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Introduction

• What is an Uncertainty Principle?

In harmonic analysis, uncertainty principles says that a function f
and its Fourier transform f̂ defined by

f̂ (ξ) = (2π)−n/2
∫

Rn
f (x)e−ix.ξdx

can not both be SMALL simultaneously.

Depending on various notions of smallness, we can get different
uncertainty principles.

Example: (Hardy) Let f (x) = O(e−a|x |
2
) and f̂ (ξ) = O(e−b|ξ|

2
).

If ab > 1/4 then f = 0.
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An uncertainty principle

Let f ∈ L1(Rn) be such that |f̂ (ξ)| ≤ e−a|ξ|. Then the inversion
formula for the Fourier transform yields:

f (x + iy) = (2π)−n/2
∫

Rn
f̂ (ξ)e i(x+iy ).ξdξ.

f extends to a holomorphic function in the tube domain
{x + iy ∈ Cn : |y | ≤ a}. As a result, if f compactly supported,
f = 0.

Question Is is possible to arrive at a similar conclusion with slower
decay on the Fourier transform side e.g.,

|f̂ (ξ)| ≤ Ce
− |ξ|

log(1+|ξ|) , |ξ| ≥ 1.
Equivalently one can also ask:

Question: For a non-trivial function f which is compactly supported,
what would be the best possible decay admissible for f̂ ?
In 1934, Ingham gave an answer to this question for the one
dimensional case (i.e., on R)
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Ingham’s theorem

Theorem

Let θ : [0, ∞)→ [0, ∞) be decreasing function vanishing at infinity.
There exists a non-trivial f ∈ Cc (R) satisfying

|f̂ (ξ)| ≤ Ce−θ(|ξ|)|ξ|

if and only if
∫ ∞
1 θ(t)t−1dt < ∞.

When
∫ ∞
1 θ(t)t−1dt = ∞, the function tθ(t) is unbounded on

(1, ∞). So, ‘Ingham type condition’ imposes a certain amount of
rapid decay on Fourier transform.

The above theorem says that when
∫ ∞
1 θ(t)t−1dt = ∞, the Fourier

transform of a compactly supported continuous function cannot
have Ingham type decay!
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What Ingham did...

Ingham type decay

|f̂ (ξ)| ≤ Ce−θ(|ξ|)|ξ|

Quasi analyticity of
the function

A class S of smooth
functions is called
quasi-analytic if
whenever f ∈ S
and all its derivates
vanish a point, then
f = 0.

Denjoy-Carleman theorem

C{Mn} := {f ∈ C∞(R) :
‖f (n)‖∞ ≤ Cf A

nMn} is quasi-analytic
iff ∑∞

n=1M
−1/n
n = ∞.

P. Ganguly Uncertainty principle



What Ingham did...

Ingham type decay

|f̂ (ξ)| ≤ Ce−θ(|ξ|)|ξ|

Quasi analyticity of
the function

A class S of smooth
functions is called
quasi-analytic if
whenever f ∈ S
and all its derivates
vanish a point, then
f = 0.

Denjoy-Carleman theorem

C{Mn} := {f ∈ C∞(R) :
‖f (n)‖∞ ≤ Cf A

nMn} is quasi-analytic
iff ∑∞

n=1M
−1/n
n = ∞.

P. Ganguly Uncertainty principle



What Ingham did...

Ingham type decay

|f̂ (ξ)| ≤ Ce−θ(|ξ|)|ξ|

Quasi analyticity of
the function

A class S of smooth
functions is called
quasi-analytic if
whenever f ∈ S
and all its derivates
vanish a point, then
f = 0.

Denjoy-Carleman theorem

C{Mn} := {f ∈ C∞(R) :
‖f (n)‖∞ ≤ Cf A

nMn} is quasi-analytic
iff ∑∞

n=1M
−1/n
n = ∞.

P. Ganguly Uncertainty principle



In 2016, Bhowmik-Ray-Sen used a several variable version of
Denjoy-Carleman theorem due to Bochner-Taylor (1950) to prove
the following improvement of Ingham’s theorem on Rn.

Theorem (Bhowmik-Ray-Sen)

Let θ : [0, ∞)→ [0, ∞) be decreasing function vanishing at infinity. Let
f ∈ L1(Rn) be such that its Fourier transform satisfies

|f̂ (ξ)| ≤ Ce−θ(|ξ|)|ξ|.
1 If

∫ ∞
1 θ(t)t−1dt = ∞ and f vanishes on an open set, then f = 0.

