction of A with

Apy =N+ p%)pr, pa(o)=1.
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Notation:

@ We fix the identity element e of the group S as the origin o.

@ Let p denotes the half of the limit of the mean curvature of geodesic
spheres as radius of the sphere tends to infinity.

@ For A € C, Elementary spherical function ¢} is the unique smooth
radial eigenfunction of A with

Apy =N+ p%)pr, pa(o)=1.

@ py=w_xand pj, =p_j =1
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Notation:

@ We fix the identity element e of the group S as the origin o.

@ Let p denotes the half of the limit of the mean curvature of geodesic
spheres as radius of the sphere tends to infinity.

@ For A € C, Elementary spherical function ¢} is the unique smooth
radial eigenfunction of A with

Apy =N+ p%)pr, pa(o)=1.

@ py=w_xand pj, =p_j =1
o |pa(x)] <1 for [N < p.
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Definition

-~

e For A € C, let f(\) denotes the spherical Fourier transform of f at A
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Definition

-~

e For A € C, let f(\) denotes the spherical Fourier transform of f at A
defined by

F\) = /S £V (x) dx.
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Definition

-~

e For A € C, let f(\) denotes the spherical Fourier transform of f at A
defined by

F\) = /S £V (x) dx.
@ For a suitable measure 1 on S and A € C, we define zi(\) by

A = /5 () dpu(x).
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Definition

-~

e For A € C, let f(\) denotes the spherical Fourier transform of f at A
defined by

F\) = /S £V (x) dx.
@ For a suitable measure 1 on S and A € C, we define zi(\) by

A = /5 () dpu(x).

~

o hi()) := etV +7%),
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Definition

-~

e For A € C, let f(\) denotes the spherical Fourier transform of f at A
defined by

F\) = /S £V (x) dx.
@ For a suitable measure 1 on S and A € C, we define zi(\) by

A = /5 () dpu(x).

o hy(N) := etV +),
o Let (r) := m fB(o’r) oa(x) dx
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Definition

-~

e For A € C, let f(\) denotes the spherical Fourier transform of f at A
defined by

F\) = /S £V (x) dx.
@ For a suitable measure 1 on S and A € C, we define zi(\) by
A = /5 o2 (x) dia(x).

o hy(N) := etV +),
o Let )(r) := m fB(o,r) o (x) dx = my(N).

<Reca|l: m,(y) = B(o, r)|x3(o_,)(y)> )
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Definition

-~

e For A € C, let f(\) denotes the spherical Fourier transform of f at A
defined by

F\) = /S £V (x) dx.
@ For a suitable measure 1 on S and A € C, we define zi(\) by
A = /5 o2 (x) dia(x).

o hy(N) := etV +),
o Let )(r) := m fB(o,r) o (x) dx = my(N).

<Reca|l: m,(y) = B(o, r)|x3(o_,)(y)> )

@ Yy=1_yand ¥, = _;, =1
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@ For 3\ < 0 and t > 0, we have the following asymptotic estimate of

(Y _
lim e~ (PPt (1) = ¢())

t—o0
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@ For 3\ < 0 and t > 0, we have the following asymptotic estimate of

(Y _
lim e~ (A=At (1) = () (4)

t—o0

where ¢(\) is an analogue of Harish-Chandra c-function.
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@ For 3\ < 0 and t > 0, we have the following asymptotic estimate of

(Y _
lim e~ (A=At (1) = () (4)

t—o00
where ¢(\) is an analogue of Harish-Chandra c-function.

@ It is also known that c-function has neither zero nor pole in the region
3N <0.
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@ For 3\ < 0 and t > 0, we have the following asymptotic estimate of

(Y _
lim e~ (A=At (1) = () (4)

t—o00
where ¢(\) is an analogue of Harish-Chandra c-function.

@ It is also known that c-function has neither zero nor pole in the region
3N <0.

o Let 0 # o € R be fixed.
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@ For 3\ < 0 and t > 0, we have the following asymptotic estimate of

(Y _
lim e~ (A=At (1) = () (4)

t—o00
where ¢(\) is an analogue of Harish-Chandra c-function.

