A classification of isometries of infinite dimensional hyperbolic space

Rachna Aggarwal

Department of mathematics, University of Delhi

17th Discussion Meeting in Harmonic Analysis NISER, Bhubneshwar

January 6, 2022

Rachna Aggarwal

A classification of isometries of infinite dime

Poincar \acute{e} metric

Let Δ denote the open unit ball in $\mathbb C$ and $\rho,$ the Poincaré metric. For $z,w\in\Delta,$

$$\rho(z,w) = \frac{1}{2}\log\frac{1+\left|\frac{w-z}{1-\overline{z}w}\right|}{1-\left|\frac{w-z}{1-\overline{z}w}\right|}$$

Harnack inequality

If $u: \overline{B}(a; R) \longrightarrow \mathbb{R}$ is continuous, harmonic in B(a; R), and $u \ge 0$ then for $0 \le r < R$ and all θ

$$\frac{R-r}{R+r}U(a) \leq u(a+re^{i\theta}) \leq \frac{R+r}{R-r}u(a)$$

¹H. S. Bear and W. Smith, A tale of two conformally invariant metrics, J. Math. Anal. Appl. **318** (2006), no. 2, 498–506. MR2215165.

Rachna Aggarwal

A classification of isometries of infinite dime

Harnack inequality

If $u: \overline{B}(a; R) \longrightarrow \mathbb{R}$ is continuous, harmonic in B(a; R), and $u \ge 0$ then for $0 \le r < R$ and all θ

$$\frac{R-r}{R+r}U(a) \le u(a+re^{i\theta}) \le \frac{R+r}{R-r}u(a)$$

Harnack metric ¹

For $z, w \in \overline{B}(a; R)$

 $d(z,w) = \sup \big\{ |\log u(z) - \log u(w)| \ | \ \text{u is positive and harmonic in } \overline{B}(a;R) \big\}$

Holomorphic self maps on Δ are distance decreasing for Poincaré metric and this property forms the statement of Schwarz-Pick Lemma.

¹H. S. Bear and W. Smith, A tale of two conformally invariant metrics, J. Math. Anal. Appl. **318** (2006), no. 2, 498–506. MR2215165. Let B^n denote the open unit ball in \mathbb{C}^n .

Carathéodory metric ²

Let $\operatorname{Hol}(B^n, \Delta)$ denote the set of all holomorphic mappings $f: B^n \to \Delta$. Then $C_{\mathbb{T}^n}(x, y) = \sup_{x \in \mathcal{A}} c(f(x)) \quad \text{for all } x, y \in B^n$

$$C_{B^n}(x,y) = \sup_{f} \rho(f(x), f(y)) \quad \text{for all } x, y \in B^n.$$

²Kobayashi, S. *Hyperbolic complex spaces*, Grundlehren der Mathematischen Wissenschaften, 318, Springer-Verlag, Berlin, 1998.

Rachna Aggarwal

A classification of isometries of infinite dime

z-classes ¹ - Two elements in a group are said to be z-equivalent if their centralizers are conjugate.

¹R. S. Kulkarni, Dynamical types and conjugacy classes of centralizers in groups, J. Ramanujan Math. Soc. **22** (2007), no. 1, 35–56. MR2312547

 2 Gongopadhyay, Krishnendu; Kulkarni, Ravi S. z-classes of isometries of the hyperbolic space. Conform. Geom. Dyn. 13 (2009), 91–109. MR2491719

³Cirici, J. Classification of isometries of spaces of constant curvature and invariant subspaces, Linear Algebra Appl. **450** (2014), 250–279. MR3192481

z-classes ¹ - Two elements in a group are said to be z-equivalent if their centralizers are conjugate. z-classes

- Gongopadhyay and Kulkarni²
- 2 Joana Cirici ³.

¹R. S. Kulkarni, Dynamical types and conjugacy classes of centralizers in groups, J. Ramanujan Math. Soc. **22** (2007), no. 1, 35–56. MR2312547

 2 Gongopadhyay, Krishnendu; Kulkarni, Ravi S. z-classes of isometries of the hyperbolic space. Conform. Geom. Dyn. 13 (2009), 91–109. MR2491719

³Cirici, J. Classification of isometries of spaces of constant curvature and invariant subspaces, Linear Algebra Appl. **450** (2014), 250–279. MR3192481 (2014) (2014)

Group of isometries on n-dimensional hyperbolic space

 $Aut(B^n)$ - Group of biholomorphic mappings on B^n .

 $Aut(B^n)$ - Group of biholomorphic mappings on B^n .

U(1,n)- Group of all n+1 ordered invertible matrices preserving a hermitian form of signature (1,n).

 $Aut(B^n)$ - Group of biholomorphic mappings on B^n .

U(1,n)- Group of all n+1 ordered invertible matrices preserving a hermitian form of signature (1,n).

 $Aut(B^n)\cong U(1,n)/Z(U(1,n))$

Fixed point classification of $Aut(B^n)$

An element of $Aut(B^n)$ is called

- Elliptic if it has one fixed point in B^n .
- Hyperbolic if not elliptic and has exactly 2 fixed points on ∂B^n .
- Parabolic if not elliptic and has a unique fixed point on ∂B^n .

