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In this talk, I shall discuss some analogues of Mihlin-Hörmander
multiplier type theorems for pseudo-multipliers associated with
Grushin operators.

In order to motivate our work, let me first do a short survey on
related results in the Euclidean space.

The Fourier multiplier operator Tm associated to m ∈ L∞ (Rn) is
defined by

Tmf (x) :=
∫
Rn

m(ξ)f̂ (ξ)eix ·ξ dξ,

for suitable functions f on Rn, where f̂ stands for the Fourier
transform of f .

By the use of the Plancherel Theorem it is easy to see that Tm is
bounded on L2(Rn).
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Mihlin-Hörmander multiplier theorem

For p 6= 2, we need some regularity on m for Tm to be bounded on
Lp(Rn).

Theorem (Mihlin-Hörmander multiplier theorem)
Let m be a smooth function such that∣∣∣∂αξ m(ξ)

∣∣∣ .α (1 + |ξ|)−|α|

for all α ∈ Nn such that |α| ≤ bn/2c+ 1. Then the operator Tm is
bounded on Lp(Rn) for 1 < p <∞.
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Pseudo-differential operators on the Euclidean space

The pseudo-differential operator m(x ,D) associated to
m ∈ L∞ (Rn × Rn) is defined by

m(x ,D)f (x) :=
∫
Rn

m(x , ξ)f̂ (ξ)eix ·ξ dξ,

for suitable functions f on Rn.

m ∈ L∞ (Rn × Rn) is not sufficient to guarantee the boundedness of
the operator m(x ,D) on L2(Rn).
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Definition (Symbol class Sσρ,δ)
For any σ ∈ R and ρ, δ ≥ 0, we define

Sσρ,δ :=
{
m ∈ C∞(Rn × Rn) :

∣∣∣∂βx ∂αξ m(x , ξ)
∣∣∣ .α,β (1 + |ξ|)σ−ρ|α|+δ|β|,

∀α, β ∈ Nn} .

Theorem (Calderón-Vaillancourt, 1971)
Let m ∈ S0

ρ,δ, with 0 ≤ δ ≤ ρ ≤ 1, δ 6= 1. Then the operator m(x ,D),
initially defined on S(Rn), extends to a bounded operator from L2(Rn) to
itself.
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Weighted Boundedness on Euclidean space

Definition (Ap class)
Let 1 < p <∞. A weight w is said to be in class Ap if

[w ]Ap = sup
Q

( 1
|Q|

∫
Q
w dx

)( 1
|Q|

∫
Q
w1−p′dx

)p−1
<∞,

where the supremum is over all cubes with sides parallel to
coordinates axes.
A weight w is said to be in class A1 if

[w ]A1 = sup
Q

( 1
|Q|

∫
Q
w dx

)
‖w−1‖L∞(Q) <∞,

where the supremum is over all cubes with sides parallel to
coordinates axes.
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In 1982, Miller studied the boundedeness of the pseudo-differential
operator m(x ,D) on Lp(w).

Theorem (N. Miller, 1982)

Let m be such that ∣∣∣∂βx ∂αξ m(x , ξ)
∣∣∣ .α,β (1 + |ξ|)−|α|,

for all α, β ∈ Nn such that |α| ≤ n + 1 , |β| ≤ 1. Also assume that
m(x ,D) is bounded on L2(Rn). Then for 1 < p <∞, m(x ,D) has a
bounded extension to Lp(w) for w ∈ Ap.
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Recently, D. Beltran and L. Cladek have proved sparse domination
results for pseudo-differential operators on Rn.

There are Lp boundedness results for pseudo-multipliers for the set up
beyond Euclidean spaces.

I Heisenberg group : H. Bahouri-C. Fermanian-Kammerer-I.
Gallagher (2012).

I Graded Lie group: V. Fischer-M. Ruzhansky, "Quantization on
nilpotent Lie groups".

I Compact Lie group : M. Ruzhansky - V. Turunen,
"Pseudo-differential operators and symmetries".

I Homogeneous space associated with a class of self adjoint operator
: F. Bernicot and D. Frey (2014).
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Hermite operator

The Hermite operator H on Rn is given by

H = −∆ + |x |2

where ∆ stands for the standard Laplacian on Rn.

