On sharp weighted *L^p*-estimates for pseudo-multipliers associated to Grushin operators

Riju Basak (Based on a joint work with Sayan Bagchi, Rahul Garg and Abhishek Ghosh)

17th DMHA, NISER Bhubaneswar January 5-8, 2022

Riju Basak

17th DMHA

January 5-8, 2022

1/27

• In this talk, I shall discuss some analogues of Mihlin-Hörmander multiplier type theorems for pseudo-multipliers associated with Grushin operators.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- In this talk, I shall discuss some analogues of Mihlin-Hörmander multiplier type theorems for pseudo-multipliers associated with Grushin operators.
- In order to motivate our work, let me first do a short survey on related results in the Euclidean space.

- In this talk, I shall discuss some analogues of Mihlin-Hörmander multiplier type theorems for pseudo-multipliers associated with Grushin operators.
- In order to motivate our work, let me first do a short survey on related results in the Euclidean space.
- The Fourier multiplier operator T_m associated to $m \in L^{\infty}(\mathbb{R}^n)$ is defined by

$$T_m f(x) := \int_{\mathbb{R}^n} m(\xi) \widehat{f}(\xi) e^{i x \cdot \xi} d\xi,$$

for suitable functions f on \mathbb{R}^n , where \hat{f} stands for the Fourier transform of f.

- In this talk, I shall discuss some analogues of Mihlin-Hörmander multiplier type theorems for pseudo-multipliers associated with Grushin operators.
- In order to motivate our work, let me first do a short survey on related results in the Euclidean space.
- The Fourier multiplier operator T_m associated to $m \in L^{\infty}(\mathbb{R}^n)$ is defined by

$$T_m f(x) := \int_{\mathbb{R}^n} m(\xi) \widehat{f}(\xi) e^{i x \cdot \xi} d\xi,$$

for suitable functions f on \mathbb{R}^n , where \hat{f} stands for the Fourier transform of f.

 By the use of the Plancherel Theorem it is easy to see that T_m is bounded on L²(ℝⁿ).

Mihlin-Hörmander multiplier theorem

• For $p \neq 2$, we need some regularity on *m* for T_m to be bounded on $L^p(\mathbb{R}^n).$

Image: A matrix

э

Mihlin-Hörmander multiplier theorem

• For $p \neq 2$, we need some regularity on *m* for T_m to be bounded on $L^p(\mathbb{R}^n)$.

Theorem (Mihlin-Hörmander multiplier theorem)

Let m be a smooth function such that

$$\left|\partial_{\xi}^{lpha}\textit{\textit{m}}(\xi)
ight|\lesssim_{lpha}(1+|\xi|)^{-|lpha|}$$

for all $\alpha \in \mathbb{N}^n$ such that $|\alpha| \leq \lfloor n/2 \rfloor + 1$. Then the operator T_m is bounded on $L^p(\mathbb{R}^n)$ for 1 .

Pseudo-differential operators on the Euclidean space

 The pseudo-differential operator m(x, D) associated to m ∈ L[∞] (ℝⁿ × ℝⁿ) is defined by

$$m(x,D)f(x) := \int_{\mathbb{R}^n} m(x,\xi)\widehat{f}(\xi)e^{ix\cdot\xi}\,d\xi,$$

for suitable functions f on \mathbb{R}^n .

	_				
D	 ~	-	-	-	
1.511				а	ĸ

Pseudo-differential operators on the Euclidean space

 The pseudo-differential operator m(x, D) associated to m ∈ L[∞] (ℝⁿ × ℝⁿ) is defined by

$$m(x,D)f(x) := \int_{\mathbb{R}^n} m(x,\xi)\widehat{f}(\xi)e^{ix\cdot\xi} d\xi,$$

for suitable functions f on \mathbb{R}^n .

m ∈ L[∞] (ℝⁿ × ℝⁿ) is not sufficient to guarantee the boundedness of the operator m(x, D) on L²(ℝⁿ).

Definition (Symbol class $S^{\sigma}_{\rho,\delta}$)

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq \mathbf{0},$ we define

$$egin{aligned} S^{\sigma}_{
ho,\delta} &:= \Big\{ m \in \mathcal{C}^{\infty}(\mathbb{R}^n imes \mathbb{R}^n) : \Big| \partial^{eta}_x \partial^{lpha}_\xi m(x,\xi) \Big| \lesssim_{lpha,eta} (1+|\xi|)^{\sigma-
ho|lpha|+\delta|eta|}, \ &orall lpha,eta \in \mathbb{N}^n ig\}. \end{aligned}$$

- D	D 1
D	Pacal
1	Dasas
	Daban

э

(日)