@ It is also known that c-function has neither zero nor pole in the region
3N <0.

o Let 0 # o € R be fixed.

e Claim: to—jp(r) does not converge to any value as r — oo
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@ For 3\ < 0 and t > 0, we have the following asymptotic estimate of

(Y _
lim e~ (A=At (1) = () (4)

t—o00
where ¢(\) is an analogue of Harish-Chandra c-function.

@ It is also known that c-function has neither zero nor pole in the region
3N <0.

o Let 0 # o € R be fixed.

e Claim: to—jp(r) does not converge to any value as r — oo and is
oscillatory.
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@ For 3\ < 0 and t > 0, we have the following asymptotic estimate of

Yy,
lim e (A=A (1) = ¢(A) (4)

t—o00
where ¢(\) is an analogue of Harish-Chandra c-function.

@ It is also known that c-function has neither zero nor pole in the region
3N <0.

o Let 0 # o € R be fixed.
e Claim: to—jp(r) does not converge to any value as r — oo and is
oscillatory.

1

Reason: e/®" — S :
e*[’(o‘*’p)*/)]rwwi’-p(r)

Va—ip(r)-
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@ For a radial measure i, one can show that

o pu(x) = (A)pa(x).
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@ For a radial measure i, one can show that

o pu(x) = (A)pa(x).

Thus we get @) * he(x) = ’Z(A)CPA(X)
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@ For a radial measure i, one can show that

o pu(x) = (A)pa(x).

Thus we get @) * he(x) = ’Z(A)CPA(X)

e—t()x2+p2)<p>\(x)_
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@ For a radial measure i, one can show that

o pu(x) = (A)pa(x).

Thus we get @) * he(x) = ’Z(A)CPA(X)
e—t()x2+p2)(p)\(x).
Hence SDOé—I'p * ht(X) = e_t[(a—l’p)z-i-[ﬂ]gpa_ip(x)
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@ For a radial measure i, one can show that

o pu(x) = (A)pa(x).

Thus we get @) * he(x) = ’Z(A)CPA(X)
e—t()x2+p2)(p)\(x).
Hence SDOé—I'p * ht(X) = e_t[(a—l’p)z-i-[ﬂ]gpa_ip(x)

_ —t(a?—p®—2iap+p?
— e tle*—p ptp )SOa—ip(X)

Muna Naik (HRI, Prayagraj) Large time behaviour of heat propagator 5th January, 2022 16 /25



@ For a radial measure i, one can show that

o pu(x) = (A)pa(x).

Thus we get @) * he(x) = ’Z(A)CPA(X)
(N2, 2
etV +p )QOA(X)-
Hence SDOé—I'p * ht(X) = e_t[(a—l’p)z-i-[ﬂ]gpa_ip(x)
= et 2iaptN) L (x)
—t(a?2—2i
e t(a®—2 ap)SDa—ip(X)
Large time behaviour of heat propagator 5th January, 2022
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@ For a radial measure i, one can show that

o pu(x) = (A)pa(x).

Thus we get @) * he(x) = ’Z(A)CPA(X)
e—t()x2+p2)(p)\(x).
Hence ga_ip* he(x) = e_t[(oc—ip)2+p2]%_,.p(x)
_ e_t(o‘2_”2_2ia”+”2)goa_;p(x)
SDa—ip(X)

Spa—ip(x)-

e t(a?—2iap)

—ta? 2j
— e ta tetocp
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@ For a radial measure i, one can show that

o pu(x) = (A)pa(x).

Thus we get @) * he(x) = ’Z(A)CPA(X)
e—t()x2+p2)(p)\(x).
Hence a_ip+ he(x) = e—t[(oc—ip)2+p2]90a_ip(x)
- e_t(o‘z_”2_2iap+p2)goa_,-p(x)
_ e_t(a2_2iap)S0a—ip(X)

_ e—ta2 ezitap¢a—ip(x)~

e From above, it is clear that for any x € S, po—i, * ht(x) = 0 as
t — o0.
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Similarly we have, oy * m,(x) = m;(\)pa(x)
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Similarly we have, oy * m,(x) = m;(\)pa(x)

= ha(r)ea(x).
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Similarly we have, oy * m,(x) = m;(\)pa(x)
YA(r)ea(x).
Thus we get, pa—ip * Mr(X) = Ya—ip(r)Pa—ip(x).
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Similarly we have, oy * m,(x) = m;(\)pa(x)
= Ua(r)ea(x).
Thus we get, pa—ip * Mr(X) = Ya—ip(r)Pa—ip(x).

