On sharp weighted L^{p}-estimates for pseudo-multipliers associated to Grushin operators

Riju Basak
(Based on a joint work with Sayan Bagchi, Rahul Garg and Abhishek Ghosh)

17th DMHA, NISER Bhubaneswar

January 5-8, 2022

- In this talk, I shall discuss some analogues of Mihlin-Hörmander multiplier type theorems for pseudo-multipliers associated with Grushin operators.
- In this talk, I shall discuss some analogues of Mihlin-Hörmander multiplier type theorems for pseudo-multipliers associated with Grushin operators.
- In order to motivate our work, let me first do a short survey on related results in the Euclidean space.
- In this talk, I shall discuss some analogues of Mihlin-Hörmander multiplier type theorems for pseudo-multipliers associated with Grushin operators.
- In order to motivate our work, let me first do a short survey on related results in the Euclidean space.
- The Fourier multiplier operator T_{m} associated to $m \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is defined by

$$
T_{m} f(x):=\int_{\mathbb{R}^{n}} m(\xi) \widehat{f}(\xi) e^{i x \cdot \xi} d \xi
$$

for suitable functions f on \mathbb{R}^{n}, where \widehat{f} stands for the Fourier transform of f.

- In this talk, I shall discuss some analogues of Mihlin-Hörmander multiplier type theorems for pseudo-multipliers associated with Grushin operators.
- In order to motivate our work, let me first do a short survey on related results in the Euclidean space.
- The Fourier multiplier operator T_{m} associated to $m \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is defined by

$$
T_{m} f(x):=\int_{\mathbb{R}^{n}} m(\xi) \widehat{f}(\xi) e^{i x \cdot \xi} d \xi
$$

for suitable functions f on \mathbb{R}^{n}, where \widehat{f} stands for the Fourier transform of f.

- By the use of the Plancherel Theorem it is easy to see that T_{m} is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$.

Mihlin-Hörmander multiplier theorem

- For $p \neq 2$, we need some regularity on m for T_{m} to be bounded on $L^{p}\left(\mathbb{R}^{n}\right)$.

Mihlin-Hörmander multiplier theorem

- For $p \neq 2$, we need some regularity on m for T_{m} to be bounded on $L^{p}\left(\mathbb{R}^{n}\right)$.

Theorem (Mihlin-Hörmander multiplier theorem)
Let m be a smooth function such that

$$
\left|\partial_{\xi}^{\alpha} m(\xi)\right| \lesssim \alpha(1+|\xi|)^{-|\alpha|}
$$

for all $\alpha \in \mathbb{N}^{n}$ such that $|\alpha| \leq\lfloor n / 2\rfloor+1$. Then the operator T_{m} is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$.

Pseudo-differential operators on the Euclidean space

- The pseudo-differential operator $m(x, D)$ associated to $m \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ is defined by

$$
m(x, D) f(x):=\int_{\mathbb{R}^{n}} m(x, \xi) \widehat{f}(\xi) e^{i x \cdot \xi} d \xi
$$

for suitable functions f on \mathbb{R}^{n}.

Pseudo-differential operators on the Euclidean space

- The pseudo-differential operator $m(x, D)$ associated to $m \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ is defined by

$$
m(x, D) f(x):=\int_{\mathbb{R}^{n}} m(x, \xi) \widehat{f}(\xi) e^{i x \cdot \xi} d \xi
$$

for suitable functions f on \mathbb{R}^{n}.

- $m \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ is not sufficient to guarantee the boundedness of the operator $m(x, D)$ on $L^{2}\left(\mathbb{R}^{n}\right)$.

Definition (Symbol class $S_{\rho, \delta}^{\sigma}$)

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq 0$, we define

$$
\begin{array}{r}
S_{\rho, \delta}^{\sigma}:=\left\{m \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right):\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} m(x, \xi)\right| \lesssim \alpha, \beta(1+|\xi|)^{\sigma-\rho|\alpha|+\delta|\beta|},\right. \\
\left.\forall \alpha, \beta \in \mathbb{N}^{n}\right\} .
\end{array}
$$

Definition (Symbol class $S_{\rho, \delta}^{\sigma}$)

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq 0$, we define

$$
\begin{array}{r}
S_{\rho, \delta}^{\sigma}:=\left\{m \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right):\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} m(x, \xi)\right| \lesssim \alpha, \beta(1+|\xi|)^{\sigma-\rho|\alpha|+\delta|\beta|},\right. \\
\left.\forall \alpha, \beta \in \mathbb{N}^{n}\right\} .
\end{array}
$$

Theorem (Calderón-Vaillancourt, 1971)
Let $m \in S_{\rho, \delta}^{0}$, with $0 \leq \delta \leq \rho \leq 1, \delta \neq 1$. Then the operator $m(x, D)$, initially defined on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, extends to a bounded operator from $L^{2}\left(\mathbb{R}^{n}\right)$ to itself.