2 If
∫ ∞
1 θ(t)t−1dt < ∞, then there exists f ∈ C∞

c (Rn) whose Fourier
transform satisfies the above estimate.

In 1978, P.R. Chernoff came up with a nice sufficient condition for
smooth functions on Rn to be quasi-analytic.
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Chernoff’s theorem

Theorem (P.R. Chernoff, 1978)

Let f be a smooth function on Rn. Let ∆Rn be the standard Laplacian
on Rn. Assume that ∆m

Rn f ∈ L2(Rn) for all m ∈N and

∞

∑
m=1

‖∆m
Rn f ‖−

1
2m

2 = ∞.

If f and all its partial derivatives vanish at x0 ∈ Rn, then f is identically
zero.

It is worth noting that proving Ingham’s theorem requires essentially
a version of the previous theorem with a stronger vanishing
condition that the function f vanishes on an open set.

In fact, this interaction between the theorems of Ingham and
Chernoff warrant us to explore the possibility analogues of these
results beyond Euclidean space.

M.Bhowmik, S.Pusti, S.K.Ray, Theorems of Ingham and Chernoff
on Riemannian symmetric spaces of noncompact type, JFA, 2020.
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Harmonic analysis on the Heisenberg group

Consider the Heisenberg group Hn := Cn ×R equipped with the
group law

(z , t).(w , s) :=
(
z + w , t + s +

1

2
Im(z .w̄)

)
.

This is a step two Nilpotent Lie group where the Lebesgue measure
dzdt plays the role of Haar measure.

The group Fourier transform of f ∈ L1(Hn) is an operator valued
function defined on non-zero reals by

f̂ (λ) :=
∫

Hn
f (z , t)πλ(z , t)dzdt

where πλ’s are Schrödinger representaion of Hn given by

πλ(z , t)ϕ(ξ) = e iλte iλ(x ·ξ+
1
2 x ·y )ϕ(ξ + y),

where z = x + iy and ϕ ∈ L2(Rn).
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Plancherel formula:It is known that when f ∈ L1 ∩ L2(Hn) its
Fourier transform is actually a Hilbert-Schmidt operator and one has∫

Hn
|f (z , t)|2dzdt = (2π)−(n+1)

∫ ∞

−∞
‖f̂ (λ)‖2HS |λ|ndλ.

The Heisenberg Lie algebra, hn consists of left invariant vector fields
on Hn. A basis for hn is provided by the 2n+ 1 vector fields

Xj =
∂

∂xj
+

1

2
yj

∂

∂t
, Yj =

∂

∂yj
− 1

2
xj

∂

∂t
, j = 1, 2, ..., n, and T =

∂

∂t
.

The sublaplacian on Hn is define by

L :=
∞

∑
j=1

(X 2
j + Y 2

j )

The full Laplacian on Hn is defined by

∆H := −
∞

∑
j=1

(X 2
j + Y 2

j )− T 2
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An analogue of the situation ∆̂Rn f (ξ) = |ξ|2 f̂ (ξ), in the context of
Hn is given by

∆̂Hf (λ) = (H(λ) + λ2)f̂ (λ)

where H(λ) := −∆Rn + λ2|x |2.

As a mater of fact, an analogue of
Ingham type decay condition on Rn viz.

|f̂ (ξ)| ≤ e−θ(|ξ|)|ξ| (i .e., f̂ (ξ)f̂ (ξ) ≤ e−2θ(|ξ|)|ξ|), in the setting of
Hn takes the form

f̂ (λ)∗ f̂ (λ) ≤ C e−2|λ|Θ(|λ|)e−2
√

H(λ)Θ(
√

H(λ)), λ 6= 0 (1)

We have the following exact analogue of Ingham’s theorem in the setting
of Hn.

Theorem (Ganguly-Thangavelu)

Let Θ(λ) be a nonnegative function on [0, ∞) such that Θ(λ) decreases
to zero when λ→ ∞. Then there exists a nonzero compactly supported
continuous function f on Hn whose Fourier transform f̂ (λ) satisfies the
estimate (1) if and only if

∫ ∞
1 Θ(t)t−1dt < ∞.