Definition (Symbol class $S^{\sigma}_{\rho,\delta}$)

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq \mathbf{0},$ we define

$$egin{aligned} S^{\sigma}_{
ho,\delta} &:= \Big\{ m \in \mathcal{C}^{\infty}(\mathbb{R}^n imes \mathbb{R}^n) : \Big| \partial^{eta}_x \partial^{lpha}_\xi m(x,\xi) \Big| \lesssim_{lpha,eta} (1+|\xi|)^{\sigma-
ho|lpha|+\delta|eta|}, \ &orall lpha,eta \in \mathbb{N}^n ig\}. \end{aligned}$$

Theorem (Calderón-Vaillancourt, 1971)

Let $m \in S^0_{\rho,\delta}$, with $0 \le \delta \le \rho \le 1$, $\delta \ne 1$. Then the operator m(x, D), initially defined on $S(\mathbb{R}^n)$, extends to a bounded operator from $L^2(\mathbb{R}^n)$ to itself.

D		
Run	Raca	L
INIT	Daba	n

Weighted Boundedness on Euclidean space

Definition $(A_p \text{ class})$

• Let 1 . A weight*w* $is said to be in class <math>A_p$ if

$$[w]_{A_p} = \sup_Q \left(\frac{1}{|Q|} \int_Q w \ dx\right) \left(\frac{1}{|Q|} \int_Q w^{1-p'} dx\right)^{p-1} < \infty,$$

where the supremum is over all cubes with sides parallel to coordinates axes.

• A weight w is said to be in class A_1 if

$$[w]_{A_1} = \sup_Q \left(\frac{1}{|Q|}\int_Q w \ dx\right) \|w^{-1}\|_{L^\infty(Q)} < \infty,$$

where the supremum is over all cubes with sides parallel to coordinates axes.

Rii		R	2	~		Ŀ
- NJ	u	P	a	2	a	r

6/27

 In 1982, Miller studied the boundedeness of the pseudo-differential operator m(x, D) on L^p(w).

Theorem (N. Miller, 1982)

Let m be such that

$$\left|\partial_x^eta\partial_\xi^lpha m(x,\xi)
ight|\lesssim_{lpha,eta}(1+|\xi|)^{-|lpha|},$$

for all $\alpha, \beta \in \mathbb{N}^n$ such that $|\alpha| \leq n+1$, $|\beta| \leq 1$. Also assume that m(x, D) is bounded on $L^2(\mathbb{R}^n)$. Then for 1 , <math>m(x, D) has a bounded extension to $L^p(w)$ for $w \in A_p$.

• Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^n .

э

→ ∃ →

< □ > < 同 >

- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^n .
- There are *L^p* boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.

- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^n .
- There are *L^p* boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.
 - ► Heisenberg group : H. Bahouri-C. Fermanian-Kammerer-I. Gallagher (2012).

- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^n .
- There are *L^p* boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.

► Heisenberg group : H. Bahouri-C. Fermanian-Kammerer-I. Gallagher (2012).

► Graded Lie group: V. Fischer-M. Ruzhansky, "Quantization on nilpotent Lie groups".

- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^n .
- There are *L^p* boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.

► Heisenberg group : H. Bahouri-C. Fermanian-Kammerer-I. Gallagher (2012).

► Graded Lie group: V. Fischer-M. Ruzhansky, "Quantization on nilpotent Lie groups".

► Compact Lie group : M. Ruzhansky - V. Turunen, "Pseudo-differential operators and symmetries".

- Recently, D. Beltran and L. Cladek have proved sparse domination results for pseudo-differential operators on R^n .
- There are *L^p* boundedness results for pseudo-multipliers for the set up beyond Euclidean spaces.

► Heisenberg group : H. Bahouri-C. Fermanian-Kammerer-I. Gallagher (2012).

► Graded Lie group: V. Fischer-M. Ruzhansky, "Quantization on nilpotent Lie groups".

► Compact Lie group : M. Ruzhansky - V. Turunen, "Pseudo-differential operators and symmetries".

► Homogeneous space associated with a class of self adjoint operator

: F. Bernicot and D. Frey (2014).

Image: A matrix

Hermite operator

• The Hermite operator H on \mathbb{R}^n is given by

$$H = -\Delta + |x|^2$$

where Δ stands for the standard Laplacian on \mathbb{R}^n .

D	D	
Run	Raca	~
INIT	Dasa	n

Hermite operator

• The Hermite operator H on \mathbb{R}^n is given by

$$H = -\Delta + |x|^2$$

where Δ stands for the standard Laplacian on \mathbb{R}^n .