Weighted Boundedness on Euclidean space

Definition (A_{p} class)

- Let $1<p<\infty$. A weight w is said to be in class A_{p} if

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}} d x\right)^{p-1}<\infty
$$

where the supremum is over all cubes with sides parallel to coordinates axes.

- A weight w is said to be in class A_{1} if

$$
[w]_{A_{1}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left\|w^{-1}\right\|_{L^{\infty}(Q)}<\infty,
$$

where the supremum is over all cubes with sides parallel to coordinates axes.

- In 1982, Miller studied the boundedeness of the pseudo-differential operator $m(x, D)$ on $L^{p}(w)$.

Theorem (N. Miller, 1982)

Let m be such that

$$
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} m(x, \xi)\right| \lesssim \alpha, \beta(1+|\xi|)^{-|\alpha|}
$$

for all $\alpha, \beta \in \mathbb{N}^{n}$ such that $|\alpha| \leq n+1,|\beta| \leq 1$. Also assume that $m(x, D)$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. Then for $1<p<\infty, m(x, D)$ has a bounded extension to $L^{p}(w)$ for $w \in A_{p}$.

- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^{n}.
- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^{n}.
- There are L^{p} boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.
- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^{n}.
- There are L^{p} boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.
- Heisenberg group: H. Bahouri-C. Fermanian-Kammerer-I. Gallagher (2012).
- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^{n}.
- There are L^{p} boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.
- Heisenberg group: H. Bahouri-C. Fermanian-Kammerer-I. Gallagher (2012).
- Graded Lie group: V. Fischer-M. Ruzhansky, "Quantization on nilpotent Lie groups".
- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^{n}.
- There are L^{p} boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.
- Heisenberg group : H. Bahouri-C. Fermanian-Kammerer-I. Gallagher (2012).
- Graded Lie group: V. Fischer-M. Ruzhansky, "Quantization on nilpotent Lie groups".
- Compact Lie group : M. Ruzhansky - V. Turunen, "Pseudo-differential operators and symmetries".
- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^{n}.
- There are L^{p} boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.
- Heisenberg group : H. Bahouri-C. Fermanian-Kammerer-I. Gallagher (2012).
- Graded Lie group: V. Fischer-M. Ruzhansky, "Quantization on nilpotent Lie groups".
- Compact Lie group : M. Ruzhansky - V. Turunen, "Pseudo-differential operators and symmetries".
- Homogeneous space associated with a class of self adjoint operator : F. Bernicot and D. Frey (2014).

Hermite operator

- The Hermite operator H on \mathbb{R}^{n} is given by

$$
H=-\Delta+|x|^{2}
$$

where Δ stands for the standard Laplacian on R^{n}.

Hermite operator

- The Hermite operator H on \mathbb{R}^{n} is given by

$$
H=-\Delta+|x|^{2}
$$

where Δ stands for the standard Laplacian on R^{n}.

- The spectral resolution of H is given by

$$
H=\sum_{k=0}^{\infty}(2 k+n) P_{k}
$$

where P_{k} stands for the orthogonal projection of $L^{2}\left(\mathbb{R}^{n}\right)$ onto the eigenspace for the Hermite operator corresponding to the eigenvalue $2 k+n$.

Pseudo-multipliers associated to Hermite operator

- Given $m \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{N}\right)$, one can (densely) define the Hermite pseudo-multiplier on $L^{2}\left(\mathbb{R}^{n}\right)$ by

$$
m(x, H):=\sum_{k=0}^{\infty} m(x, 2 k+n) P_{k}
$$

Pseudo-multipliers associated to Hermite operator

- Given $m \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{N}\right)$, one can (densely) define the Hermite pseudo-multiplier on $L^{2}\left(\mathbb{R}^{n}\right)$ by

$$
m(x, H):=\sum_{k=0}^{\infty} m(x, 2 k+n) P_{k}
$$

- In 1996, Epperson first studied the Hermite pseudo-multipliers. He proved L^{P}-boundedness results for the operator $m(x, H)$ in dimension $n=1$.

Pseudo-multipliers associated to Hermite operator

- Given $m \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{N}\right)$, one can (densely) define the Hermite pseudo-multiplier on $L^{2}\left(\mathbb{R}^{n}\right)$ by

$$
m(x, H):=\sum_{k=0}^{\infty} m(x, 2 k+n) P_{k}
$$

- In 1996, Epperson first studied the Hermite pseudo-multipliers. He proved L^{P}-boundedness results for the operator $m(x, H)$ in dimension $n=1$.
- In 2015, Bagchi and Thangavelu studied the same problem in higher dimensions. They actually prove weighted boundednes results for these operators.

Results for Hermite pseudo-multipliers

- Let $\Delta_{d} m(x, k)=m(x, k+1)-m(x, k)$, and $\Delta_{d}^{\prime} m=\Delta_{d}\left(\Delta_{d}^{\prime-1} m\right)$, $l \geq 2$.

