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Notation:

Volume mean value operator Br f is given by

Br f (x) :=
1

|B(x , r)|

∫
B(x ,r)

f (y) dy

= f ∗mr (x)

where

mr (y) :=
1

|B(o, r)|
χB(o,r)(y).

Heat kernel on Rn: ht(x) := 1

(4πt)n/2 e
−|x |2/4t , (t > 0, x ∈ Rn).

u(x , t) = (et∆f )(x) := f ∗ ht(x) solves the heat equation:

∂tu = ∆u,

u(x , 0) = f (x).
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Theorem 1 ( Repnikov and É̆ıdel’man, [5], 1966 ).

Let f ∈ L∞(Rn) and xo ∈ Rn be fixed. Then

lim
r→∞

f ∗mr (xo) = L if and only if lim
t→∞

f ∗ ht(xo) = L.

The above result was generalized by Li [3] to complete n-dimensional
Riemannian manifolds M with nonnegative Ricci curvature satisfying

lim inf
r→∞

|B(x , r)|
rn

> 0. (1)

Using Bishop–Gromov comparison theorem one can show that the
geodesic ball B(x , r) has polynomial volume growth.

The proof of Li’s result relies on the above result of Repnikov et al.
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Theorem 2 (Naik–Sarkar–Ray, [4], 2021).

Let S be a Damek–Ricci space and f ∈ L∞(S). Then for any xo ∈ S,

lim
r→∞

f ∗mr (xo) = L implies lim
t→∞

f ∗ ht(xo) = L,

where L is a constant.

The converse of above theorem is not true in Damek–Ricci space.

Question: Can one replace the boundeded ness condition of f in Repnikov
and É̆ıdel’man’s Theorem 1 by any other suitable growth condition ?
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Theorem 3 (Naik–Sarkar–Ray, [4], 2021).

Let f , g be measurable functions on S such that f ∈ L∞(S) and

lim
r→∞

f ∗mr (x) = g(x), for almost every x ∈ S .

Then ∆g = 0.

Proof.

Applying Theorem 2 we get

lim
s→∞

f ∗ hs(x) = g(x), (2)

for almost every x ∈ S . Owing to (2) we have

lim
s→∞

f ∗ hs ∗ ht(x) = g ∗ ht(x),

⇒ lim
s→∞

f ∗ hs+t(x) = g ∗ ht(x),

⇒ g(x) = g ∗ ht(x).

Muna Naik (HRI, Prayagraj) Large time behaviour of heat propagator 5th January, 2022 8 / 25



Theorem 3 (Naik–Sarkar–Ray, [4], 2021).

Let f , g be measurable functions on S such that f ∈ L∞(S) and

lim
r→∞

f ∗mr (x) = g(x), for almost every x ∈ S .

Then ∆g = 0.

Proof.

Applying Theorem 2 we get

lim
s→∞

f ∗ hs(x) = g(x), (2)

for almost every x ∈ S .

Owing to (2) we have

lim
s→∞

f ∗ hs ∗ ht(x) = g ∗ ht(x),

⇒ lim
s→∞

f ∗ hs+t(x) = g ∗ ht(x),

⇒ g(x) = g ∗ ht(x).

Muna Naik (HRI, Prayagraj) Large time behaviour of heat propagator 5th January, 2022 8 / 25



Theorem 3 (Naik–Sarkar–Ray, [4], 2021).

Let f , g be measurable functions on S such that f ∈ L∞(S) and

lim
r→∞

f ∗mr (x) = g(x), for almost every x ∈ S .

Then ∆g = 0.

Proof.

Applying Theorem 2 we get

lim
s→∞

f ∗ hs(x) = g(x), (2)

for almost every x ∈ S . Owing to (2) we have

lim
s→∞

f ∗ hs ∗ ht(x) = g ∗ ht(x),

⇒ lim
s→∞

f ∗ hs+t(x) = g ∗ ht(x),

⇒ g(x) = g ∗ ht(x).

Muna Naik (HRI, Prayagraj) Large time behaviour of heat propagator 5th January, 2022 8 / 25



Theorem 3 (Naik–Sarkar–Ray, [4], 2021).