• The spectral resolution of H is given by

$$H=\sum_{k=0}^{\infty}(2k+n)P_k$$

where P_k stands for the orthogonal projection of $L^2(\mathbb{R}^n)$ onto the eigenspace for the Hermite operator corresponding to the eigenvalue 2k + n.

D				
- H - II		н	26	 ~
1.511	14	ື	а.	 n

9/27

Pseudo-multipliers associated to Hermite operator

Given m ∈ L[∞] (ℝⁿ × ℕ), one can (densely) define the Hermite pseudo-multiplier on L²(ℝⁿ) by

$$m(x,H):=\sum_{k=0}^{\infty}m(x,2k+n)P_k.$$

D					
- H - II	ы	-	c	-	
1.511	 ບ	-	-		

Pseudo-multipliers associated to Hermite operator

Given m ∈ L[∞] (ℝⁿ × ℕ), one can (densely) define the Hermite pseudo-multiplier on L²(ℝⁿ) by

$$m(x,H):=\sum_{k=0}^{\infty}m(x,2k+n)P_k.$$

• In 1996, Epperson first studied the Hermite pseudo-multipliers. He proved L^P -boundedness results for the operator m(x, H) in dimension n = 1.

Pseudo-multipliers associated to Hermite operator

Given m ∈ L[∞] (ℝⁿ × ℕ), one can (densely) define the Hermite pseudo-multiplier on L²(ℝⁿ) by

$$m(x,H):=\sum_{k=0}^{\infty}m(x,2k+n)P_k.$$

- In 1996, Epperson first studied the Hermite pseudo-multipliers. He proved L^P -boundedness results for the operator m(x, H) in dimension n = 1.
- In 2015, Bagchi and Thangavelu studied the same problem in higher dimensions. They actually prove weighted boundednes results for these operators.

Results for Hermite pseudo-multipliers

• Let $\Delta_d m(x,k) = m(x,k+1) - m(x,k)$, and $\Delta_d^l m = \Delta_d(\Delta_d^{l-1}m)$, l > 2.

3

Image: A mathematical states and a mathem

Results for Hermite pseudo-multipliers

• Let
$$\Delta_d m(x,k) = m(x,k+1) - m(x,k)$$
, and $\Delta_d^l m = \Delta_d(\Delta_d^{l-1}m)$, $l \ge 2$.

Theorem (Bagchi-Thangavelu, 2015)

Assume that the Hermite pseudo-multiplier m(x, H) is bounded on $L^{2}(\mathbb{R}^{n})$. Suppose $\sup_{x \in \mathbb{R}^{n}} |\Delta_{d}^{l} m(x, k)| \leq C_{l}(2k + n)^{-l}$ for $l = 1, 2, ..., \lfloor n/2 \rfloor + 1$. And also assume that partial derivatives $\frac{\partial}{\partial x_{j}}m(x, k)$ satisfy same estimates for $l = 1, 2, ..., \lfloor n/2 \rfloor$. Then for any $2 and <math>w \in A_{p/2}$ we have

$$\int_{\mathbb{R}^n} |m(x,H)f(x)|^p w(x) \, dx \leq C \int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx$$

for all $f \in L^p(\mathbb{R}^n, wdx)$.

Results for Hermite pseudo-multipliers

• Let
$$\Delta_d m(x,k) = m(x,k+1) - m(x,k)$$
, and $\Delta'_d m = \Delta_d (\Delta'_d^{l-1}m)$,
 $l \ge 2$.

Theorem (Bagchi-Thangavelu, 2015)

Assume that the Hermite pseudo-multiplier m(x, H) is bounded on $L^{2}(\mathbb{R}^{n})$. Suppose $\sup_{x \in \mathbb{R}^{n}} |\Delta_{d}^{l} m(x, k)| \leq C_{l}(2k + n)^{-l}$ for $l = 1, 2, ..., \lfloor n/2 \rfloor + 1$. And also assume that partial derivatives $\frac{\partial}{\partial x_{j}}m(x, k)$ satisfy same estimates for $l = 1, 2, ..., \lfloor n/2 \rfloor$. Then for any $2 and <math>w \in A_{p/2}$ we have

$$\int_{\mathbb{R}^n} |m(x,H)f(x)|^p w(x) \, dx \leq C \int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx$$

for all $f \in L^p(\mathbb{R}^n, wdx)$.

By increasing the values of *l* upto *n* + 1, they also prove that *m*(*x*, *H*) is bounded on *L^p*(ℝⁿ, *wdx*) for 1 < *p* < ∞, *w* ∈ *A_p*.