Results for Hermite pseudo-multipliers

- Let $\Delta_{d} m(x, k)=m(x, k+1)-m(x, k)$, and $\Delta_{d}^{\prime} m=\Delta_{d}\left(\Delta_{d}^{\prime-1} m\right)$, $l \geq 2$.

Theorem (Bagchi-Thangavelu, 2015)

Assume that the Hermite pseudo-multiplier $m(x, H)$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. Suppose $\sup _{x \in \mathbb{R}^{n}}\left|\Delta_{d}^{\prime} m(x, k)\right| \leq C_{l}(2 k+n)^{-l}$ for $I=1,2, \ldots,\lfloor n / 2\rfloor+1$. And also assume that partial derivatives $\frac{\partial}{\partial x_{j}} m(x, k)$ satisfy same estimates for $I=1,2, \ldots,\lfloor n / 2\rfloor$. Then for any $2<p<\infty$ and $w \in A_{p / 2}$ we have

$$
\int_{\mathbb{R}^{n}}|m(x, H) f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x
$$

for all $f \in L^{p}\left(\mathbb{R}^{n}, w d x\right)$.

Results for Hermite pseudo-multipliers

- Let $\Delta_{d} m(x, k)=m(x, k+1)-m(x, k)$, and $\Delta_{d}^{\prime} m=\Delta_{d}\left(\Delta_{d}^{\prime-1} m\right)$, $l \geq 2$.

Theorem (Bagchi-Thangavelu, 2015)

Assume that the Hermite pseudo-multiplier $m(x, H)$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. Suppose $\sup _{x \in \mathbb{R}^{n}}\left|\Delta_{d}^{\prime} m(x, k)\right| \leq C_{l}(2 k+n)^{-l}$ for $I=1,2, \ldots,\lfloor n / 2\rfloor+1$. And also assume that partial derivatives $\frac{\partial}{\partial x_{j}} m(x, k)$ satisfy same estimates for $I=1,2, \ldots,\lfloor n / 2\rfloor$. Then for any $2<p<\infty$ and $w \in A_{p / 2}$ we have

$$
\int_{\mathbb{R}^{n}}|m(x, H) f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x
$$

for all $f \in L^{p}\left(\mathbb{R}^{n}, w d x\right)$.

- By increasing the values of I upto $n+1$, they also prove that $m(x, H)$ is bounded on $L^{p}\left(\mathbb{R}^{n}, w d x\right)$ for $1<p<\infty, w \in A_{p}$.

Grushin operators

- For any $\varkappa \in \mathbb{N}_{+}$, the Grushin operator G_{\varkappa} on $\mathbb{R}^{n_{1}+n_{2}}$ is given by

$$
G_{\varkappa}=-\Delta_{x^{\prime}}-\left|x^{\prime}\right|^{2 \varkappa} \Delta_{x^{\prime \prime}}
$$

where $\Delta_{x^{\prime}}, \Delta_{x^{\prime \prime}}$ are standard Laplacians on $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$ respectively.

Grushin operators

- For any $\varkappa \in \mathbb{N}_{+}$, the Grushin operator G_{\varkappa} on $\mathbb{R}^{n_{1}+n_{2}}$ is given by

$$
G_{\varkappa}=-\Delta_{x^{\prime}}-\left|x^{\prime}\right|^{2 \varkappa} \Delta_{x^{\prime \prime}}
$$

where $\Delta_{x^{\prime}}, \Delta_{x^{\prime \prime}}$ are standard Laplacians on $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$ respectively.

- Consider the following first order gradient vector fields:

$$
\begin{aligned}
& X_{j}=\frac{\partial}{\partial x_{j}^{\prime}} \quad \text { and } \quad X_{\alpha, k}=x^{\prime \alpha} \frac{\partial}{\partial x_{k}^{\prime \prime}}, \quad \text { for } 1 \leq j \leq n_{1}, 1 \leq k \leq n_{2} \\
& \text { and } \alpha \in \mathbb{N}^{n_{1}} \text { with }|\alpha|=\varkappa .
\end{aligned}
$$

Grushin operators

- For any $\varkappa \in \mathbb{N}_{+}$, the Grushin operator G_{\varkappa} on $\mathbb{R}^{n_{1}+n_{2}}$ is given by

$$
G_{\varkappa}=-\Delta_{x^{\prime}}-\left|x^{\prime}\right|^{2 \varkappa} \Delta_{x^{\prime \prime}}
$$

where $\Delta_{x^{\prime}}, \Delta_{x^{\prime \prime}}$ are standard Laplacians on $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$ respectively.