• An elliptic isometry is conjugate to an element of the form $U(1) \times U(n)$.

- An elliptic isometry is conjugate to an element of the form $U(1) \times U(n)$.
- 2 A hyperbolic isometry is conjugate to an element of the form $U(1,1) \times U(n-1)$.

- An elliptic isometry is conjugate to an element of the form $U(1) \times U(n)$.
- 2 A hyperbolic isometry is conjugate to an element of the form $U(1,1) \times U(n-1)$.
- S Elliptic and hyperbolic isometries are semisimple in nature.
- Their conjugacy classes are determined by the eigenvalues.

- An elliptic isometry is conjugate to an element of the form $U(1) \times U(n)$.
- 2 A hyperbolic isometry is conjugate to an element of the form $U(1,1) \times U(n-1)$.
- S Elliptic and hyperbolic isometries are semisimple in nature.
- One of the second se
- Elliptic and hyperbolic isometries decompose the space into corresponding eigenspaces. Hence their centralizers will preserve each eigenspace and vice versa.

- An elliptic isometry is conjugate to an element of the form $U(1) \times U(n)$.
- 2 A hyperbolic isometry is conjugate to an element of the form $U(1,1) \times U(n-1)$.
- Solution Elliptic and hyperbolic isometries are semisimple in nature.
- One of the second se
- Elliptic and hyperbolic isometries decompose the space into corresponding eigenspaces. Hence their centralizers will preserve each eigenspace and vice versa.
- Parabolic isometries are not semisimple. A parabolic isometry T is conjugate to pe. p is strictly parabolic and e is unitary. Also an isometry S commutes with T if and only if it commutes with both p and e. Minimal polynomial and characteristic polynomial determine the conjugacy of a parabolic isometry.

Franzoni and Vesentini ⁴ have discussed the hyperbolic structure for infinite dimensional setup.

Holomorphicity in infinite dimensions

Let E and F be two complex normed spaces. Let U be an open subset of E. A mapping $f: U \longrightarrow F$ is called an F-valued holomorphic function if for every $a \in U$, there exists $A \in L(E, F)$ such that $\lim_{x \to a} \frac{f(x) - f(a) - A(x - a)}{\|x - a\|} = 0.$

Rachna Aggarwal

A classification of isometries of infinite dime

⁴Franzoni, Tullio; Vesentini, Edoardo. Holomorphic maps and invariant distances. Notas de Matemática [Mathematical Notes], 69. North-Holland Publishing Co., Amsterdam-New York, 1980. viii+226 pp. ISBN: 0-444-85436-3 MR0563329 = 2

- ${\cal H}$ Infinite dimensional Hilbert space.
- B The open unit ball in H.

- H Infinite dimensional Hilbert space.
- B The open unit ball in H.

Holomorphic self maps on B are distance decreasing for the Carathéodory metric. So holomorphic bijections become isometries.

AutB - Group of holomorphic bijections on B.

General element of AutB - $U \circ f_{x_0}$, $x_0 \in B$,

U is a unitary operator on H and f_{x_0} is some holomorphic bijection on B.

$$\begin{split} f_{x_0} &: B_{x_0} \longrightarrow H \text{ defined by} \\ f_{x_0}(x) &= T_{x_0} \left(\frac{x - x_0}{1 - \langle x, x_0 \rangle} \right), \\ B_{x_0} &= \left\{ x \in H \ : \ \|x\| < \frac{1}{\|x_0\|} \right\}. \ f_{x_0} \upharpoonright_B \text{ is a bi-holomorphic surjection.} \end{split}$$

 $T_{x_0}: H \longrightarrow H$ is a linear map expressed as

$$T_{x_0}(x) = \frac{\langle x, x_0 \rangle}{1 + \sqrt{1 - \|x_0\|^2}} x_0 + \sqrt{1 - \|x_0\|^2} x_0.$$

Aut(B) is known to act transitively on B.

Linear representation of AutB

 \mathcal{A} - sesquilinear form on $H \oplus \mathbb{C}$.

$$\mathcal{A}((x,\lambda),\,(y,\mu)) = \langle x,y \rangle - \lambda \overline{\mu}.$$

G - Group of all bijective linear operators on $H \oplus \mathbb{C}$ prserving \mathcal{A} .

Linear representation of AutB

 \mathcal{A} - sesquilinear form on $H \oplus \mathbb{C}$.

$$\mathcal{A}((x,\lambda), (y,\mu)) = \langle x, y \rangle - \lambda \overline{\mu}.$$

G - Group of all bijective linear operators on $H \oplus \mathbb{C}$ prserving \mathcal{A} .

For $T \in G$, T has the form $\left[\begin{array}{cc} A & \xi \\ \left\langle \cdot, \frac{A^*(\xi)}{a} \right\rangle & a \end{array} \right]$ where $\xi \in H$ satisfies

$$A^*A = I + \frac{1}{|a|^2} \langle \cdot, A^*(\xi) \rangle A^*(\xi)$$

and

$$|a|^2 = 1 + \|\xi\|^2.$$

The center Z_G of $G - \{e^{i\theta}I, \theta \in \mathbb{R}\}$.