11 / 27

Grushin operators

• For any $\varkappa \in \mathbb{N}_+$, the Grushin operator G_{\varkappa} on $\mathbb{R}^{n_1+n_2}$ is given by

$$G_{\varkappa} = -\Delta_{x'} - |x'|^{2\varkappa} \Delta_{x''}$$

where $\Delta_{x'}$, $\Delta_{x''}$ are standard Laplacians on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} respectively.

	-	
D	Pacal	
IXIIII	Dasan	

3

< □ > < 同 >

Grushin operators

• For any $\varkappa \in \mathbb{N}_+$, the Grushin operator G_{\varkappa} on $\mathbb{R}^{n_1+n_2}$ is given by

$$G_{\varkappa} = -\Delta_{x'} - |x'|^{2\varkappa} \Delta_{x''},$$

where $\Delta_{x'}$, $\Delta_{x''}$ are standard Laplacians on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} respectively.

• Consider the following first order gradient vector fields:

$$X_j = rac{\partial}{\partial x'_j}$$
 and $X_{lpha,k} = {x'}^{lpha} rac{\partial}{\partial x''_k}$, for $1 \le j \le n_1, 1 \le k \le n_2$
and $lpha \in \mathbb{N}^{n_1}$ with $|lpha| = \varkappa$.

Image: A matrix

Grushin operators

• For any $\varkappa \in \mathbb{N}_+$, the Grushin operator G_{\varkappa} on $\mathbb{R}^{n_1+n_2}$ is given by

$$G_{\varkappa} = -\Delta_{x'} - |x'|^{2\varkappa} \Delta_{x''},$$

where $\Delta_{x'}$, $\Delta_{x''}$ are standard Laplacians on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} respectively.

• Consider the following first order gradient vector fields:

$$X_j = \frac{\partial}{\partial x'_j}$$
 and $X_{\alpha,k} = {x'}^{lpha} \frac{\partial}{\partial x''_k}$, for $1 \le j \le n_1, 1 \le k \le n_2$
and $\alpha \in \mathbb{N}^{n_1}$ with $|\alpha| = \varkappa$.

• We denote the gradient vector field $(X_j, X_{\alpha,k})_{1 \le j \le n_1, 1 \le k \le n_2, |\alpha| = \varkappa}$ by X.

イロト イポト イヨト イヨト 二日

• Let us denote by d the control distance associated with the Grushin operator.

э

- Let us denote by *d* the control distance associated with the Grushin operator.
- Let $B(x,r) := \{y \in \mathbb{R}^{n_1+n_2} : d(x,y) < r\}$ and |B(x,r)| denotes the (Lebesgue) measure of the ball B(x,r). Then

$$|B(x,r)| \sim r^{n_1+n_2} \max\{r, |x'|\}^{\varkappa n_2},$$

for all $x \in \mathbb{R}^{n_1+n_2}$ and r > 0.

	-
Run	Racak
INIT	Dasan

- Let us denote by *d* the control distance associated with the Grushin operator.
- Let $B(x,r) := \{y \in \mathbb{R}^{n_1+n_2} : d(x,y) < r\}$ and |B(x,r)| denotes the (Lebesgue) measure of the ball B(x,r). Then

$$|B(x,r)| \sim r^{n_1+n_2} \max\{r, |x'|\}^{\varkappa n_2},$$

for all $x \in \mathbb{R}^{n_1+n_2}$ and r > 0.

• The above implies that the space $(\mathbb{R}^{n_1+n_2}, d, |\cdot|)$ is a homogeneous metric space, that is, the underlying measure satisfies the following doubling condition

$$|B(x,sr)| \lesssim_{n_1,n_2,\kappa} (1+s)^Q |B(x,r)|$$

for s > 0, where Q denotes the homogeneous dimension $n_1 + (1 + \varkappa)n_2$.

Spectral decomposition of Grushin operator

• For Schwartz class function f, we can write

$$G_{\varkappa}f(x) = \int_{\mathbb{R}^{n_2}} e^{-i\lambda\cdot x''} H_{\varkappa}(\lambda) f^{\lambda}(x') d\lambda,$$

where $H_{\varkappa}(\lambda) = -\Delta_{x'} + |\lambda|^2 |x'|^{2\varkappa}$ and $f^{\lambda}(x') = \int_{\mathbb{R}} f(x', x'') e^{i\lambda \cdot x''} dx''$.

D	D	
Run	Racal	
INIT	Dasa	e
_		

Image: A matrix

Spectral decomposition of Grushin operator

• For Schwartz class function f, we can write

$$G_{\varkappa}f(x) = \int_{\mathbb{R}^{n_2}} e^{-i\lambda\cdot x''} H_{\varkappa}(\lambda) f^{\lambda}(x') d\lambda,$$

where $H_{\varkappa}(\lambda) = -\Delta_{x'} + |\lambda|^2 |x'|^{2\varkappa}$ and $f^{\lambda}(x') = \int_{\mathbb{R}} f(x', x'') e^{i\lambda \cdot x''} dx''$.