- Consider the following first order gradient vector fields:

$$
\begin{aligned}
& X_{j}=\frac{\partial}{\partial x_{j}^{\prime}} \quad \text { and } \quad X_{\alpha, k}=x^{\prime \alpha} \frac{\partial}{\partial x_{k}^{\prime \prime}}, \quad \text { for } 1 \leq j \leq n_{1}, 1 \leq k \leq n_{2} \\
& \text { and } \alpha \in \mathbb{N}^{n_{1}} \text { with }|\alpha|=\varkappa .
\end{aligned}
$$

- We denote the gradient vector field $\left(X_{j}, X_{\alpha, k}\right)_{1 \leq j \leq n_{1}, 1 \leq k \leq n_{2},|\alpha|=\varkappa}$ by X.
- Let us denote by d the control distance associated with the Grushin operator.
- Let us denote by d the control distance associated with the Grushin operator.
- Let $B(x, r):=\left\{y \in \mathbb{R}^{n_{1}+n_{2}}: d(x, y)<r\right\}$ and $|B(x, r)|$ denotes the (Lebesgue) measure of the ball $B(x, r)$. Then

$$
|B(x, r)| \sim r^{n_{1}+n_{2}} \max \left\{r,\left|x^{\prime}\right|\right\}^{\varkappa n_{2}}
$$

for all $x \in \mathbb{R}^{n_{1}+n_{2}}$ and $r>0$.

- Let us denote by d the control distance associated with the Grushin operator.
- Let $B(x, r):=\left\{y \in \mathbb{R}^{n_{1}+n_{2}}: d(x, y)<r\right\}$ and $|B(x, r)|$ denotes the (Lebesgue) measure of the ball $B(x, r)$. Then

$$
|B(x, r)| \sim r^{n_{1}+n_{2}} \max \left\{r,\left|x^{\prime}\right|\right\}^{\varkappa n_{2}}
$$

for all $x \in \mathbb{R}^{n_{1}+n_{2}}$ and $r>0$.

- The above implies that the space $\left(\mathbb{R}^{n_{1}+n_{2}}, d,|\cdot|\right)$ is a homogeneous metric space, that is, the underlying measure satisfies the following doubling condition

$$
|B(x, s r)| \lesssim n_{1, n_{2}, \kappa}(1+s)^{Q}|B(x, r)|
$$

for $s>0$, where Q denotes the homogeneous dimension $n_{1}+(1+\varkappa) n_{2}$.

Spectral decomposition of Grushin operator

- For Schwartz class function f, we can write

$$
G_{\varkappa} f(x)=\int_{\mathbb{R}^{n_{2}}} e^{-i \lambda \cdot x^{\prime \prime}} H_{\varkappa}(\lambda) f^{\lambda}\left(x^{\prime}\right) d \lambda,
$$

where $H_{\varkappa}(\lambda)=-\Delta_{x^{\prime}}+|\lambda|^{2}\left|x^{\prime}\right|^{2 \varkappa}$ and $f^{\lambda}\left(x^{\prime}\right)=\int_{\mathbb{R}} f\left(x^{\prime}, x^{\prime \prime}\right) e^{i \lambda \cdot x^{\prime \prime}} d x^{\prime \prime}$.

Spectral decomposition of Grushin operator

- For Schwartz class function f, we can write

$$
G_{\varkappa} f(x)=\int_{\mathbb{R}^{n_{2}}} e^{-i \lambda \cdot x^{\prime \prime}} H_{\varkappa}(\lambda) f^{\lambda}\left(x^{\prime}\right) d \lambda,
$$

where $H_{\varkappa}(\lambda)=-\Delta_{x^{\prime}}+|\lambda|^{2}\left|x^{\prime}\right|^{2 \varkappa}$ and $f^{\lambda}\left(x^{\prime}\right)=\int_{\mathbb{R}} f\left(x^{\prime}, x^{\prime \prime}\right) e^{i \lambda \cdot x^{\prime \prime}} d x^{\prime \prime}$.

- Using the spectral decomposition of the operator $H_{\varkappa}(\lambda)$, one can write the the spectral decomposition of the Grushin operator G_{\varkappa} as follows:

$$
G_{\varkappa} f(x)=\int_{\mathbb{R}^{n_{2}}} e^{-i \lambda \cdot x^{\prime \prime}} \sum_{k \in \mathbb{N}}|\lambda|^{\frac{2}{\varkappa+1}} \nu_{\varkappa, k} P_{\varkappa, k}(\lambda) f^{\lambda}\left(x^{\prime}\right) d \lambda
$$

Spectral decomposition of Grushin operator

- For Schwartz class function f, we can write

$$
G_{\varkappa} f(x)=\int_{\mathbb{R}^{n_{2}}} e^{-i \lambda \cdot x^{\prime \prime}} H_{\varkappa}(\lambda) f^{\lambda}\left(x^{\prime}\right) d \lambda,
$$

where $H_{\varkappa}(\lambda)=-\Delta_{x^{\prime}}+|\lambda|^{2}\left|x^{\prime}\right|^{2 \varkappa}$ and $f^{\lambda}\left(x^{\prime}\right)=\int_{\mathbb{R}} f\left(x^{\prime}, x^{\prime \prime}\right) e^{i \lambda \cdot x^{\prime \prime}} d x^{\prime \prime}$.