P. Ganguly Uncertainty principle



An analogue of the situation ∆̂Rn f (ξ) = |ξ|2 f̂ (ξ), in the context of
Hn is given by

∆̂Hf (λ) = (H(λ) + λ2)f̂ (λ)

where H(λ) := −∆Rn + λ2|x |2. As a mater of fact, an analogue of
Ingham type decay condition on Rn viz.

|f̂ (ξ)| ≤ e−θ(|ξ|)|ξ| (i .e., f̂ (ξ)f̂ (ξ) ≤ e−2θ(|ξ|)|ξ|), in the setting of
Hn takes the form

f̂ (λ)∗ f̂ (λ) ≤ C e−2|λ|Θ(|λ|)e−2
√

H(λ)Θ(
√

H(λ)), λ 6= 0 (1)

We have the following exact analogue of Ingham’s theorem in the setting
of Hn.

Theorem (Ganguly-Thangavelu)

Let Θ(λ) be a nonnegative function on [0, ∞) such that Θ(λ) decreases
to zero when λ→ ∞. Then there exists a nonzero compactly supported
continuous function f on Hn whose Fourier transform f̂ (λ) satisfies the
estimate (1) if and only if

∫ ∞
1 Θ(t)t−1dt < ∞.

P. Ganguly Uncertainty principle



An analogue of the situation ∆̂Rn f (ξ) = |ξ|2 f̂ (ξ), in the context of
Hn is given by

∆̂Hf (λ) = (H(λ) + λ2)f̂ (λ)

where H(λ) := −∆Rn + λ2|x |2. As a mater of fact, an analogue of
Ingham type decay condition on Rn viz.

|f̂ (ξ)| ≤ e−θ(|ξ|)|ξ| (i .e., f̂ (ξ)f̂ (ξ) ≤ e−2θ(|ξ|)|ξ|), in the setting of
Hn takes the form

f̂ (λ)∗ f̂ (λ) ≤ C e−2|λ|Θ(|λ|)e−2
√

H(λ)Θ(
√

H(λ)), λ 6= 0 (1)

We have the following exact analogue of Ingham’s theorem in the setting
of Hn.

Theorem (Ganguly-Thangavelu)

Let Θ(λ) be a nonnegative function on [0, ∞) such that Θ(λ) decreases
to zero when λ→ ∞. Then there exists a nonzero compactly supported
continuous function f on Hn whose Fourier transform f̂ (λ) satisfies the
estimate (1) if and only if

∫ ∞
1 Θ(t)t−1dt < ∞.

P. Ganguly Uncertainty principle



Two main results of this talk

Theorem (Ganguly-Thangavelu)

Let Θ(λ) be a nonnegative function on [0, ∞) such that it decreases to
zero when λ→ ∞ and satisfies the conditions

∫ ∞
1 Θ(t)t−1dt = ∞. Let f

be an integrable function on Hn whose Fourier transform satisfies the
estimate

f̂ (λ)∗ f̂ (λ) ≤ C e−2|λ|Θ(|λ|)e−2
√

H(λ)Θ(
√

H(λ)), λ 6= 0.

Then f cannot vanish on any nonempty open set unless it is identically
zero.

In order to prove this, we need to use an analogue of Chernoff’s theorem
for the full Laplacian ∆H :

Theorem (Ganguly-Thangavelu)

Let f ∈ C∞(Hn) be such that ∆m
Hf ∈ L2(Hn) for all m ≥ 0 and

satisfies the Carleman condition∑∞
m=1 ‖∆m

Hf ‖−
1
2m

2 = ∞. If f vanishes on
a non-empty open set, then f is identically zero.
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for the full Laplacian ∆H :

Theorem (Ganguly-Thangavelu)

Let f ∈ C∞(Hn) be such that ∆m
Hf ∈ L2(Hn) for all m ≥ 0 and

satisfies the Carleman condition∑∞
m=1 ‖∆m

Hf ‖−
1
2m

2 = ∞. If f vanishes on
a non-empty open set, then f is identically zero.
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Chernoff’s theorem for the full Laplacian

Theorem

Let f ∈ C∞(Hn) be such that ∆m
Hf ∈ L2(Hn) for all m ≥ 0 and

satisfies the Carleman condition ∑∞
m=1 ‖∆m

Hf ‖−
1
2m

2 = ∞. If f vanishes on
a non-empty open set, then f is identically zero.

Sketch of proof:
WLOG, we can assume that f vanishes on an open set
Ba(0)× (−a, a) ⊂ V containing the origin.