Since 1)o—i,(r) does not converge to any value as r — oo,
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Similarly we have, oy * m,(x) = m;(\)pa(x)
YA(r)ea(x).
Thus we get, pa—ip * Mr(X) = Ya—ip(r)Pa—ip(x).

Since 1)o—iy(r) does not converge to any value as r — oo, it follows that
Pa—ip * my(x) does not converge to any value as r — oo,
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Similarly we have, oy * m,(x) = m;(\)pa(x)
YA(r)ea(x).
Thus we get, pa—ip * Mr(X) = Ya—ip(r)Pa—ip(x).

Since 1)o—iy(r) does not converge to any value as r — oo, it follows that
Pa—ip * my(x) does not converge to any value as r — oo,
But since @i, * he(x) — 0 as t — oo,
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Similarly we have, oy * m,(x) = m;(\)pa(x)
YA(r)ea(x).
Thus we get, pa—ip * Mr(X) = Ya—ip(r)Pa—ip(x).

Since 1)o—iy(r) does not converge to any value as r — oo, it follows that
Pa—ip * my(x) does not converge to any value as r — oo,

But since @i, * he(x) — 0 as t — oo, it follows that the function ¢,
forms a counterexample for Repnikov et al’s theorem in Damek—Ricci
space.
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o Let pq_jy(x) = u(x)+iv(x).
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o Let po—ip(x) = u(x) + i v(x). As ¢q_i, * m,(x) does not converge to
any value, it follows that either u* m,(x) or v * m,(x) does not
converge to any value as r — oco.
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o Let po—ip(x) = u(x) + i v(x). As ¢q_i, * m,(x) does not converge to
any value, it follows that either u* m,(x) or v * m,(x) does not
converge to any value as r — oco. Without loss of generality assume

that u = m,(x) does not converge.

18/25
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o Let po—ip(x) = u(x) + i v(x). As ¢q_i, * m,(x) does not converge to
any value, it follows that either u* m,(x) or v * m,(x) does not
converge to any value as r — oco. Without loss of generality assume

that u = m,(x) does not converge.

@ Since [pa—ip(x)| <1, Ju(x)| < 1.
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o Let po—ip(x) = u(x) + i v(x). As ¢q_i, * m,(x) does not converge to
any value, it follows that either u* m,(x) or v * m,(x) does not
converge to any value as r — oco. Without loss of generality assume
that u = m,(x) does not converge.

@ Since [pa—ip(x)| <1, Ju(x)| < 1.

o Let f(x) =2— u(x).
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o Let po—ip(x) = u(x) + i v(x). As ¢q_i, * m,(x) does not converge to
any value, it follows that either u* m,(x) or v * m,(x) does not
converge to any value as r — oco. Without loss of generality assume
that u = m,(x) does not converge.

@ Since [pa—ip(x)| <1, Ju(x)| < 1.

o Let f(x) =2 — u(x). Clearly f is a strictly positive function
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o Let po—ip(x) = u(x) + i v(x). As ¢q_i, * m,(x) does not converge to
any value, it follows that either u* m,(x) or v * m,(x) does not
converge to any value as r — oco. Without loss of generality assume
that u = m,(x) does not converge.

@ Since [pa—ip(x)| <1, Ju(x)| < 1.

o Let f(x) =2 — u(x). Clearly f is a strictly positive function and
f x m,(x) does not converge to any value as r — oco.
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o Let po—ip(x) = u(x) + i v(x). As ¢q_i, * m,(x) does not converge to
any value, it follows that either u* m,(x) or v * m,(x) does not
converge to any value as r — oco. Without loss of generality assume
that u = m,(x) does not converge.

@ Since [pa—ip(x)| <1, Ju(x)| < 1.

o Let f(x) =2 — u(x). Clearly f is a strictly positive function and
f x m,(x) does not converge to any value as r — oco.

@ On the other hand, since
ux he(x) +iv*he(x) = @a_ip* he(x) =0

as t — oo,
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o Let po—ip(x) = u(x) + i v(x). As ¢q_i, * m,(x) does not converge to
any value, it follows that either u* m,(x) or v * m,(x) does not
converge to any value as r — oco. Without loss of generality assume
that u = m,(x) does not converge.