Let f , g be measurable functions on S such that f ∈ L∞(S) and

lim
r→∞

f ∗mr (x) = g(x), for almost every x ∈ S .

Then ∆g = 0.

Proof.

Applying Theorem 2 we get

lim
s→∞

f ∗ hs(x) = g(x), (2)

for almost every x ∈ S . Owing to (2) we have

lim
s→∞

f ∗ hs ∗ ht(x) = g ∗ ht(x),

⇒ lim
s→∞

f ∗ hs+t(x) = g ∗ ht(x),

⇒ g(x) = g ∗ ht(x).

Muna Naik (HRI, Prayagraj) Large time behaviour of heat propagator 5th January, 2022 8 / 25



Theorem 3 (Naik–Sarkar–Ray, [4], 2021).

Let f , g be measurable functions on S such that f ∈ L∞(S) and

lim
r→∞

f ∗mr (x) = g(x), for almost every x ∈ S .

Then ∆g = 0.

Proof.

Applying Theorem 2 we get

lim
s→∞

f ∗ hs(x) = g(x), (2)

for almost every x ∈ S . Owing to (2) we have

lim
s→∞

f ∗ hs ∗ ht(x) = g ∗ ht(x),

⇒ lim
s→∞

f ∗ hs+t(x) = g ∗ ht(x),

⇒ g(x) = g ∗ ht(x).

Muna Naik (HRI, Prayagraj) Large time behaviour of heat propagator 5th January, 2022 8 / 25



Theorem 3 (Naik–Sarkar–Ray, [4], 2021).

Let f , g be measurable functions on S such that f ∈ L∞(S) and

lim
r→∞

f ∗mr (x) = g(x), for almost every x ∈ S .

Then ∆g = 0.

Proof.

Applying Theorem 2 we get

lim
s→∞

f ∗ hs(x) = g(x), (2)

for almost every x ∈ S . Owing to (2) we have

lim
s→∞

f ∗ hs ∗ ht(x) = g ∗ ht(x),

⇒ lim
s→∞

f ∗ hs+t(x) = g ∗ ht(x),

⇒ g(x) = g ∗ ht(x).

Muna Naik (HRI, Prayagraj) Large time behaviour of heat propagator 5th January, 2022 8 / 25



Proof Contd.

Thus g ∗ ht = g for any t > 0.

Hence

∆g = ∆(g ∗ ht) = ∂t(g ∗ ht) = ∂tg = 0.

Proposition 1.

Let f ∈ L∞(Rn) and xo ∈ Rn be fixed. If

lim
r→∞

f ∗mr (xo) = L

for a constant L, then for any x ∈ Rn

lim
r→∞

f ∗mr (x) = L.
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Proof

First assume that xo = 0.

f ∗mr (0)− f ∗mr (x)

=
1

|B(o, r)|

(∫
B(o,r)

f (y) dy −
∫
B(x ,r)

f (y) dy

)

=
1

|B(o, r)|

[(∫
B(o,r)\B(x ,r)

f (y) dy +

∫
B(o,r)∩B(x ,r)

f (y) dy

)

−

(∫
B(x ,r)\B(o,r)

f (y) dy +

∫
B(o,r)∩B(x ,r)

f (y) dy

)]

=
1

|B(o, r)|

(∫
B(o,r)\B(x ,r)

f (y) dy −
∫
B(x ,r)\B(o,r)

f (y) dy

)
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|f ∗mr (0)− f ∗mr (x)|

≤ 1

|B(o, r)|

∫
B(o,r)4B(x ,r)

|f (y)| dy

≤ ‖f ‖∞
|B(o, r)4B(x , r)|
|B(o, r)|

≤ ‖f ‖∞
|A(r − |x |, r + |x |)|

|B(o, r)|

where A(r − |x |, r + |x |) is the annulus centered at o with inner radius
r − |x | and outer radius r + |x |.

o

r

x

r

o x
p
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Thus we get

|f ∗mr (0)− f ∗mr (x)| ≤ ‖f ‖∞
|A(r − |x |, r + |x |)|

|B(o, r)|
.