• Using the spectral decomposition of the operator $H_{\varkappa}(\lambda)$, one can write the the spectral decomposition of the Grushin operator G_{\varkappa} as follows:

$$G_{\varkappa}f(x) = \int_{\mathbb{R}^{n_2}} e^{-i\lambda \cdot x''} \sum_{k \in \mathbb{N}} |\lambda|^{\frac{2}{\varkappa + 1}} \nu_{\varkappa,k} P_{\varkappa,k}(\lambda) f^{\lambda}(x') d\lambda.$$

Spectral decomposition of Grushin operator

• For Schwartz class function f, we can write

$$G_{\varkappa}f(x) = \int_{\mathbb{R}^{n_2}} e^{-i\lambda\cdot x''} H_{\varkappa}(\lambda) f^{\lambda}(x') d\lambda,$$

where $H_{\varkappa}(\lambda) = -\Delta_{x'} + |\lambda|^2 |x'|^{2\varkappa}$ and $f^{\lambda}(x') = \int_{\mathbb{R}} f(x', x'') e^{i\lambda \cdot x''} dx''$.

• Using the spectral decomposition of the operator $H_{\varkappa}(\lambda)$, one can write the the spectral decomposition of the Grushin operator G_{\varkappa} as follows:

$$G_{\varkappa}f(x) = \int_{\mathbb{R}^{n_2}} e^{-i\lambda \cdot x''} \sum_{k \in \mathbb{N}} |\lambda|^{\frac{2}{\varkappa+1}} \nu_{\varkappa,k} P_{\varkappa,k}(\lambda) f^{\lambda}(x') d\lambda.$$

 Given a bounded measurable function *m* on ℝⁿ¹⁺ⁿ² × ℝ₊, we consider the Grushin pseudo-multiplier *m*(·, *G*_×), defined by

$$m(x,G_{\varkappa})f(x):=\int_{\mathbb{R}^{n_2}}e^{-i\lambda\cdot x''}\sum_{k\in\mathbb{N}}m\left(x,|\lambda|^{\frac{2}{\varkappa+1}}\nu_{\varkappa,k}\right)P_{\varkappa,k}(\lambda)f^{\lambda}(x')\,d\lambda,$$

for Schwartz class functions f on $\mathbb{R}^{n_1+n_2}$.

Symbol class for Grushin pseudo-multipliers

Definition

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq 0$, define the symbol class $S^{\sigma}_{\rho,\delta}(G_{\varkappa})$ to be the set of all functions $m \in C^{\infty}(\mathbb{R}^{n_1+n_2} \times \mathbb{R}_+)$ which satisfy the following estimate:

$$\left|X^{\mathsf{\Gamma}}\partial_{\eta}^{\prime}\textit{\textit{m}}(x,\eta)
ight|\leq_{\mathsf{\Gamma},l}(1+\eta)^{rac{\sigma}{2}-(1+
ho)rac{l}{2}+\deltarac{|\mathsf{\Gamma}|}{2}}$$

for all $\Gamma \in \mathbb{N}^{n_0}$ and $l \in \mathbb{N}$. Here $n_0 = n_1 + n_2 \binom{\varkappa + n_1 - 1}{n_1 - 1}$.

Symbol class for Grushin pseudo-multipliers

Definition

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq 0$, define the symbol class $S^{\sigma}_{\rho,\delta}(G_{\varkappa})$ to be the set of all functions $m \in C^{\infty}(\mathbb{R}^{n_1+n_2} \times \mathbb{R}_+)$ which satisfy the following estimate:

$$\left|X^{\mathsf{\Gamma}}\partial_{\eta}^{\prime}\textit{\textit{m}}(x,\eta)
ight|\leq_{\mathsf{\Gamma},l}(1+\eta)^{rac{\sigma}{2}-(1+
ho)rac{l}{2}+\deltarac{|\mathsf{\Gamma}|}{2}}$$

for all
$$\Gamma \in \mathbb{N}^{n_0}$$
 and $l \in \mathbb{N}$. Here $n_0 = n_1 + n_2 \binom{\varkappa + n_1 - 1}{n_1 - 1}$.

Recently, Bagchi and Garg studied the Grushin pseudo- multipliers for the case $\varkappa = 1$. They proved an analogue of Calderón-Vaillancourt type theorem for the Grushin pseudo-multipliers.