The spectral resolution of H is given by

H =
∞∑

k=0
(2k + n)Pk

where Pk stands for the orthogonal projection of L2(Rn) onto the
eigenspace for the Hermite operator corresponding to the eigenvalue
2k + n.
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Pseudo-multipliers associated to Hermite operator

Given m ∈ L∞ (Rn × N), one can (densely) define the Hermite
pseudo-multiplier on L2(Rn) by

m(x ,H) :=
∞∑

k=0
m(x , 2k + n)Pk .

In 1996, Epperson first studied the Hermite pseudo-multipliers. He
proved LP -boundedness results for the operator m(x ,H) in dimension
n = 1.

In 2015, Bagchi and Thangavelu studied the same problem in higher
dimensions. They actually prove weighted boundednes results for
these operators.
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Results for Hermite pseudo-multipliers
Let ∆dm(x , k) = m(x , k + 1)−m(x , k), and ∆l

dm = ∆d (∆l−1
d m),

l ≥ 2.

Theorem (Bagchi-Thangavelu, 2015)
Assume that the Hermite pseudo-multiplier m(x ,H) is bounded on L2(Rn).
Suppose supx∈Rn

∣∣∣∆l
dm(x , k)

∣∣∣ ≤ Cl (2k + n)−l for l = 1, 2, . . . , bn/2c+ 1.
And also assume that partial derivatives ∂

∂xj
m(x , k) satisfy same estimates

for l = 1, 2, . . . , bn/2c. Then for any 2 < p <∞ and w ∈ Ap/2 we have∫
Rn
|m(x ,H)f (x)|p w(x) dx ≤ C

∫
Rn
|f (x)|p w(x) dx

for all f ∈ Lp(Rn,wdx).

By increasing the values of l upto n + 1, they also prove that m(x ,H)
is bounded on Lp(Rn,wdx) for 1 < p <∞, w ∈ Ap.
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Grushin operators

For any κ ∈ N+, the Grushin operator Gκ on Rn1+n2 is given by

Gκ = −∆x ′ − |x ′|2κ∆x ′′ ,

where ∆x ′ , ∆x ′′ are standard Laplacians on Rn1 and Rn2 respectively.

Consider the following first order gradient vector fields:

Xj = ∂

∂x ′j
and Xα,k = x ′α ∂

∂x ′′k
, for 1 ≤ j ≤ n1, 1 ≤ k ≤ n2

andα ∈ Nn1 with |α| = κ.

We denote the gradient vector field (Xj ,Xα,k)1≤j≤n1, 1≤k≤n2, |α|=κ by
X .

Riju Basak 17th DMHA January 5-8, 2022 12 / 27



Grushin operators

For any κ ∈ N+, the Grushin operator Gκ on Rn1+n2 is given by

Gκ = −∆x ′ − |x ′|2κ∆x ′′ ,

where ∆x ′ , ∆x ′′ are standard Laplacians on Rn1 and Rn2 respectively.

Consider the following first order gradient vector fields:

Xj = ∂

∂x ′j
and Xα,k = x ′α ∂

∂x ′′k
, for 1 ≤ j ≤ n1, 1 ≤ k ≤ n2

andα ∈ Nn1 with |α| = κ.

We denote the gradient vector field (Xj ,Xα,k)1≤j≤n1, 1≤k≤n2, |α|=κ by
X .

Riju Basak 17th DMHA January 5-8, 2022 12 / 27



Grushin operators

For any κ ∈ N+, the Grushin operator Gκ on Rn1+n2 is given by

Gκ = −∆x ′ − |x ′|2κ∆x ′′ ,

where ∆x ′ , ∆x ′′ are standard Laplacians on Rn1 and Rn2 respectively.

Consider the following first order gradient vector fields:

Xj = ∂

∂x ′j
and Xα,k = x ′α ∂

∂x ′′k
, for 1 ≤ j ≤ n1, 1 ≤ k ≤ n2

andα ∈ Nn1 with |α| = κ.

We denote the gradient vector field (Xj ,Xα,k)1≤j≤n1, 1≤k≤n2, |α|=κ by
X .

Riju Basak 17th DMHA January 5-8, 2022 12 / 27



Let us denote by d the control distance associated with the Grushin
operator.