(3)

Since
|A(r − |x |, r + |x |)|

|B(o, r)|
=

(r + |x |)n − (r − |x |)n

rn

goes to zero as r →∞, by taking lim sup in bothsides of (3) we get our
desired result.

In a Damek–Ricci space,

|A(r − |x |, r + |x |)|
|B(o, r)|

� eα(r+|x |) − eα(r−|x |)

eαr
= eα|x | − e−α|x |

doesn’t go to zero as r →∞.
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Notation:

We fix the identity element e of the group S as the origin o.

Let ρ denotes the half of the limit of the mean curvature of geodesic
spheres as radius of the sphere tends to infinity.

For λ ∈ C, Elementary spherical function ϕλ is the unique smooth
radial eigenfunction of ∆ with

∆ϕλ = −(λ2 + ρ2)ϕλ, ϕλ(o) = 1.

ϕλ = ϕ−λ and ϕiρ = ϕ−iρ = 1.

|ϕλ(x)| ≤ 1 for |=λ| ≤ ρ.
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Definition

For λ ∈ C, let f̂ (λ) denotes the spherical Fourier transform of f at λ

defined by

f̂ (λ) :=

∫
S
f (x)ϕλ(x) dx .

For a suitable measure µ on S and λ ∈ C, we define µ̂(λ) by

µ̂(λ) :=

∫
S
ϕλ(x) dµ(x).

ĥt(λ) := e−t(λ2+ρ2).

Let ψλ(r) := 1
|B(o,r)|

∫
B(o,r) ϕλ(x) dx = m̂r (λ).(

Recall: mr (y) =
1

|B(o, r)|
χB(o,r)(y)

)
.

ψλ = ψ−λ and ψiρ = ψ−iρ = 1.
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For =λ < 0 and t > 0, we have the following asymptotic estimate of
ψλ,

lim
t→∞

e−(iλ−ρ)tψλ(t) = c(λ)

(4)

where c(λ) is an analogue of Harish-Chandra c-function.

It is also known that c-function has neither zero nor pole in the region
=λ < 0.

Let 0 6= α ∈ R be fixed.

Claim: ψα−iρ(r) does not converge to any value as r →∞ and is
oscillatory.

Reason: e iαr =
1

e−[i(α−iρ)−ρ]rψα−iρ(r)
ψα−iρ(r).
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For a radial measure µ, one can show that

ϕλ ∗ µ(x) = µ̂(λ)ϕλ(x).

Thus we get ϕλ ∗ ht(x) = ĥt(λ)ϕλ(x)

= e−t(λ2+ρ2)ϕλ(x).

Hence ϕα−iρ ∗ ht(x) = e−t[(α−iρ)2+ρ2]ϕα−iρ(x)

= e−t(α2−ρ2−2iαρ+ρ2)ϕα−iρ(x)

= e−t(α2−2iαρ)ϕα−iρ(x)

= e−tα
2
e2itαρϕα−iρ(x).

From above, it is clear that for any x ∈ S , ϕα−iρ ∗ ht(x)→ 0 as
t →∞.
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Similarly we have, ϕλ ∗mr (x) = m̂r (λ)ϕλ(x)

= ψλ(r)ϕλ(x).

Thus we get, ϕα−iρ ∗mr (x) = ψα−iρ(r)ϕα−iρ(x).

Since ψα−iρ(r) does not converge to any value as r →∞, it follows that
ϕα−iρ ∗mr (x) does not converge to any value as r →∞.
But since ϕα−iρ ∗ ht(x)→ 0 as t →∞, it follows that the function ϕα−iρ
forms a counterexample for Repnikov et al’s theorem in Damek–Ricci
space.
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Let ϕα−iρ(x) = u(x) + i v(x).

As ϕα−iρ ∗mr (x) does not converge to
any value, it follows that either u ∗mr (x) or v ∗mr (x) does not
converge to any value as r →∞. Without loss of generality assume
that u ∗mr (x) does not converge.

Since |ϕα−iρ(x)| ≤ 1, |u(x)| ≤ 1.

Let f (x) = 2− u(x). Clearly f is a strictly positive function and
f ∗mr (x) does not converge to any value as r →∞.