Theorem (Franzoni and Vesentini [2])

The map $\phi: G \to \operatorname{Aut}(B)$ defined by $\phi(T) = \tilde{T}$ is an onto homomorphism where $T = \begin{bmatrix} A & \xi \\ \langle \cdot, \frac{A^*(\xi)}{a} \rangle & a \end{bmatrix}$ and $\tilde{T} = \frac{A(\cdot) + \xi}{\left\langle \cdot, \frac{A^*(\xi)}{a} \right\rangle + a}$.

The center Z_G of $G - \{e^{i\theta}I, \theta \in \mathbb{R}\}$.

Theorem (Franzoni and Vesentini [2])

The map $\phi: G \to \operatorname{Aut}(\mathsf{B})$ defined by $\phi(T) = \tilde{T}$ is an onto homomorphism where $T = \begin{bmatrix} A & \xi \\ \left\langle \cdot, \frac{A^*(\xi)}{a} \right\rangle & a \end{bmatrix}$ and $\tilde{T} = \frac{A(\cdot) + \xi}{\left\langle \cdot, \frac{A^*(\xi)}{a} \right\rangle + a}$.

Hence $\tilde{\phi}: G/Z_G \to Aut(B)$ is an onto isomorphism.

Theorem (Hayden and Suffridge ⁹)

If $g \in Aut(B)$ has no fixed point in B, then the fixed point set in \overline{B} consists of one or two points.

⁹Hayden, T. L.; Suffridge, T. J. Biholomorphic maps in Hilbert space have a fixed point, Pacific J. Math. **38** (1971), 419–422. MR0305158

Rachna Aggarwal

A classification of isometries of infinite dime

Theorem (Hayden and Suffridge ⁹)

If $g \in Aut(B)$ has no fixed point in B, then the fixed point set in \overline{B} consists of one or two points.

Let Q be the corresponding quadratic form of the sesquilinear form \mathcal{A} .

⁹Hayden, T. L.; Suffridge, T. J. Biholomorphic maps in Hilbert space have a fixed point, Pacific J. Math. **38** (1971), 419–422. MR0305158

Rachna Aggarwal

A classification of isometries of infinite dime

Theorem (Hayden and Suffridge ⁹)

If $g \in Aut(B)$ has no fixed point in B, then the fixed point set in \overline{B} consists of one or two points.

Let Q be the corresponding quadratic form of the sesquilinear form \mathcal{A} .

We call a vector $x \in H \oplus \mathbb{C}$ time like if Q(x) < 0, light like if Q(x) = 0and space like if Q(x) > 0.

Observation - Observe that for $x \in \overline{B}$, x is a fixed point for an isometry in AutB if and only if (x, 1) is an eigenvector for the corresponding element in G.

⁹Hayden, T. L.; Suffridge, T. J. Biholomorphic maps in Hilbert space have a fixed point, Pacific J. Math. **38** (1971), 419–422. MR0305158 < D > < B > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E > < E

Proposition

A general element of G is of the form $e^{i\theta} \begin{bmatrix} UA & U(\xi) \\ \langle \cdot, \xi \rangle & a \end{bmatrix}$, $\theta \in \mathbb{R}$, where $\xi \in H$, $a = \sqrt{1 + \|\xi\|^2}$, U is a unitary operator on H and A is a positive operator on H such that A = I on $\langle \xi \rangle^{\perp}$ and $A(\xi) = a\xi$.

Proposition

A general element of G is of the form $e^{i\theta} \begin{bmatrix} UA & U(\xi) \\ \langle \cdot, \xi \rangle & a \end{bmatrix}$, $\theta \in \mathbb{R}$, where $\xi \in H$, $a = \sqrt{1 + \|\xi\|^2}$, U is a unitary operator on H and A is a positive operator on H such that A = I on $\langle \xi \rangle^{\perp}$ and $A(\xi) = a\xi$.

For
$$T = \begin{bmatrix} UA & U(\xi) \\ \langle \cdot, \xi \rangle & a \end{bmatrix}$$
,
 $T^{-1} = \begin{bmatrix} (UA)^* & -\xi \\ -\langle \cdot, U(\xi) \rangle & a \end{bmatrix}$ and $T^* = \begin{bmatrix} (UA)^* & \xi \\ \langle \cdot, U(\xi) \rangle & a \end{bmatrix}$

Examples of isometries based on fixed point classification

Subclass of G having a two-dimensional reducing subspace

Let
$$T = \begin{bmatrix} UA & U(\xi) \\ \langle \cdot, \xi \rangle & a \end{bmatrix} \in G$$
. If U preserves $\langle \xi \rangle$, then T preserves $\langle \xi \rangle \oplus \mathbb{C}$. Hence $T = T_1 \oplus T_2$ where $T_1 = T \upharpoonright_{\langle \xi \rangle \oplus \mathbb{C}}$ and $T_2 = U \upharpoonright_{\langle \xi \rangle^{\perp}}$.