- Using the spectral decomposition of the operator $H_{\varkappa}(\lambda)$, one can write the the spectral decomposition of the Grushin operator G_{\varkappa} as follows:

$$
G_{\varkappa} f(x)=\int_{\mathbb{R}^{n_{2}}} e^{-i \lambda \cdot x^{\prime \prime}} \sum_{k \in \mathbb{N}}|\lambda|^{\frac{2}{\varkappa+1}} \nu_{\varkappa, k} P_{\varkappa, k}(\lambda) f^{\lambda}\left(x^{\prime}\right) d \lambda
$$

- Given a bounded measurable function m on $\mathbb{R}^{n_{1}+n_{2}} \times \mathbb{R}_{+}$, we consider the Grushin pseudo-multiplier $m\left(\cdot, G_{\varkappa}\right)$, defined by

$$
m\left(x, G_{\varkappa}\right) f(x):=\int_{\mathbb{R}^{n_{2}}} e^{-i \lambda \cdot x^{\prime \prime}} \sum_{k \in \mathbb{N}} m\left(x,|\lambda|^{\frac{2}{\varkappa+1}} \nu_{\varkappa, k}\right) P_{\varkappa, k}(\lambda) f^{\lambda}\left(x^{\prime}\right) d \lambda
$$

for Schwartz class functions f on $\mathbb{R}^{n_{1}+n_{2}}$.

Symbol class for Grushin pseudo-multipliers

Definition

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq 0$, define the symbol class $\mathcal{S}_{\rho, \delta}^{\sigma}\left(G_{\varkappa}\right)$ to be the set of all functions $m \in C^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}} \times \mathbb{R}_{+}\right)$which satisfy the following estimate:

$$
\left|X^{\ulcorner } \partial_{\eta}^{l} m(x, \eta)\right| \leq_{\Gamma, I}(1+\eta)^{\frac{\sigma}{2}-(1+\rho) \frac{1}{2}+\delta \frac{|\Gamma|}{2}}
$$

for all $\Gamma \in \mathbb{N}^{n_{0}}$ and $I \in \mathbb{N}$. Here $n_{0}=n_{1}+n_{2}\binom{\varkappa+n_{1}-1}{n_{1}-1}$.

Symbol class for Grushin pseudo-multipliers

Definition

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq 0$, define the symbol class $\mathcal{S}_{\rho, \delta}^{\sigma}\left(G_{\varkappa}\right)$ to be the set of all functions $m \in C^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}} \times \mathbb{R}_{+}\right)$which satisfy the following estimate:

$$
\left|X^{\ulcorner } \partial_{\eta}^{l} m(x, \eta)\right| \leq_{\Gamma, I}(1+\eta)^{\frac{\sigma}{2}-(1+\rho) \frac{1}{2}+\delta \frac{|\Gamma|}{2}}
$$

for all $\Gamma \in \mathbb{N}^{n_{0}}$ and $I \in \mathbb{N}$. Here $n_{0}=n_{1}+n_{2}\binom{\varkappa+n_{1}-1}{n_{1}-1}$.
Recently, Bagchi and Garg studied the Grushin pseudo- multipliers for the case $\varkappa=1$. They proved an analogue of Calderón-Vaillancourt type theorem for the Grushin pseudo-multipliers.

Symbol class for Grushin pseudo-multipliers

Definition

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq 0$, define the symbol class $\mathcal{S}_{\rho, \delta}^{\sigma}\left(G_{\varkappa}\right)$ to be the set of all functions $m \in C^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}} \times \mathbb{R}_{+}\right)$which satisfy the following estimate:

$$
\left|X^{\ulcorner } \partial_{\eta}^{\prime} m(x, \eta)\right| \leq r, I(1+\eta)^{\frac{\sigma}{2}-(1+\rho) \frac{1}{2}+\delta \frac{\Gamma /}{2}}
$$

for all $\Gamma \in \mathbb{N}^{n_{0}}$ and $I \in \mathbb{N}$. Here $n_{0}=n_{1}+n_{2}\binom{\varkappa+n_{1}-1}{n_{1}-1}$.
Recently, Bagchi and Garg studied the Grushin pseudo- multipliers for the case $\varkappa=1$. They proved an analogue of Calderón-Vaillancourt type theorem for the Grushin pseudo-multipliers.
Theorem (Bagchi-Garg, 2021)
Let $m \in \mathcal{S}_{\rho, \delta}^{0}(G)$ for some $0 \leq \delta<\rho \leq 1$. Then the operator $m(x, G)$
extends to a bounded on $L^{2}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$ to itself.