Let B(x , r) := {y ∈ Rn1+n2 : d(x , y) < r} and |B(x , r)| denotes the
(Lebesgue) measure of the ball B(x , r). Then

|B(x , r)| ∼ rn1+n2 max{r , |x ′|}κn2 ,

for all x ∈ Rn1+n2 and r > 0.
The above implies that the space (Rn1+n2 , d , | · |) is a homogeneous
metric space, that is, the underlying measure satisfies the following
doubling condition

|B(x , sr)| .n1,n2,κ (1 + s)Q|B(x , r)|

for s > 0, where Q denotes the homogeneous dimension
n1 + (1 + κ)n2.
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Spectral decomposition of Grushin operator
For Schwartz class function f , we can write

Gκf (x) =
∫
Rn2

e−iλ·x ′′Hκ(λ)f λ(x ′) dλ,

where Hκ(λ) = −∆x ′ + |λ|2|x ′|2κ and f λ(x ′) =
∫
R f (x ′, x ′′)eiλ·x ′′ dx ′′.

Using the spectral decomposition of the operator Hκ(λ), one can
write the the spectral decomposition of the Grushin operator Gκ as
follows:

Gκf (x) =
∫
Rn2

e−iλ·x ′′∑
k∈N
|λ|

2
κ+1 νκ,kPκ,k(λ)f λ(x ′) dλ.

Given a bounded measurable function m on Rn1+n2 ×R+, we consider
the Grushin pseudo-multiplier m(·,Gκ), defined by

m(x ,Gκ)f (x) :=
∫
Rn2

e−iλ·x ′′∑
k∈N

m
(
x , |λ|

2
κ+1 νκ,k

)
Pκ,k(λ)f λ(x ′) dλ,

for Schwartz class functions f on Rn1+n2 .
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Symbol class for Grushin pseudo-multipliers
Definition

For any σ ∈ R and ρ, δ ≥ 0, define the symbol class Sσρ,δ(Gκ) to be the set
of all functions m ∈ C∞ (Rn1+n2 × R+) which satisfy the following
estimate: ∣∣∣XΓ∂ l

ηm(x , η)
∣∣∣ ≤Γ,l (1 + η)

σ
2−(1+ρ) l

2 +δ |Γ|2

for all Γ ∈ Nn0 and l ∈ N. Here n0 = n1 + n2
(κ+n1−1

n1−1
)
.

Recently, Bagchi and Garg studied the Grushin pseudo- multipliers for the
case κ = 1. They proved an analogue of Calderón-Vaillancourt type
theorem for the Grushin pseudo-multipliers.

Theorem (Bagchi-Garg, 2021)
Let m ∈ S0

ρ,δ(G) for some 0 ≤ δ < ρ ≤ 1. Then the operator m(x ,G)
extends to a bounded on L2(Rn1+n2) to itself.
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Main result

Theorem (Bagchi-B.-Garg-Ghosh, 2021)
Let m : Rn1+n2 × R+ → C be such that for all 0 ≤ l ≤ Q + 1∣∣∣∂ l

τm(x , τ)
∣∣∣ .Γ,l (1 + τ)−l .

Assume also that the pseudo-multiplier operator m(x ,Gκ) is bounded on
L2(Rn1+n2). Then m(x ,Gκ) is of weak type (1, 1) and as a consequence
m(x ,Gκ) : Lp(Rn1+n2)→ Lp(Rn1+n2) is bounded for 1 < p < 2.
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Sparse operator
Let S be a family of dyadic cubes.

Definition
We say a family of sets S ⊂ S is η-sparse, 0 < η < 1, if for every Q ∈ S
there exists a set EQ ⊂ Q such that |EQ| ≥ η|Q| and the sets {EQ}Q∈S
are pairwise disjoint.

For a sparse family S and 1 ≤ r <∞, we consider the sparse operator
defined as following

Ar ,S f (x) =
∑
Q∈S

( 1
|Q|

∫
Q
|f |r

) 1
r
χQ(x).