•Reduction to the radial case:

Fix z ∈ V and consider the spherical mean

Fz (r , t) := f ∗ µr (z , t) :=
∫
|w |=r

f
(
z − w , t − 1

2
Im z · w

)
dµr (w)

where µr is the normalised surface measure on the sphere
{(z , t) ∈Hn : |z | = r}.
Choose δ = min(a/2,

√
a). Then, z ∈ Bδ(0), Fz (r , t) = 0 for all

(r , t) ∈ (0, δ)× (−δ/2, δ/2) =: U ⊂ S := R+ ×R.
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Considering Fz as a radial function on Hn, using the relation
∆Hf ∗ µr (z , t) = ∆SFz (r , t) we can show that∫

R+×R
|∆m

S Fz (r , t)|2r2n−1drdt ≤ Cn

∫
Hn
|∆m

Hf (z , t)|2dzdt

where

∆S := − ∂2

∂r2
− 2n− 1

r

∂

∂r
− 1

4
r2

∂2

∂t2
− ∂2

∂t2
.

As a matter of fact, ∑∞
m=1 ‖∆m

Hf ‖−
1
2m

2 = ∞ implies

∑∞
m=1 ‖∆m

S Fz‖
− 1

2m
2 = ∞. Moreover, we have

Fz (r , t) = 0 for (r , t) ∈ U.

Theorem

Let g ∈ C∞(S) be such that ∆m
S f ∈ L2(S) for all m ≥ 0. Assume that

∑∞
m=1 ‖∆m

S g‖
− 1

2m
2 = ∞. If f vanishes on a neighbourhood of the origin,

then f is identically zero.
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•Use of Elliptic Regularity:

f ∗ µr (z , t) = Fz (r , t) = 0 for all z ∈ Bδ(0) and t ∈ R.

As a result,

0 =
∫ ∞

−∞
f ∗ µr (z , t)e iλtdt = f λ ∗λ µr (z)

where

f λ ∗λ µr (z) =
∫
|w |=r

f λ(z − w)e
iλ
2 Im(z.w̄ )dσ(w).

Consider the elliptic operators Lλ defined by
Lλg(z) := e−iλtL(e iλtg(z)). We also have the following spectral
decomposition:

Lλg =
∞

∑
k=0

(2k + n)|λ|Qλ
k g .

Moreover,
Qλ
k f

λ ∗λ µr (z) = cλ
k (r)Q

λ
k f

λ
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Qλ
k f

λ(z) = 0 for all z ∈ Bδ(0) and Qλ
k f

λ are eigenfunctions of Lλ.

Hence by Elliptic regularity theorem, Qλ
k f

λ is real analytic. So,

Qλ
k f

λ = 0 which is true for all k ≥ 0.

So, f λ = 0 for all λ. Therefore, f = 0.

• Chernoff’s theorem for ∆S

Theorem (de Jeu, Ann. of Prob.)

Let µ be a finite positive Borel measure on Rn for which all the moments

M(j)(m) =
∫

Rn x
m
j dµ(x),m ≥ 0 are finite. If we further assume that the

moments satisfy the Carleman condition

∑∞
m=1M

(j)(2m)−1/2m = ∞, j = 1, 2, ..., n, then polynomials are dense in
Lp(Rn, dµ), 1 ≤ p < ∞.
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Chernoff’s theorem for ∆S

Under the assumption that

∞

∑
m=1

‖∆m
S g‖

− 1
2m

2 = ∞, g(r , t) = 0, (r , t) ∈ U

we have to show g = 0.

We define a measure µg on R2 supported on the Heisenberg fan

Ω := {(λ, (2k + n)|λ|) : λ ∈ R, k ∈N}
in such a way that∫

R2
ϕ(x ,−y)dµg (x , y) =

∫
R2

ϕ(x , y)dµg (x , y).

Even moments can be estimated as

M(j)(2m) ≤ aj‖∆m+j
S g‖L2(S) + b2m‖g‖L2(S).

Carleman condition for ∆S would imply the Carleman condition for
the even moments.—the hypothesis of de Jeu’s theorem is satisfied!
Finally, using the density of polynomials in L1(R2) and g = 0 on U,
we can show that g = 0.
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Towards Ingham’s theorem on the Heisenberg group

Theorem (Bagchi-Ganguly-Sarkar-Thangavelu)

Assume that Θ is a positive decreasing function on [0, ∞), vanishing at
infinity for which

∫ ∞
1 Θ(t) t−1dt < ∞. Then we can construct a

compactly supported nontrivial smooth radial function f on Hn whose
Fourier transform satisfies the estimate

f̂ (λ)∗ f̂ (λ) ≤ Ce−2
√

H(λ)Θ(
√

H(λ))

where H(λ) = −∆ + λ2|x |2 is the scaled Hermite operator.