Main result

Theorem (Bagchi-B.-Garg-Ghosh, 2021)
Let $m: \mathbb{R}^{n_{1}+n_{2}} \times \mathbb{R}_{+} \rightarrow \mathbb{C}$ be such that for all $0 \leq I \leq Q+1$

$$
\left|\partial_{\tau}^{\prime} m(x, \tau)\right| \lesssim r_{, I}(1+\tau)^{-I}
$$

Assume also that the pseudo-multiplier operator $m\left(x, G_{\varkappa}\right)$ is bounded on $L^{2}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$. Then $m\left(x, G_{\varkappa}\right)$ is of weak type $(1,1)$ and as a consequence $m\left(x, G_{\varkappa}\right): L^{p}\left(\mathbb{R}^{n_{1}+n_{2}}\right) \rightarrow L^{p}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$ is bounded for $1<p<2$.

Sparse operator

- Let \mathcal{S} be a family of dyadic cubes.

Definition

We say a family of sets $S \subset \mathcal{S}$ is η-sparse, $0<\eta<1$, if for every $\mathcal{Q} \in S$ there exists a set $E_{\mathcal{Q}} \subset \mathcal{Q}$ such that $\left|E_{\mathcal{Q}}\right| \geq \eta|\mathcal{Q}|$ and the sets $\left\{E_{\mathcal{Q}}\right\}_{\mathcal{Q} \in S}$ are pairwise disjoint.

Sparse operator

- Let \mathcal{S} be a family of dyadic cubes.

Definition

We say a family of sets $S \subset \mathcal{S}$ is η-sparse, $0<\eta<1$, if for every $\mathcal{Q} \in S$ there exists a set $E_{\mathcal{Q}} \subset \mathcal{Q}$ such that $\left|E_{\mathcal{Q}}\right| \geq \eta|\mathcal{Q}|$ and the sets $\left\{E_{\mathcal{Q}}\right\}_{\mathcal{Q} \in S}$ are pairwise disjoint.

- For a sparse family S and $1 \leq r<\infty$, we consider the sparse operator defined as following

$$
\mathcal{A}_{r, S} f(x)=\sum_{\mathcal{Q} \in S}\left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}}|f|^{r}\right)^{\frac{1}{r}} \chi_{\mathcal{Q}}(x)
$$

Sparse operator

- Let \mathcal{S} be a family of dyadic cubes.

Definition

We say a family of sets $S \subset \mathcal{S}$ is η-sparse, $0<\eta<1$, if for every $\mathcal{Q} \in S$ there exists a set $E_{\mathcal{Q}} \subset \mathcal{Q}$ such that $\left|E_{\mathcal{Q}}\right| \geq \eta|\mathcal{Q}|$ and the sets $\left\{E_{\mathcal{Q}}\right\}_{\mathcal{Q} \in S}$ are pairwise disjoint.

- For a sparse family S and $1 \leq r<\infty$, we consider the sparse operator defined as following

$$
\mathcal{A}_{r, S} f(x)=\sum_{\mathcal{Q} \in S}\left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}}|f|^{r}\right)^{\frac{1}{r}} \chi_{\mathcal{Q}}(x)
$$

- Then for $r<p<\infty, w \in A_{p / r}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$ and $f \in L^{p}\left(\mathbb{R}^{n_{1}+n_{2}}, w\right)$ we have

$$
\left\|\mathcal{A}_{r, S} f\right\|_{L^{p}(w)} \lesssim[w]_{A_{p}\left(\mathbb{R}^{n_{1}+n_{2}}\right)}^{\max \left\{\frac{1}{p}, 1\right\}}\|f\|_{L^{p}(w)}
$$

Sparse domination result

- For any sublinear operator T, the grand maximal truncated operator $\mathcal{M}_{T, S}^{\#}$ is defined by

$$
\mathcal{M}_{T, s}^{\#} f(x)=\sup _{B \in \mathcal{S}: B \ni x y, z \in B} \sup ^{\#}\left|T\left(f_{\mathbb{R}^{n_{1}+n_{2}} \backslash s B}\right)(y)-T\left(f_{\mathbb{R}^{n_{1}+n_{2}} \backslash s B}\right)(z)\right|
$$

Sparse domination result

- For any sublinear operator T, the grand maximal truncated operator $\mathcal{M}_{T, S}^{\#}$ is defined by

$$
\mathcal{M}_{T, s}^{\#} f(x)=\sup _{B \in \mathcal{S}: B \ni x y, z \in B} \sup \left|T\left(f_{\mathbb{R}^{n_{1}+n_{2}} \backslash s B}\right)(y)-T\left(f_{\mathbb{R}^{n_{1}+n_{2}} \backslash s B}\right)(z)\right|
$$

Theorem (Lerner-Ombrosi, 2020; Lorist, 2021)

Let T be a sublinear operator of weak-type (p, p) and $\mathcal{M}_{T, \alpha}^{\#}$ is weak type (q, q), where $1 \leq p, q<\infty$ and $s \geq \frac{3 c_{d}^{2}}{\delta}$. Let $r=\max \{p, q\}$. Then for every compactly supported bounded measurable function f, there exist a η-sparse family $S \subset \mathcal{S}$ such that

$$
|T f(x)| \leq C \mathcal{A}_{r, S} f(x)
$$

for almost every x.