On the other hand, since

u ∗ ht(x) + i v ∗ ht(x) = ϕα−iρ ∗ ht(x)→ 0

as t →∞, it is clear that u ∗ ht(x)→ 0 as t →∞. Consequently we
get

lim
t→∞

f ∗ ht(x) = 2− lim
t→∞

u ∗ ht(x) = 2.

for any fixed x ∈ S .
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Theorem 4 (Naik–Sarkar–Ray, [4], 2021).

Let f be a measurable function on S

satisfying

|f (x)| ≤ AeB|x |, for almost every x ∈ S , (5)

and for constants A > 0 and B ∈ R. Then for any λ ∈ iR and a point
xo ∈ S,

lim
r→∞

1

ψλ(r)
f ∗mr (xo) = L implies lim

t→∞
et(λ2+ρ2)f ∗ ht(xo) = L,

where L is a constant.

Converse of the above theorem is not true.

The above theorem is not true for all complex number λ with nonzero
real and imaginary parts, i.e. λ /∈ (iR ∪ R).
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For p ∈ [1,∞), we define the weak Lp space by

Lp,∞(X ) := {f : S → C measurable | sup
t>0

t |{x | |f (x)| > t}|1/p <∞}.

Theorem 5 (Naik–Sarkar–Ray, [4], 2021).

Fix a p > 2. Let λ = ±i(2/p − 1)ρ.Then for f ∈ Lp,∞(S) and a point
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Theorem 6 (Naik–Sarkar–Ray, [4], 2021).

Fix a λ ∈ iR.

Let f , g be measurable functions on S such that f satisfies
one of these three conditions:

(a) |f (x)| ≤ Bϕλ(x) for almost every x ∈ S, for a constant B > 0,

(b) f ∈ Lp,∞(S) for some p ∈ (2,∞) satisfying |λ| = (1− 2/p)ρ,

(c) f ∈ L∞(S) and |λ| = ρ.

If lim
r→∞

1

ψλ(r)
f ∗mr (x) = g(x), for almost every x ∈ S, then

∆g = −(λ2 + ρ2)g .
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Estimate of heat kernel

ht(r) � t−
3
2 (1 + r)

(
1 +

1 + r

t

) n−3
2

e−
r2

4t e−ρ
2te−ρr , (n = dim(S), r ≥ 0)

= t−
3
2 (1 + r)

(
1 +

1 + r

t

) n−3
2

e−
r2

4t e−ρ
2teρre−2ρr

= t−
3
2 (1 + r)

(
1 +

1 + r

t

) n−3
2

e−
(r−2ρt)2

4t e−2ρr .

Exponential factors:

Rn : pt(r) = e−
r2

4t , (peak is always at 0).

S : pt(r) = e−
(r−2ρt)2

4t , (peak is at 2ρt).
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Let s(t) be a positive function such that s(t)√
t
→∞ as t →∞.

Then

Rn : lim
t→∞

∫
r>s(t)

ht(r) dr = 0.

S : lim
t→∞

∫
|r−2ρt|>s(t)

ht(r) dr = 0.

This means that heat produced initially at the origin o ∈ S does not
diffuse homogeneously but concentrates asymptotically in an annulus
of width s(t) moving to infinity with speed 2ρ.

Such behavior sharply contrasts to that of the Euclidean space Rn.

The above result was first proved by Davies et al for hyperbolic
spaces [2] and by Anker and Setti for all symmetric spaces of
noncompact type [1].
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Let s(t) be a positive function such that s(t)√
t
→∞ as t →∞. Then

Rn : lim
t→∞

∫
r>s(t)

ht(r) dr = 0.

S : lim
t→∞

∫
|r−2ρt|>s(t)

ht(r) dr = 0.

This means that heat produced initially at the origin o ∈ S does not
diffuse homogeneously but concentrates asymptotically in an annulus
of width s(t) moving to infinity with speed 2ρ.

Such behavior sharply contrasts to that of the Euclidean space Rn.

The above result was first proved by Davies et al for hyperbolic
spaces [2]

and by Anker and Setti for all symmetric spaces of
noncompact type [1].
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