Symbol class for Grushin pseudo-multipliers

Definition

For any $\sigma \in \mathbb{R}$ and $\rho, \delta \geq 0$, define the symbol class $S^{\sigma}_{\rho,\delta}(G_{\varkappa})$ to be the set of all functions $m \in C^{\infty}(\mathbb{R}^{n_1+n_2} \times \mathbb{R}_+)$ which satisfy the following estimate:

$$\left|X^{\mathsf{\Gamma}}\partial_{\eta}^{\prime}\textit{m}(x,\eta)
ight|\leq_{\mathsf{\Gamma},l}(1+\eta)^{rac{\sigma}{2}-(1+
ho)rac{l}{2}+\deltarac{|\mathsf{\Gamma}|}{2}}$$

for all
$$\Gamma \in \mathbb{N}^{n_0}$$
 and $l \in \mathbb{N}$. Here $n_0 = n_1 + n_2 \binom{\varkappa + n_1 - 1}{n_1 - 1}$.

Recently, Bagchi and Garg studied the Grushin pseudo- multipliers for the case $\varkappa = 1$. They proved an analogue of Calderón-Vaillancourt type theorem for the Grushin pseudo-multipliers.

Theorem (Bagchi-Garg, 2021)

Let $m \in S^0_{\rho,\delta}(G)$ for some $0 \le \delta < \rho \le 1$. Then the operator m(x, G) extends to a bounded on $L^2(\mathbb{R}^{n_1+n_2})$ to itself.

15 / 27

Main result

Theorem (Bagchi-B.-Garg-Ghosh, 2021)

Let $m: \mathbb{R}^{n_1+n_2} \times \mathbb{R}_+ \to \mathbb{C}$ be such that for all $0 \leq l \leq Q+1$

$$\left|\partial_{\tau}^{I}m(x,\tau)\right|\lesssim_{\Gamma,I}(1+\tau)^{-I}.$$

Assume also that the pseudo-multiplier operator $m(x, G_{\varkappa})$ is bounded on $L^2(\mathbb{R}^{n_1+n_2})$. Then $m(x, G_{\varkappa})$ is of weak type (1, 1) and as a consequence $m(x, G_{\varkappa}) : L^p(\mathbb{R}^{n_1+n_2}) \to L^p(\mathbb{R}^{n_1+n_2})$ is bounded for 1 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sparse operator

• Let \mathcal{S} be a family of dyadic cubes.

Definition

We say a family of sets $S \subset S$ is η -sparse, $0 < \eta < 1$, if for every $Q \in S$ there exists a set $E_Q \subset Q$ such that $|E_Q| \ge \eta |Q|$ and the sets $\{E_Q\}_{Q \in S}$ are pairwise disjoint.

Sparse operator

• Let \mathcal{S} be a family of dyadic cubes.

Definition

We say a family of sets $S \subset S$ is η -sparse, $0 < \eta < 1$, if for every $Q \in S$ there exists a set $E_Q \subset Q$ such that $|E_Q| \ge \eta |Q|$ and the sets $\{E_Q\}_{Q \in S}$ are pairwise disjoint.

 For a sparse family S and 1 ≤ r < ∞, we consider the sparse operator defined as following

$$\mathcal{A}_{r,S}f(x) = \sum_{\mathcal{Q}\in S} \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |f|^r\right)^{\frac{1}{r}} \chi_{\mathcal{Q}}(x).$$

Sparse operator

• Let \mathcal{S} be a family of dyadic cubes.

Definition

We say a family of sets $S \subset S$ is η -sparse, $0 < \eta < 1$, if for every $Q \in S$ there exists a set $E_Q \subset Q$ such that $|E_Q| \ge \eta |Q|$ and the sets $\{E_Q\}_{Q \in S}$ are pairwise disjoint.

 For a sparse family S and 1 ≤ r < ∞, we consider the sparse operator defined as following

$$\mathcal{A}_{r,S}f(x) = \sum_{\mathcal{Q}\in S} \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |f|^r\right)^{\frac{1}{r}} \chi_{\mathcal{Q}}(x).$$

• Then for $r , <math>w \in A_{p/r}(\mathbb{R}^{n_1+n_2})$ and $f \in L^p(\mathbb{R}^{n_1+n_2}, w)$ we have

$$\|\mathcal{A}_{r,S}f\|_{L^{p}(w)} \lesssim [w]_{\mathcal{A}_{p}(\mathbb{R}^{n_{1}+n_{2}})}^{\max\{\frac{1}{p-r},1\}} \|f\|_{L^{p}(w)}.$$

Riju Basak

17 / 27

Sparse domination result

• For any sublinear operator T, the grand maximal truncated operator $\mathcal{M}_{T,s}^{\#}$ is defined by

$$\mathcal{M}_{T,s}^{\#}f(x) = \sup_{B \in \mathcal{S}: B \ni x} \sup_{y,z \in B} |T(f\chi_{\mathbb{R}^{n_1+n_2} \setminus sB})(y) - T(f\chi_{\mathbb{R}^{n_1+n_2} \setminus sB})(z)|.$$