Weighted boundedness results

Theorem (Bagchi-B.-Garg-Ghosh, 2021)

For a fixed $0 \leq \delta<1$, let $m \in L^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}} \times \mathbb{R}_{+}\right)$be such that

$$
\begin{aligned}
& \quad\left|\partial_{\eta}^{\prime} m(x, \eta)\right| \leq 1(1+\eta)^{-1}, \quad \text { for all } \quad I \leq\lfloor Q / 2\rfloor+1, \\
& \text { and } \quad\left|X_{x} \partial_{\eta}^{\prime} m(x, \eta)\right| \leq 1, \delta(1+\eta)^{-1+\frac{\delta}{2}}, \quad \text { for all } \quad I \leq\lfloor Q / 2\rfloor .
\end{aligned}
$$

Assume also that the operator $T=m\left(x, G_{\varkappa}\right)$ is bounded on $L^{2}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$. Then, for every compactly supported bounded measurable function f there exists a sparse family $S \subset \mathcal{S}$ such that

$$
|T f(x)| \lesssim \tau \mathcal{A}_{2, s f} f(x),
$$

for almost every $x \in \mathbb{R}^{n_{1}+n_{2}}$.

Weighted boundedness results

Theorem (Bagchi-B.-Garg-Ghosh, 2021)

For a fixed $0 \leq \delta<1$, let $m \in L^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}} \times \mathbb{R}_{+}\right)$be such that

$$
\begin{aligned}
& \quad\left|\partial_{\eta}^{\prime} m(x, \eta)\right| \leq 1(1+\eta)^{-1}, \quad \text { for all } \quad I \leq Q+1, \\
& \text { and } \quad\left|x_{x} \partial_{\eta}^{\prime} m(x, \eta)\right| \leq 1, \delta(1+\eta)^{-1+\frac{\delta}{2}}, \text { for all } \quad I \leq Q .
\end{aligned}
$$

Assume also that the operator T is bounded on $L^{2}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$. Then, for every compactly supported bounded measurable function f there exists a sparse family $S \subset \mathcal{S}$ such that

$$
|T f(x)| \lesssim \tau \mathcal{A}_{1, S} f(x),
$$

for almost every $x \in \mathbb{R}^{n_{1}+n_{2}}$.

General operator T

- Choose and fix $\psi_{0} \in C_{c}^{\infty}((-2,2))$ and $\psi_{1} \in C_{c}^{\infty}((1 / 2,2))$ such that for all $\eta \geq 0$ we have $0 \leq \psi_{0}(\eta), \psi_{1}(\eta) \leq 1$, and

$$
\sum_{j=0}^{\infty} \psi_{j}(\eta)=1
$$

where $\psi_{j}(\eta)=\psi_{1}\left(2^{-(j-1)} \eta\right)$ for $j \geq 2$.

General operator T

- Choose and fix $\psi_{0} \in C_{c}^{\infty}((-2,2))$ and $\psi_{1} \in C_{c}^{\infty}((1 / 2,2))$ such that for all $\eta \geq 0$ we have $0 \leq \psi_{0}(\eta), \psi_{1}(\eta) \leq 1$, and

$$
\sum_{j=0}^{\infty} \psi_{j}(\eta)=1
$$

where $\psi_{j}(\eta)=\psi_{1}\left(2^{-(j-1)} \eta\right)$ for $j \geq 2$.

- Given $T \in \mathcal{B}\left(L^{2}\left(\mathbb{R}^{n_{1}+n_{2}}\right)\right)$, we break it into a countable sum of operators as follows. For each $j \in \mathbb{N}$, let us define

$$
T_{j}=T S_{j}
$$

where S_{j} 's are the Grushin multiplier operators $S_{j}=\psi_{j}\left(G_{\varkappa}\right)$. Then, we have $T=\sum_{j} T_{j}$ with convergence in the strong operator topology of $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{n_{1}+n_{2}}\right)\right)$.

L^{2}-conditions on the kernel

We denote the kernel of the operator T_{j} by $T_{j}(x, y)$.