Examples of isometries based on fixed point classification

Subclass of G having a two-dimensional reducing subspace

Let
$$T = \begin{bmatrix} UA & U(\xi) \\ \langle \cdot, \xi \rangle & a \end{bmatrix} \in G$$
. If U preserves $\langle \xi \rangle$, then T preserves $\langle \xi \rangle \oplus \mathbb{C}$. Hence $T = T_1 \oplus T_2$ where $T_1 = T \upharpoonright_{\langle \xi \rangle \oplus \mathbb{C}}$ and $T_2 = U \upharpoonright_{\langle \xi \rangle^{\perp}}$.

Spectrum

Let
$$T = \begin{bmatrix} UA & r\xi \\ \langle \cdot, \xi \rangle & a \end{bmatrix} \in G$$
, $|r| = 1$. Then
 $sp(T) = \{\lambda_1, \lambda_2\} \cup sp(U \upharpoonright_{\langle \xi \rangle^{\perp}})$ where
 $\lambda_1, \lambda_2 = \frac{a(r+1) \pm \sqrt{a^2(r+1)^2 - 4r}}{2}$ respectively. The eigenspaces
corresponding to the eigenvalues λ_1 and λ_2 are generated by the
eigenvectors $(k_1\xi, 1)$ and $(k_2\xi, 1)$ where
 $k_1, k_2 = \frac{a(r-1) \pm \sqrt{a^2(r+1)^2 - 4r}}{2||\xi||^2}$ respectively.

Proposition (M. M. Mishra and A.)

Let $T = \begin{bmatrix} UA & r\xi \\ \langle \cdot, \xi \rangle & a \end{bmatrix} \in G$, |r| = 1 be such that $T = T_1 \oplus T_2$. If the eigenvalues of T_1 are distinct, then T is elliptic for r = -1 and hyperbolic for $r \neq -1$. For identical eigenvalues, T is parabolic.

Proposition (M. M. Mishra and A.)

- A unitary element of G is of the form $e^{i\theta} \begin{bmatrix} V & 0 \\ 0 & 1 \end{bmatrix}$, where V is a unitary operator on H and $\theta \in \mathbb{R}$.
- **2** A normal element of G is of the form $e^{i\theta} \begin{bmatrix} UA & \xi \\ \langle \cdot & \xi \rangle & a \end{bmatrix}$, $\theta \in \mathbb{R}$.
- For S normal and defined as above in point (2), $\sigma(S) = \{a \pm ||\xi||\} \cup \sigma\left(U|_{\langle\xi\rangle^{\perp}}\right), \text{ where } a \pm ||\xi|| \text{ are both positive, non}$ unit modulus and inverses of each other. Eigenspaces corresponding to the eigenvalues $a \pm ||\xi||$ are spanned by the eigenvectors $\left(\pm \frac{\xi}{||\xi||}, 1\right) \text{ respectively.}$
- Ormal isometries are hyperbolic in nature.

Elliptic isometry (M. M. Mishra and A.)

Let T be an elliptic isometry in G.

- $\textbf{0} \quad \text{Then } T \text{ has a time like eigenvector and viceversa.}$
- 2 $T = T_1 \oplus T_2$ with respect to the sesquilinear form \mathcal{A} where $T_1 = T|_{\langle (x,1) \rangle}$, (x,1) is time like eigenvector and $T_2 = T|_{\langle (x,1) \rangle^{\perp}}$, $\mathcal{A}|_{\langle (x,1) \rangle^{\perp}}$ is unitary.
- T is conjugate to a unitary operator.

Hyperbolic isometry (M. M. Mishra and A.)

Let T be a hyperbolic element in G.

- $T = T_1 \oplus T_2$ with respect to the sesquilinear form \mathcal{A} where $T_1 = T|_{\langle (x,1), (y,1) \rangle}$, (x,1) and (y,1) are light like eigenvectors and $T_2 = T|_{\langle (x,1), (y,1) \rangle^{\perp}}$, $\mathcal{A}|_{\langle (x,1), (y,1) \rangle^{\perp}}$ is unitary.
- It is conjugate to a normal isometry.
- Spectrum of T has only two non-unit modulus values, which are eigenvalues, positive and inverses of each other. Eigenspaces with respect to these eigenvalues are one dimensional spaces, each generated by a light like eigenvector. Rest of the spectral values lie on S¹.

Heisenberg translations

A Heisenberg translation $T \in G$ decomposes $H \oplus \mathbb{C}$ into a finite dimensional subspace K and its orthogonal complement. Dimension of K is either 2 or 3. $\sigma(T) = \sigma_{pt}(T) = \{\lambda\}, \ |\lambda| = 1$. Degree of the minimial polynomial of $T \upharpoonright_K$ is either 2 or 3. $T \upharpoonright_{K^{\perp}} = \lambda I$.

Spectral theory of normal operators ⁵

Let H be a separable Hilbert space.