@ Since [pa—ip(x)| <1, Ju(x)| < 1.

o Let f(x) =2 — u(x). Clearly f is a strictly positive function and
f x m,(x) does not converge to any value as r — oco.

@ On the other hand, since
ux he(x) +iv*he(x) = @a_ip* he(x) =0

as t — oo, it is clear that u* hy(x) — 0 as t — oc.
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o Let po—ip(x) = u(x) + i v(x). As ¢q_i, * m,(x) does not converge to
any value, it follows that either u* m,(x) or v * m,(x) does not
converge to any value as r — oco. Without loss of generality assume
that u = m,(x) does not converge.

@ Since [pa—ip(x)| <1, Ju(x)| < 1.

o Let f(x) =2 — u(x). Clearly f is a strictly positive function and
f x m,(x) does not converge to any value as r — oco.

@ On the other hand, since
ux he(x) +iv*he(x) = @a_ip* he(x) =0

as t — oo, it is clear that u * hy(x) — 0 as t — oo. Consequently we
get
lim fxh(x) =2— lim uxhe(x) = 2.

t—00 t—00

for any fixed x € S.
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Theorem 4 (Naik—Sarkar—Ray, [4], 2021).

Let f be a measurable function on S
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Theorem 4 (Naik—Sarkar—Ray, [4], 2021).

Let f be a measurable function on S satisfying
1£(x)] < AeBXl for almost every x € S, (5)

and for constants A > 0 and B € R.
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Theorem 4 (Naik—Sarkar—Ray, [4], 2021).

Let f be a measurable function on S satisfying
1£(x)] < AeBXl for almost every x € S, (5)

and for constants A > 0 and B € R. Then for any A € iR and a point
Xo € S,

1
lim ———f % my(xo) = L implies lim e®™*#)f « hy(x,) = L,
t—o0

r—00 wA(r)

where L is a constant.
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Theorem 4 (Naik—Sarkar—Ray, [4], 2021).

Let f be a measurable function on S satisfying
1£(x)] < AeBXl for almost every x € S, (5)

and for constants A > 0 and B € R. Then for any A € iR and a point
Xo € S,

1
lim ———f % my(xo) = L implies lim e®™*#)f « hy(x,) = L,
t—o0

r—00 wA(r)

where L is a constant.

@ Converse of the above theorem is not true.
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Theorem 4 (Naik—Sarkar—Ray, [4], 2021).

Let f be a measurable function on S satisfying
1£(x)] < AeBXl for almost every x € S, (5)

and for constants A > 0 and B € R. Then for any A € iR and a point
Xo € S,

1
lim ———f % my(xo) = L implies lim e®™*#)f « hy(x,) = L,
t—o0

r—00 wA(r)

where L is a constant.

@ Converse of the above theorem is not true.

@ The above theorem is not true for all complex number A with nonzero
real and imaginary parts,
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Theorem 4 (Naik—Sarkar—Ray, [4], 2021).

Let f be a measurable function on S satisfying
1£(x)] < AeBXl for almost every x € S, (5)

and for constants A > 0 and B € R. Then for any A € iR and a point
Xo € S,

1
lim ———f % my(xo) = L implies lim e®™*#)f « hy(x,) = L,
t—o0

r—00 wA(r)

where L is a constant.

@ Converse of the above theorem is not true.

@ The above theorem is not true for all complex number A with nonzero
real and imaginary parts, i.e. A ¢ (iIRUR).
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Theorem 4 (Naik—Sarkar—Ray, [4], 2021).

Let f be a measurable function on S satisfying
1£(x)] < AeBXl for almost every x € S, (5)

and for constants A > 0 and B € R. Then for any A € iR and a point
Xo € S,

1
lim ———f % my(xo) = L implies lim e®™*#)f « hy(x,) = L,
t—o0

r—00 wA(r)

where L is a constant.

@ Converse of the above theorem is not true.