L^{2}-conditions on the kernel

We denote the kernel of the operator T_{j} by $T_{j}(x, y)$.
There exists some $R_{0} \in(0, \infty)$ such that for all $\mathfrak{r} \in\left[0, R_{0}\right]$ and for every compact set $\Lambda \subset \mathbb{R}^{n_{1}+n_{2}}$ we have
(1)

$$
\sup _{x \in \mathbb{R}^{n_{1}+n_{2}}}\left|B\left(x, 2^{-j / 2}\right)\right| \int_{\mathbb{R}^{n_{1}+n_{2}}} d(x, y)^{2 \mathfrak{r}}\left|T_{j}(x, y)\right|^{2} d y \lesssim R_{0} 2^{-j \mathfrak{r}},
$$

L^{2}-conditions on the kernel

We denote the kernel of the operator T_{j} by $T_{j}(x, y)$.
There exists some $R_{0} \in(0, \infty)$ such that for all $\mathfrak{r} \in\left[0, R_{0}\right]$ and for every compact set $\Lambda \subset \mathbb{R}^{n_{1}+n_{2}}$ we have
©

$$
\sup _{x \in \mathbb{R}^{n_{1}+n_{2}}}\left|B\left(x, 2^{-j / 2}\right)\right| \int_{\mathbb{R}^{n_{1}+n_{2}}} d(x, y)^{2 \mathfrak{r}}\left|T_{j}(x, y)\right|^{2} d y \lesssim R_{0} 2^{-j \mathfrak{r}},
$$

(2)

$$
\sup _{x \in \mathbb{R}^{n_{1}+n_{2}}}\left|B\left(x, 2^{-j / 2}\right)\right| \int_{\Lambda} d(x, y)^{2 \mathfrak{r}}\left|X_{x} T_{j}(x, y)\right|^{2} d y \lesssim R_{0, \Lambda} 2^{-j r} 2^{j}
$$

Theorem (Bagchi-B.-Garg-Ghosh, 2021)
Let $T \in \mathcal{B}\left(L^{2}\left(\mathbb{R}^{n_{1}+n_{2}}\right)\right)$. Suppose that the integral kernels $T_{j}(x, y)$ satisfy conditions (1) and (2) for some $R_{0}>Q / 2$. Then, we have the following pointwise almost everywhere estimate

$$
\mathcal{M}_{T, s}^{\#} f(x) \lesssim T_{, s} \mathcal{M}_{2} f(x)
$$

for every bounded measurable function f with compact support.

Lemma (Bagchi-B.-Garg-Ghosh, 2021)

For $2 \leq p \leq \infty$ and every $\mathfrak{r}>0$ and $\epsilon>0$, we have

$$
\begin{aligned}
& \left|B\left(x, R^{-1}\right)\right|^{1 / 2}\left\|\left|B\left(\cdot, R^{-1}\right)\right|^{1 / 2-1 / p}(1+R d(x, \cdot))^{\mathfrak{r}} X_{x}^{\Gamma} K_{m\left(x, G_{\varkappa}\right)}(x, \cdot)\right\|_{p} \\
& \quad \lesssim \Gamma_{, p, \mathfrak{r}, \epsilon} \sup _{x_{0}} \sum_{\Gamma_{1}+\Gamma_{2}=\Gamma} R^{\left|\Gamma_{1}\right|}\left\|X_{x}^{\Gamma_{2}} m\left(x_{0}, R^{2} \cdot\right)\right\|_{W_{\mathrm{r}+\epsilon}^{\infty}},
\end{aligned}
$$

for all $\Gamma \in \mathbb{N}^{n_{0}}$ and for every bounded Borel function $m: \mathbb{R}^{n_{1}+n_{2}} \times \mathbb{R} \rightarrow \mathbb{C}$ whose support in the last variable is in $\left[0, R^{2}\right]$ for any $R>0$.

Reference

囲 S. Bagchi and R. Garg, On L²-boundedness of pseudo-multipliers associated to the Hermite and Grushin operators, Preprint.
(1. S. Bagchi and S. Thangavelu, On Hermite pseudo-multipliers, J. Funct. Anal. 268 (2015), no. 1, 140-170.
© D. Beltran and L. Cladek, Sparse bounds for pseudodifferential operators, J. Anal. Math. 140 (2020), no. 1, 89-116.

R- A-P. Calderón and R. Vaillancourt, On the boundedness of pseudo-differential operators, J. Math. Soc. Japan 23 (1971), 374-378.

R X. T. Duong, E. M. Ouhabaz, and A. Sikora, Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal. 196 (2002), no. 2, 443-485.

Reference

: J. Epperson, Hermite multipliers and pseudo-multipliers, Proc. Amer. Math. Soc. 124 (7) (1996), 2061-2068.

嗇 V. V. Grushin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83 (1970), 456-473.
E. Lorist, On pointwise I^{r}-sparse domination in a space of homogeneous type, J. Geom. Anal. 31 (2021), no. 9, 9366-9405.
N. Miller, Weighted Sobolev spaces and pseudodifferential operators with smooth symbols, Trans. Amer. Math. Soc. 269 (1982), no. 1, 91-109.
囯 E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton (1993).

Thank You!