• Result 1- (Unitary equivalence of normal operators) If N is a normal operator on H, there are mutually singular measures μ_{∞} , μ_1 , μ_2 ... and an isomorphism

 $U: H \longrightarrow L^2(\mu_{\infty}; H_{\infty}) \oplus L^2(\mu_1) \oplus L^2(\mu_2; H_2) \oplus \dots$ such that $UNU^{-1} = N_{\infty} \oplus N_1 \oplus N_2 \oplus \dots$ where H_n is an n-dimensional Hilbert space, $L^2(\mu_n; H_n)$ is the space of square integrable H_n valued functions and N_n is multiplication by z on $L^2(\mu_n; H_n)$.

⁵J. B. Conway, *A course in functional analysis*, Graduate Texts in Mathematics, 96, Springer-Verlag, New York, 1985. MR0768926

Spectral theory of normal operators ⁵

Let H be a separable Hilbert space.

• Result 1- (Unitary equivalence of normal operators) If N is a normal operator on H, there are mutually singular measures μ_{∞} , μ_1 , μ_2 ... and an isomorphism

 $\begin{array}{l} U:H\longrightarrow L^2(\mu_\infty;\,H_\infty)\oplus L^2(\mu_1)\oplus L^2(\mu_2;\,H_2)\oplus\dots \mbox{ such that }\\ UNU^{-1}=N_\infty\oplus N_1\oplus N_2\oplus\dots \mbox{ where }H_n \mbox{ is an n-dimensional Hilbert }\\ \mbox{space, }L^2(\mu_n;\,H_n) \mbox{ is the space of square integrable }H_n \mbox{ valued }\\ \mbox{functions and }N_n \mbox{ is multiplication by }z \mbox{ on }L^2(\mu_n;\,H_n). \end{array}$

2 Result 2- (Centralizer of a normal operator) Also, if N is multiplication by z on $L^2(\mu; H_n)$, then

$$\{N\}' = \{M_{\phi} : \phi \in L^{\infty}(\mu; B(H_n))\}.$$

This gives

$$\{N_{\infty}\oplus N_1\oplus N_2\oplus\ldots\}'=L^{\infty}(\mu_{\infty}; B(H_{\infty}))\oplus L^{\infty}(\mu_1)\oplus L^{\infty}(\mu_2; B(H_2))\oplus.$$

⁵J. B. Conway, *A course in functional analysis*, Graduate Texts in Mathematics, 96, Springer-Verlag, New York, 1985. MR0768926

Lemma (Centralizer of a unitary operator)

If V is a unitary operator on a separable Hilbert space H, then

$$Z(V) = U^{-1}Z(V_{\infty} \oplus V_1 \oplus V_2 \oplus ...)U$$

where U is as in the preceding theorem and $Z(V_{\infty} \oplus V_1 \oplus V_2 \oplus ...) = U(H_{\infty}) \oplus U(H_1) \oplus U(H_2) \oplus ..., U(H_n)$ is the group of unitary elements in $L^{\infty}(\mu; B(H_n))$.

For a subspace $K \subseteq H$, let $G(\mathcal{A} \upharpoonright_K)$ denote the collection of bijective linear isometries with respect to the sesquilinear form $\mathcal{A} \upharpoonright_K$.

Elliptic isometry (M. M. Mishra and A.)

Let T be an elliptic isometry decomposing the infinite dimensional space $H \oplus \mathbb{C}$ into a time like finite dimensional sub-eigenspace say K, and K^{\perp} with respect to the sesquilinear form \mathcal{A} . Then $Z(T) = Z(T \upharpoonright_K) \times Z(T \upharpoonright_{K^{\perp}})$ where $Z(T \upharpoonright_K) = G(\mathcal{A} \upharpoonright_K)$. For a subspace $K \subseteq H$, let $G(\mathcal{A} \upharpoonright_K)$ denote the collection of bijective linear isometries with respect to the sesquilinear form $\mathcal{A} \upharpoonright_K$.

Elliptic isometry (M. M. Mishra and A.)

Let T be an elliptic isometry decomposing the infinite dimensional space $H \oplus \mathbb{C}$ into a time like finite dimensional sub-eigenspace say K, and K^{\perp} with respect to the sesquilinear form \mathcal{A} . Then $Z(T) = Z(T \upharpoonright_K) \times Z(T \upharpoonright_{K^{\perp}})$ where $Z(T \upharpoonright_K) = G(\mathcal{A} \upharpoonright_K)$.

Hyperbolic isometry (M. M. Mishra and A.)

Let T be a hyperbolic isometry decomposing the space $\mathcal{H} \oplus \mathbb{C}$ into a two-dimensional subspace say L, generated by two light like eigenvectors say x and y, and L^{\perp} with respect to the sesquilinear form \mathcal{A} . Then $Z(T) = Z(T \upharpoonright_L) \times Z(T \upharpoonright_{L^{\perp}})$ where $Z(T \upharpoonright_L) = S^1 \cup \mathbb{R}^+$.

Bear ⁶ defined the notion of Gleason part to an arbitrary linear subspace B of C(X).