Image: A matrix

э

Sparse domination result

• For any sublinear operator T, the grand maximal truncated operator $\mathcal{M}_{T,s}^{\#}$ is defined by

$$\mathcal{M}_{T,s}^{\#}f(x) = \sup_{B \in \mathcal{S}: \ B \ni x} \sup_{y,z \in B} |T(f\chi_{\mathbb{R}^{n_1+n_2} \setminus sB})(y) - T(f\chi_{\mathbb{R}^{n_1+n_2} \setminus sB})(z)|.$$

Theorem (Lerner-Ombrosi, 2020; Lorist, 2021)

Let T be a sublinear operator of weak-type (p, p) and $\mathcal{M}_{T,\alpha}^{\#}$ is weak type (q, q), where $1 \leq p, q < \infty$ and $s \geq \frac{3c_d^2}{\delta}$. Let $r = \max\{p, q\}$. Then for every compactly supported bounded measurable function f, there exist a η -sparse family $S \subset S$ such that

$$|Tf(x)| \leq C\mathcal{A}_{r,S}f(x)$$

for almost every x.

	-
D	Pacak.
INITI	Dasak

< 1 k

Weighted boundedness results

Theorem (Bagchi-B.-Garg-Ghosh, 2021) For a fixed $0 \le \delta < 1$, let $m \in L^{\infty} (\mathbb{R}^{n_1+n_2} \times \mathbb{R}_+)$ be such that

$$\begin{split} \left|\partial_{\eta}^{I}m(x,\eta)\right| &\leq_{I}(1+\eta)^{-I}, \quad \text{for all} \quad I \leq \lfloor Q/2 \rfloor + 1, \\ \text{and} \quad \left|X_{x}\partial_{\eta}^{I}m(x,\eta)\right| &\leq_{I,\delta}(1+\eta)^{-I+\frac{\delta}{2}}, \quad \text{for all} \quad I \leq \lfloor Q/2 \rfloor. \end{split}$$

Assume also that the operator $T = m(x, G_{\varkappa})$ is bounded on $L^2(\mathbb{R}^{n_1+n_2})$. Then, for every compactly supported bounded measurable function f there exists a sparse family $S \subset S$ such that

$$|Tf(x)| \lesssim_T \mathcal{A}_{2,S}f(x),$$

for almost every $x \in \mathbb{R}^{n_1+n_2}$.

Weighted boundedness results

Theorem (Bagchi-B.-Garg-Ghosh, 2021) For a fixed $0 \le \delta < 1$, let $m \in L^{\infty}(\mathbb{R}^{n_1+n_2} \times \mathbb{R}_+)$ be such that

$$\left|\partial_{\eta}^{I}m(x,\eta)\right| \leq_{I} (1+\eta)^{-I}, \quad \text{for all} \quad I \leq Q+1,$$

and $\left|X_{x}\partial_{\eta}^{I}m(x,\eta)\right| \leq_{I,\delta} (1+\eta)^{-I+\frac{\delta}{2}}, \quad \text{for all} \quad I \leq Q.$

Assume also that the operator T is bounded on $L^2(\mathbb{R}^{n_1+n_2})$. Then, for every compactly supported bounded measurable function f there exists a sparse family $S \subset S$ such that

$$|Tf(x)| \lesssim_T \mathcal{A}_{1,S}f(x),$$

for almost every $x \in \mathbb{R}^{n_1+n_2}$.

General operator T

• Choose and fix $\psi_0 \in C_c^{\infty}((-2,2))$ and $\psi_1 \in C_c^{\infty}((1/2,2))$ such that for all $\eta \ge 0$ we have $0 \le \psi_0(\eta), \psi_1(\eta) \le 1$, and

$$\sum_{j=0}^{\infty}\psi_j(\eta)=1$$

where
$$\psi_j(\eta) = \psi_1\left(2^{-(j-1)}\eta\right)$$
 for $j \ge 2$.

Riin	Basak
rtiju	Dasak

3

(日)

General operator T

• Choose and fix $\psi_0 \in C_c^{\infty}((-2,2))$ and $\psi_1 \in C_c^{\infty}((1/2,2))$ such that for all $\eta \ge 0$ we have $0 \le \psi_0(\eta), \psi_1(\eta) \le 1$, and

$$\sum_{j=0}^{\infty}\psi_j(\eta)=1$$

where
$$\psi_j(\eta) = \psi_1\left(2^{-(j-1)}\eta\right)$$
 for $j \ge 2$.