@ The above theorem is not true for all complex number A with nonzero
real and imaginary parts, i.e. A ¢ (iIRUR).
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e For p € [1,00), we define the weak LP space by

LP®(X) := {f : S — C measurable | sup t |{x | |f(x)| > t}|'/P < co}.
t>0
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@ For p € [1,00), we define the weak LP space by

LP®(X) := {f : S — C measurable | sup t |{x | |f(x)| > t}|'/P < co}.
t>0

Theorem 5 (Naik—Sarkar—Ray, [4], 2021).

Fixap>2. Let \==+i(2/p—1)p.
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@ For p € [1,00), we define the weak LP space by

LP®(X) := {f : S — C measurable | sup t |{x | |f(x)| > t}|'/P < co}.
t>0

Theorem 5 (Naik—Sarkar—Ray, [4], 2021).

Fixap>2. Let \=+i(2/p—1)p.Then for f € LP*>°(S) and a point
Xo € S,
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@ For p € [1,00), we define the weak LP space by

LP®(X) := {f : S — C measurable | sup t |{x | |f(x)| > t}|'/P < co}.
t>0

Theorem 5 (Naik—Sarkar—Ray, [4], 2021).

Fixap>2. Let \=+i(2/p—1)p.Then for f € LP*>°(S) and a point
Xo € S,

lim L
r—oo l/})\(f)

where L is a constant.

f %« my(xo) = L implies tli)m et ) f 4 he(x0) = L,
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@ For p € [1,00), we define the weak LP space by

LP®(X) := {f : S — C measurable | sup t |{x | |f(x)| > t}|'/P < co}.
t>0

Theorem 5 (Naik—Sarkar—Ray, [4], 2021).

Fixap>2. Let \=+i(2/p—1)p.Then for f € LP*>°(S) and a point
Xo € S,

lim L
r—oo l/})\(f)

where L is a constant.

f %« my(xo) = L implies tli)m et ) f 4 he(x0) = L,

@ Converse of the above theorem is not true.
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e For p € [1,00), we define the weak LP space by

LP®(X) := {f : S — C measurable | sup t |{x | |f(x)| > t}|'/P < co}.
t>0

Theorem 5 (Naik—Sarkar—Ray, [4], 2021).

Fixap>2. Let \=+i(2/p—1)p.Then for f € LP*>°(S) and a point
Xo € S,

lim

1
r—o0 1 (r)

where L is a constant.

f* m,(xo,) = L implies tli)m et f 4 he(x0) = L,

@ Converse of the above theorem is not true.

@ The above theorem is also not true for all complex number A with
nonzero real and imaginary parts,
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e For p € [1,00), we define the weak LP space by

LP®(X) := {f : S — C measurable | sup t |{x | |f(x)| > t}|'/P < co}.
t>0

Theorem 5 (Naik—Sarkar—Ray, [4], 2021).

Fixap>2. Let \=+i(2/p—1)p.Then for f € LP*>°(S) and a point
Xo € S,

lim L
r—oo @/})\(I’)

where L is a constant.

f* m,(xo,) = L implies tli)m et f 4 he(x0) = L,

@ Converse of the above theorem is not true.

@ The above theorem is also not true for all complex number A with
nonzero real and imaginary parts, i.e. A ¢ (iIRUR).
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e For p € [1,00), we define the weak LP space by

LP®(X) := {f : S — C measurable | sup t |{x | |f(x)| > t}|'/P < co}.
t>0

Theorem 5 (Naik—Sarkar—Ray, [4], 2021).

Fixap>2. Let \=+i(2/p—1)p.Then for f € LP*>°(S) and a point
Xo € S,

lim L
r—oo @/})\(I’)

where L is a constant.

f* m,(xo,) = L implies tli)m et f 4 he(x0) = L,

@ Converse of the above theorem is not true.

@ The above theorem is also not true for all complex number A with
nonzero real and imaginary parts, i.e. A ¢ (iIRUR).
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Theorem 6 (Naik—Sarkar—Ray, [4], 2021).

Fix a X € iR.
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Theorem 6 (Naik—Sarkar—Ray, [4], 2021).

Fix a A € iR. Let f,g be measurable functions on S such that f satisfies
one of these three conditions:
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Theorem 6 (Naik—Sarkar—Ray, [4], 2021).

Fix a A € iR. Let f,g be measurable functions on S such that f satisfies
one of these three conditions:

(a) [f(x)| < Box(x) for almost every x € S, for a constant B > 0,
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Theorem 6 (Naik—Sarkar—Ray, [4], 2021).