For $x, y \in X$, $x \sim y$ (a) if and only if

$$\frac{1}{a} < \frac{u(x)}{u(y)} < a$$

for all strictly positive functions $u \in B$. $x \sim y$ if $x \sim y$ (a) for some a. The metric D on each part is defined as follows. For x and y in the same part,

$$D(x,y) = \log R(x,y).$$

where $R(x, y) = inf\{a : x \sim y (a)\}.$

⁶H. S. Bear, A geometric characterization of Gleason parts, Proc. Amer. Math. Soc. **16** (1965), 407–412. MR0181910 Ion Suciu ⁷, For two contractions T_1 and T_2 , $T_1 \sim T_2$ if there exists $a \in (0,1)$ such that

$$a\operatorname{\mathsf{Re}} p(T_1) \leq \operatorname{\mathsf{Re}} p(T_2) \leq a^{-1}\operatorname{\mathsf{Re}} p(T_1)$$

for each complex valued polynomial p with positive real part.

 $^{^7}$ I. Suciu, Analytic relations between functional models for contractions, Acta Sci. Math. (Szeged) $\bf 34$ (1973), 359–365. MR0320783

⁸C. Foiaș, On Harnack parts of contractions, Rev. Roumaine Math. Pures Appl. **19** (1974), 315–318. MR0348537

Ion Suciu ⁷, For two contractions T_1 and T_2 , $T_1 \sim T_2$ if there exists $a \in (0,1)$ such that

$$a\operatorname{\mathsf{Re}} p(T_1) \leq \operatorname{\mathsf{Re}} p(T_2) \leq a^{-1}\operatorname{\mathsf{Re}} p(T_1)$$

for each complex valued polynomial p with positive real part.

Foias ⁸, the strict contractions form a single Harnack part.

⁷I. Suciu, Analytic relations between functional models for contractions, Acta Sci. Math. (Szeged) **34** (1973), 359–365. MR0320783

⁸C. Foiaș, On Harnack parts of contractions, Rev. Roumaine Math. Pures Appl. **19** (1974), 315–318. MR0348537

Ion Suciu ⁷, For two contractions T_1 and T_2 , $T_1 \sim T_2$ if there exists $a \in (0,1)$ such that

$$a\operatorname{\mathsf{Re}} p(T_1) \le \operatorname{\mathsf{Re}} p(T_2) \le a^{-1}\operatorname{\mathsf{Re}} p(T_1)$$

for each complex valued polynomial p with positive real part.

Foias ⁸, the strict contractions form a single Harnack part.

Popescu 9, Harnack metric on the open unit ball in B(H) coincides with the Carathéodory and Kobayashi metric.

⁷I. Suciu, Analytic relations between functional models for contractions, Acta Sci. Math. (Szeged) **34** (1973), 359–365. MR0320783

⁸C. Foiaș, On Harnack parts of contractions, Rev. Roumaine Math. Pures Appl. **19** (1974), 315–318. MR0348537

⁹G. Popescu, Noncommutative hyperbolic geometry on the unit ball of $B(H)^n$, J. Funct. Anal. **256** (2009), no. 12, 4030–4070. MR2521919 raginal and an analysis and a set the set of t

Franzoni, Tullio. The group of holomorphic automorphisms in certain J^* -algebras. Ann. Mat. Pura Appl. (4) 127 (1981), 51–66. MR0633394

 B_1 - Open unit ball in B(K, H), K and H are Hilbert spaces.

Franzoni, Tullio. The group of holomorphic automorphisms in certain J^* -algebras. Ann. Mat. Pura Appl. (4) 127 (1981), 51–66. MR0633394

 B_1 - Open unit ball in B(K, H), K and H are Hilbert spaces.

For $h \in AutB_1$, $h = T_B \circ L$,

 $T_B \in Aut(B_1),$

$$T_B(A) = (I - BB^*)^{-\frac{1}{2}}(A + B)(I + B^*A)^{-1}(I - B^*B)^{\frac{1}{2}}$$

and L is a surjective linear isometry defined on B(K,H) as

$$L(A) = UAV, \ V \in U(K), \ U \in U(H).$$

U(K, H)- Group of all bijective linear transformations defined on $H \oplus K$ preserving the following hermitian form. $\mathcal{M} : (H \oplus K) \times (H \oplus K) \to \mathbb{C}$ as

$$\mathcal{M}((h_1,k_1),(h_2,k_2)) = \langle h_1,h_2 \rangle - \langle k_1,k_2 \rangle.$$

U(K, H)- Group of all bijective linear transformations defined on $H \oplus K$ preserving the following hermitian form. $\mathcal{M} : (H \oplus K) \times (H \oplus K) \to \mathbb{C}$ as

$$\mathcal{M}((h_1,k_1),(h_2,k_2)) = \langle h_1,h_2 \rangle - \langle k_1,k_2 \rangle.$$

For
$$T \in U(K, H)$$
, $T = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ satisfying
 $B^*B - D^*D = I$, $E^*E - C^*C = I$ and $C^*B = E^*D$.