1 Let fj := ρ−2nj χB(0,Aρj )
and gj := (2τ2j )

−1χ(−τ2
j ,τ

2
j )

. Suppose

Fj (z , t) := fj (z)gj (t). f := F1 ∗ F2 ∗ F3 ∗ ....

2 f is Heisenberg radial and hence f̂ (λ) = ∑∞
k=0 R

λ
k (f )Pk (λ). Also

|Rλ
k (f )|2 ≤ Ce−2

√
(2k+n)|λ|Θ(

√
(2k+n)|λ|).
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Let g ∈ Cc (R) whose Euclidean Fourier transform satisfies the estimate

|ĝ(λ)| ≤ Ce−|λ|Θ(|λ|), ∀λ ∈ R. (Thanks to Ingham!)

Then the function F (z , t) =
∫ ∞
−∞ f (z , t − s)g(s)ds satisfies the condition

F̂ (λ)∗F̂ (λ) ≤ C e−2|λ|Θ(|λ|)e−2
√

H(λ)Θ(
√

H(λ)).

Remark 1

For δ > 0, consider Fδ(z , t) := δ−(2n+2)F (δ−1z , δ−2t), (z , t) ∈Hn.
Then

F̂δ(λ)
∗F̂δ(λ) ≤ Ce−2

√
H(λ)Θδ(

√
(H(λ)) e−2|λ|Θδ(|λ|)

where Θδ(λ) = δΘ(λδ) which inherits the properties of Θ. Moreover,
{Fδ}δ>0 forms an approximate identity!
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Theorem

Let Θ(λ) be a nonnegative function on [0, ∞) such that it decreases to
zero when λ→ ∞ and satisfies the conditions

∫ ∞
1 Θ(t)t−1dt = ∞. Let f

be an integrable function on Hn whose Fourier transform satisfies the
estimate

f̂ (λ)∗ f̂ (λ) ≤ C e−2|λ|Θ(|λ|)e−2
√

H(λ)Θ(
√

H(λ)), λ 6= 0.

Then f cannot vanish on any nonempty open set unless it is identically
zero.

Sketch of proof:

Using the Plancherel formula we have

‖∆m
Hf ‖22 =

∫ ∞

−∞
‖f̂ (λ)(H(λ) + λ2)m‖2HS |λ|ndλ.

Under the assumption that Θ(λ) ≥ cλ−1/2 we obtain the estimate

‖∆m
Hf ‖2 ≤ C2m( m

Θ(m4)

)2m
for some constant C > 0.
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‖∆m
Hf ‖2 ≤ C2m( m

Θ(m4)

)2m
for some constant C > 0.

As t−1Θ(t) is not integrable over [1, ∞) it follows that

∑∞
m=1

Θ(m4)
m = ∞ and hence from the above we have

∞

∑
m=1

‖∆m
Hf ‖−

1
2m

2 = ∞.

So, by Chernoff’s theorem f vanishes identically.

To remove the extra assumption on Θ, take θ(λ) = (1 + λ2)−1/4,
then there exists compactly supported radial function g on Hn with
Ingham type decay. Let gδ(z , t) = δ−(2n+2)g(δ−1z , δ−2t). Then
the function f ∗ gδ satisfies

f̂ ∗ gδ(λ)
∗ f̂ ∗ gδ(λ) ≤ Ce−2

√
H(λ)Ψδ(

√
(H(λ)) e−2|λ|Ψδ(|λ|)

where Ψδ(λ) = Θ(λ) + θδ(λ) for which the extra condition viz.
Ψδ(λ) ≥ cδ|λ|−1/2, |λ| ≥ 1 holds.
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So, the Fourier transform of the function f ∗ gδ satisfies

f̂ ∗ gδ(λ)
∗ f̂ ∗ gδ(λ) ≤ Ce−2

√
H(λ)Ψδ(

√
(H(λ)) e−2|λ|Ψδ(|λ|)

with Ψδ(λ) ≥ cδ|λ|−1/2, |λ| ≥ 1.

Further, we can arrange that supp(g) ⊂ BH(0, a/2) and a
consequence, f ∗ gδ vanishes on BH(0, δa/2) for all 0 < δ < 1.

Hence f ∗ gδ = 0 for 0 < δ < 1.

Since {gδ}δ is an approximate identity, letting δ go to zero, we
conclude that f = 0.

• Open question:

Is it possible to prove a weaker analogue of Chernoff’s theorem for
the sublaplacian?

Is it possible to prove an exact analogue of Chernoff’s theorem for
the full Laplacian or the sublaplacian?
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