Then for r < p <∞, w ∈ Ap/r (Rn1+n2) and f ∈ Lp(Rn1+n2 ,w) we
have

‖Ar ,S f ‖Lp(w) . [w ]
max{ 1

p−r ,1}
Ap(Rn1+n2 ) ‖f ‖Lp(w).
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Sparse domination result
For any sublinear operator T , the grand maximal truncated operator
M#

T ,s is defined by

M#
T ,s f (x) = sup

B∈S: B3x
sup

y ,z∈B
|T (f χRn1+n2\sB)(y)− T (f χRn1+n2\sB)(z)|.

Theorem (Lerner-Ombrosi, 2020; Lorist, 2021)
Let T be a sublinear operator of weak-type (p, p) andM#

T ,α is weak type
(q, q), where 1 ≤ p, q <∞ and s ≥ 3c2

d
δ . Let r = max{p, q}. Then for

every compactly supported bounded measurable function f , there exist a
η-sparse family S ⊂ S such that

|Tf (x)| ≤ CAr ,S f (x)

for almost every x.
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Weighted boundedness results

Theorem (Bagchi-B.-Garg-Ghosh, 2021)
For a fixed 0 ≤ δ < 1, let m ∈ L∞ (Rn1+n2 × R+) be such that∣∣∣∂l

ηm(x , η)
∣∣∣ ≤l (1 + η)−l , for all l ≤ bQ/2c+ 1,

and
∣∣∣Xx∂

l
ηm(x , η)

∣∣∣ ≤l ,δ (1 + η)−l+ δ
2 , for all l ≤ bQ/2c.

Assume also that the operator T = m(x ,Gκ) is bounded on L2(Rn1+n2).
Then, for every compactly supported bounded measurable function f there
exists a sparse family S ⊂ S such that

|Tf (x)| .T A2,S f (x),

for almost every x ∈ Rn1+n2 .
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General operator T

Choose and fix ψ0 ∈ C∞c ((−2, 2)) and ψ1 ∈ C∞c ((1/2, 2)) such that
for all η ≥ 0 we have 0 ≤ ψ0(η), ψ1(η) ≤ 1, and

∞∑
j=0

ψj(η) = 1

where ψj(η) = ψ1
(
2−(j−1)η

)
for j ≥ 2.

Given T ∈ B
(
L2(Rn1+n2)

)
, we break it into a countable sum of

operators as follows. For each j ∈ N, let us define

Tj = TSj

where Sj ’s are the Grushin multiplier operators Sj = ψj(Gκ). Then,
we have T =

∑
j Tj with convergence in the strong operator topology

of B
(
L2(Rn1+n2)

)
.
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L2-conditions on the kernel

We denote the kernel of the operator Tj by Tj(x , y).

There exists some R0 ∈ (0,∞) such that for all r ∈ [0,R0] and for every
compact set Λ ⊂ Rn1+n2 we have

1

sup
x∈Rn1+n2

|B(x , 2−j/2)|
∫
Rn1+n2

d(x , y)2r|Tj(x , y)|2 dy .R0 2−jr,

2

sup
x∈Rn1+n2

|B(x , 2−j/2)|
∫

Λ
d(x , y)2r|XxTj(x , y)|2 dy .R0,Λ 2−jr2j .
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Theorem (Bagchi-B.-Garg-Ghosh, 2021)
Let T ∈ B

(
L2(Rn1+n2)

)
. Suppose that the integral kernels Tj(x , y) satisfy

conditions (1) and (2) for some R0 > Q/2. Then, we have the following
pointwise almost everywhere estimate

M#
T ,s f (x) .T ,s M2f (x),

for every bounded measurable function f with compact support.
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Lemma (Bagchi-B.-Garg-Ghosh, 2021)
For 2 ≤ p ≤ ∞ and every r > 0 and ε > 0, we have

|B(x ,R−1)|1/2
∥∥∥|B(·,R−1)|1/2−1/p (1 + Rd(x , ·))rXΓ

x Km(x ,Gκ)(x , ·)
∥∥∥

p

.Γ,p,r,ε sup
x0

∑
Γ1+Γ2=Γ

R |Γ1|‖XΓ2
x m(x0,R2·)‖W∞r+ε

,

for all Γ ∈ Nn0 and for every bounded Borel function m : Rn1+n2 × R→ C
whose support in the last variable is in [0,R2] for any R > 0.
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Thank You!
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