U(K, H)- Group of all bijective linear transformations defined on $H \oplus K$ preserving the following hermitian form. $\mathcal{M} : (H \oplus K) \times (H \oplus K) \to \mathbb{C}$ as

$$\mathcal{M}((h_1,k_1),(h_2,k_2)) = \langle h_1,h_2 \rangle - \langle k_1,k_2 \rangle.$$

For
$$T \in U(K, H)$$
, $T = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ satisfying $B^*B - D^*D = I$, $E^*E - C^*C = I$ and $C^*B = E^*D$.

Franzoni [3]

 $\psi: U(K, H) \to Aut(B_1)$ is an onto homomorphism defined as $T \mapsto \psi(T)$ where $\psi(T)(A) = (BA + C)(DA + E)^{-1}$. Let $K = \mathbb{C}^n$.

Proposition (M. M. Mishra and A.)

For, $T \in U(K, H)$, $T = \begin{bmatrix} BU & CV \\ DU & EV \end{bmatrix}$, $U \in U(H)$, $V \in U(K)$, B and E are positive invertible in B(H) and B(K) respectively. $E(e_i) = a_i e_i, a_i > 0,$ $C(e_i) = \xi_i,$ $D = C^* = 0 \text{ on } (Ran C)^{\perp} \text{ and } C^*(\xi_i) = \|\xi_i\|^2 e_i.$ $a_i^2 = 1 + \|\xi_i\|^2 \text{ and } \langle \xi_i, \xi_j \rangle = 0, i \neq j, i, j \in \{1, 2, ..., n\}.$ $B = I \text{ on } (Ran C)^{\perp} \text{ and } B(\xi_i) = a_i \xi_i$

Let
$$\xi_i \neq 0$$
, $i \in \{1, 2, ..., k\}$ and $\xi_j = 0$, $j \in \{k + 1, ..., n\}$.

Rachna Aggarwal

A classification of isometries of infinite dime

January 6, 2022

< ロ > < 部 > < き > < き >

≣ ৩৭.ে 30/33

Let
$$\xi_i \neq 0$$
, $i \in \{1, 2, ..., k\}$ and $\xi_j = 0$, $j \in \{k + 1, ..., n\}$.

 $Ran C = span\{\xi_1, \xi_2, ..., \xi_k\}.$

< 一 →

э

Let
$$\xi_i \neq 0$$
, $i \in \{1, 2, ..., k\}$ and $\xi_j = 0$, $j \in \{k + 1, ..., n\}$.

 $Ran C = span\{\xi_1, \xi_2, ..., \xi_k\}.$

 $K = K_1 \oplus K_2$, $K_1 = \operatorname{span}\{e_1, e_2, ..., e_k\}$.

Let
$$\xi_i \neq 0, i \in \{1, 2, ..., k\}$$
 and $\xi_j = 0, j \in \{k + 1, ..., n\}$.
 $Ran C = \text{span}\{\xi_1, \xi_2, ..., \xi_k\}$.
 $K = K_1 \oplus K_2, K_1 = \text{span}\{e_1, e_2, ..., e_k\}$.
 $Ran C = C_1 \oplus C_2 \oplus \oplus C_l \text{ and } K_1 = E_1 \oplus E_2 \oplus ... \oplus E_l$.
 $dim C_i = dim E_i = p_i$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

Let
$$\xi_i \neq 0, i \in \{1, 2, ..., k\}$$
 and $\xi_j = 0, j \in \{k + 1, ..., n\}$.
 $Ran C = \text{span}\{\xi_1, \xi_2, ..., \xi_k\}$.
 $K = K_1 \oplus K_2, K_1 = \text{span}\{e_1, e_2, ..., e_k\}$.
 $Ran C = C_1 \oplus C_2 \oplus \oplus C_l \text{ and } K_1 = E_1 \oplus E_2 \oplus ... \oplus E_l$.
 $dim C_i = dim E_i = p_i$.

$$\begin{split} C_i &= \text{span}\{\xi_{i_1}, \xi_{i_2}, ..., \xi_{p_i}\}, \ \|\xi_{i_r}\| = \|\xi_{i_s}\| \text{ and } \\ E_i &= \text{span}\{e_{i_1}, e_{i_2}, ..., e_{p_i}\}, \ \|a_{i_r}\| = \|a_{i_s}\|. \end{split}$$

Let
$$\xi_i \neq 0, i \in \{1, 2, ..., k\}$$
 and $\xi_j = 0, j \in \{k + 1, ..., n\}$.
 $Ran C = \text{span}\{\xi_1, \xi_2, ..., \xi_k\}$.
 $K = K_1 \oplus K_2, K_1 = \text{span}\{e_1, e_2, ..., e_k\}$.
 $Ran C = C_1 \oplus C_2 \oplus \oplus C_l \text{ and } K_1 = E_1 \oplus E_2 \oplus ... \oplus E_l$.
 $dim C_i = dim E_i = p_i$.
 $C_i = \text{span}\{\xi_{i_1}, \xi_{i_2}, ..., \xi_{p_i}\}, \|\xi_{i_r}\| = \|\xi_{i_s}\| \text{ and } E_i = \text{span}\{e_{i_1}, e_{i_2}, ..., e_{p_i}\}, \|a_{i_r}\| = \|a_{i_s}\|$.
 $H = Ran C \oplus (Ran C)^{\perp} = (C_1 \oplus C_2 \oplus ... \oplus C_l) \oplus (Ran C)$