Fix a A € iR. Let f,g be measurable functions on S such that f satisfies
one of these three conditions:

(a) |f(x)| < Bypa(x) for almost every x € S, for a constant B > 0,
(b) f € LP>°(S) for some p € (2,00) satisfying |A\| = (1 —2/p)p,
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Estimate of heat kernel

n—3

2 2
(1+7r) <1 + ! —: r> e e P e (n=dim(S),r > 0)

3
2

ht(r) = t
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Estimate of heat kernel

n—3
1 2 2
he(r) = t_%(l +r) <1 + —: r> e qe Pterr (n = dim(S), r > 0)
1 nT_3 2
= 72 (1+1) <1 + —: r> e ae Ftel e 20r
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Estimate of heat kernel

n—3
he(r) =< t72(1+7) <1 + L —: r) - e Pte " (n=dim(S),r > 0)
n—3
= t—%(l +r) <1 + 1 Jtr r> i e—ZTZt o Pt aPr @=20r
n—3
= (1) <1 +2 Jtr r) e
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Estimate of heat kernel

n—3
1 2 2
he(r) = t_%(l +r) <1 + —: r> e qe Pterr (n = dim(S), r > 0)
1 n;3 2
= 72 (1+1) <1 + —: r> e ae Ftel e 20r
n—3

1 2 (r=2pt)?
= t3(1+7) <1+ Jtrr) e T e 20r,

@ Exponential factors:
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Estimate of heat kernel

n—3
1 2 2
he(r) = t_%(l +r) <1 + —: r) e qe Pterr (n = dim(S), r > 0)
1 n;3 2
= 72 (1+1) <1 + —: r> e ae Ftel e 20r
n—3

1 2 (r=2pt)?
= t3(1+7) <1+ jr> e T e 20r,

@ Exponential factors:

2

R": py(r) = e %, (peak is always at 0).
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Estimate of heat kernel

=
_|_

2
he(r) = t_%(l +r) <1 + r) T e e Ptepr (n = dim(S), r > 0)

t

=
_|_

2 2
_ t_%(l + r) <1 + r> e_ﬂ e—[)Qte[)re—Zﬂr

2 (r—2/)t)2
) e~ a e 2P,

t

=
+
o

= t3(1+7) <1+ .

@ Exponential factors:

2
R™: pe(r) = e #, (peak is always at 0).

(r—2pt)?

S: pi(r)=e" a , (peakis at 2pt).
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Let s(t) be a positive function such that i\/? — 00 as t — 0.
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—

s(t

—

Let s(t) be a positive function such that 22 — oo as t — co. Then

Sl

t—o0

R™:  lim / he(r)dr = 0.
>s(t)
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s(t

—
—

Let s(t) be a positive function such that 22 — oo as t — co. Then

Sl

t—o0

S: lim / he(r)dr = 0.
E=00 J1r—2pt|>s(t)

R™:  lim / he(r)dr = 0.
>s(t)
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Let s(t) be a positive function such that i\/? — o0 as t — oco. Then

t—o0
S lim / ht(r)dr =0.
E=00 J1r—2pt|>s(t)

@ This means that heat produced initially at the origin o € S does not
diffuse homogeneously but concentrates asymptotically in an annulus
of width s(t) moving to infinity with speed 2p.

R™:  lim / he(r)dr = 0.
r>s(t)
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@ Such behavior sharply contrasts to that of the Euclidean space R”".
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@ The above result was first proved by Davies et al for hyperbolic
spaces [2]

Muna Naik (HRI, Prayagraj) Large time behaviour of heat propagator 5th January, 2022 23 /25



Let s(t) be a positive function such that i\/? — o0 as t — oco. Then

t—o0
S lim / ht(r)dr =0.
E=00 J1r—2pt|>s(t)

@ This means that heat produced initially at the origin o € S does not
diffuse homogeneously but concentrates asymptotically in an annulus
of width s(t) moving to infinity with speed 2p.

R™:  lim / he(r)dr = 0.
r>s(t)

@ Such behavior sharply contrasts to that of the Euclidean space R”".

@ The above result was first proved by Davies et al for hyperbolic
spaces [2] and by Anker and Setti for all symmetric spaces of
noncompact type [1].
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