 $H = Ran C \oplus (Ran C)^{\perp} = (C_1 \oplus C_2 \oplus ... \oplus C_l) \oplus (Ran C)^{\perp}$ and $K = K_1 \oplus K_2 = (E_1 \oplus E_2 \oplus \oplus E_l) \oplus K_2.$

3

Let
$$\xi_i \neq 0, i \in \{1, 2, ..., k\}$$
 and $\xi_j = 0, j \in \{k + 1, ..., n\}$.
 $Ran C = \text{span}\{\xi_1, \xi_2, ..., \xi_k\}.$
 $K = K_1 \oplus K_2, K_1 = \text{span}\{e_1, e_2, ..., e_k\}.$
 $Ran C = C_1 \oplus C_2 \oplus \oplus C_l \text{ and } K_1 = E_1 \oplus E_2 \oplus ... \oplus E_l.$
 $dim C_i = dim E_i = p_i.$

$$\begin{split} &C_i = \text{span}\{\xi_{i_1}, \xi_{i_2}, ..., \xi_{p_i}\}, \ \|\xi_{i_r}\| = \|\xi_{i_s}\| \text{ and } \\ &E_i = \text{span}\{e_{i_1}, e_{i_2}, ..., e_{p_i}\}, \ \|a_{i_r}\| = \|a_{i_s}\|. \end{split}$$

 $H = Ran C \oplus (Ran C)^{\perp} = (C_1 \oplus C_2 \oplus ... \oplus C_l) \oplus (Ran C)^{\perp}$ and $K = K_1 \oplus K_2 = (E_1 \oplus E_2 \oplus \oplus E_l) \oplus K_2.$

Let $C_i \oplus E_i = H_i$. $H \oplus K = H_1 \oplus H_2 \oplus ... \oplus H_l \oplus (Ran C)^{\perp} \oplus K_2$.

Normal isometry

Proposition (M. M. Mishra and A.)

$$T = \left[\begin{array}{cc} BU & CV \\ DU & EV \end{array} \right] \text{ is a normal isometry if and only if }$$

- U preserves each C_i .
- **2** V preserves each E_i .

$$(U \upharpoonright_{C_i}] = [V \upharpoonright_{E_i}].$$

So, For a normal isometry T, $T = T_1 \oplus T_2 \oplus ... \oplus T_l \oplus T' \oplus T''$ where $T_i = T \upharpoonright_{H_i}, T' = U \upharpoonright_{(Ran C)^{\perp}}$ and $T'' = V \upharpoonright_{K^{\perp}}$.

Normal isometry

Proposition (M. M. Mishra and A.)

$$T = \left[\begin{array}{cc} BU & CV \\ DU & EV \end{array} \right] \text{ is a normal isometry if and only if }$$

- $U \text{ preserves each } C_i.$
- **2** V preserves each E_i .

$$(U \upharpoonright_{C_i}] = [V \upharpoonright_{E_i}].$$

So, For a normal isometry T, $T = T_1 \oplus T_2 \oplus ... \oplus T_l \oplus T' \oplus T''$ where $T_i = T \upharpoonright_{H_i}, T' = U \upharpoonright_{(Ran C)^{\perp}}$ and $T'' = V \upharpoonright_{K^{\perp}}$.

Spectrum

For T normal,
$$\sigma(T) = \cup \sigma(T_i) \cup \sigma(U \upharpoonright_{(Ran C)^{\perp}}) \cup \sigma(V \upharpoonright_{K^{\perp}})$$

 $\sigma(T_i) = \{\lambda_i \mu_1, \lambda_2 \mu_2, ..., \lambda_{p_i} \mu_{p_i}\}$ where $\{\mu_1, \mu_2, ..., \mu_{p_i}\} = \sigma(U \upharpoonright_{C_i})$ and $\{\lambda_1, \lambda_2, ..., \lambda_{p_i}\} = \{a_i \pm \|\xi\|\}.$

- S. S. Chen and L. Greenberg, Hyperbolic spaces, in Contributions to analysis (a collection of papers dedicated to Lipman Bers), 49–87, Academic Press, New York. MR0377765
- Franzoni, Tullio; Vesentini, Edoardo. Holomorphic maps and invariant distances. Notas de Matemática [Mathematical Notes], 69.
 North-Holland Publishing Co., Amsterdam-New York, 1980. viii+226 pp. ISBN: 0-444-85436-3 MR0563329
- Franzoni, Tullio. The group of holomorphic automorphisms in certain J*-algebras. Ann. Mat. Pura Appl. (4) 127 (1981), 51–66.
 MR0633394
- Gongopadhyay, Krishnendu; Kulkarni, Ravi S. *z*-classes of isometries of the hyperbolic space. Conform. Geom. Dyn. 13 (2009), 91–109. MR2491719

Thank you.

э