Given T ∈ B (L²(ℝⁿ¹⁺ⁿ²)), we break it into a countable sum of operators as follows. For each j ∈ N, let us define

$$T_j = TS_j$$

where S_j 's are the Grushin multiplier operators $S_j = \psi_j(G_{\varkappa})$. Then, we have $T = \sum_j T_j$ with convergence in the strong operator topology of $\mathcal{B}(L^2(\mathbb{R}^{n_1+n_2}))$.

L^2 -conditions on the kernel

We denote the kernel of the operator T_j by $T_j(x, y)$.

2

L^2 -conditions on the kernel

We denote the kernel of the operator T_j by $T_j(x, y)$.

There exists some $R_0 \in (0, \infty)$ such that for all $\mathfrak{r} \in [0, R_0]$ and for every compact set $\Lambda \subset \mathbb{R}^{n_1+n_2}$ we have

1

$$\sup_{x\in\mathbb{R}^{n_1+n_2}}|B(x,2^{-j/2})|\int_{\mathbb{R}^{n_1+n_2}}d(x,y)^{2\mathfrak{r}}|T_j(x,y)|^2\,dy\lesssim_{R_0}2^{-j\mathfrak{r}},$$

L^2 -conditions on the kernel

We denote the kernel of the operator T_j by $T_j(x, y)$.

There exists some $R_0 \in (0, \infty)$ such that for all $\mathfrak{r} \in [0, R_0]$ and for every compact set $\Lambda \subset \mathbb{R}^{n_1+n_2}$ we have

$$\sup_{x\in \mathbb{R}^{n_1+n_2}} |B(x,2^{-j/2})| \int_{\mathbb{R}^{n_1+n_2}} d(x,y)^{2\mathfrak{r}} |T_j(x,y)|^2 \, dy \lesssim_{R_0} 2^{-j\mathfrak{r}},$$

$$\sup_{x \in \mathbb{R}^{n_1+n_2}} |B(x, 2^{-j/2})| \int_{\Lambda} d(x, y)^{2\mathfrak{r}} |X_x T_j(x, y)|^2 \, dy \lesssim_{R_0, \Lambda} 2^{-j\mathfrak{r}} 2^j .$$

2

イロト 不得 トイラト イラト 一日

Theorem (Bagchi-B.-Garg-Ghosh, 2021)

Let $T \in \mathcal{B}(L^2(\mathbb{R}^{n_1+n_2}))$. Suppose that the integral kernels $T_j(x, y)$ satisfy conditions (1) and (2) for some $R_0 > Q/2$. Then, we have the following pointwise almost everywhere estimate

$$\mathcal{M}_{T,s}^{\#}f(x) \lesssim_{T,s} \mathcal{M}_2f(x),$$

for every bounded measurable function f with compact support.

D	D	
Run	Racal	
INIT	Dasar	
_		

イロト 不得 トイヨト イヨト 二日

Lemma (Bagchi-B.-Garg-Ghosh, 2021)
For
$$2 \le p \le \infty$$
 and every $\mathfrak{r} > 0$ and $\epsilon > 0$, we have
 $|B(x, R^{-1})|^{1/2} \left\| |B(\cdot, R^{-1})|^{1/2 - 1/p} (1 + Rd(x, \cdot))^{\mathfrak{r}} X_{x}^{\Gamma} \mathcal{K}_{m(x, G_{\varkappa})}(x, \cdot) \right\|_{p}$
 $\lesssim_{\Gamma, p, \mathfrak{r}, \epsilon} \sup_{x_{0}} \sum_{\Gamma_{1} + \Gamma_{2} = \Gamma} R^{|\Gamma_{1}|} \|X_{x}^{\Gamma_{2}} m(x_{0}, R^{2} \cdot)\|_{W_{\mathfrak{r}+\epsilon}^{\infty}},$

for all $\Gamma \in \mathbb{N}^{n_0}$ and for every bounded Borel function $m : \mathbb{R}^{n_1+n_2} \times \mathbb{R} \to \mathbb{C}$ whose support in the last variable is in $[0, R^2]$ for any R > 0.

(日)

э

Reference

- S. Bagchi and R. Garg, On L²-boundedness of pseudo-multipliers associated to the Hermite and Grushin operators, Preprint.
- S. Bagchi and S. Thangavelu, *On Hermite pseudo-multipliers*, J. Funct. Anal. **268** (2015), no. 1, 140–170.
- D. Beltran and L. Cladek, *Sparse bounds for pseudodifferential operators*, J. Anal. Math. **140** (2020), no. 1, 89–116.
- A-P. Calderón and R. Vaillancourt, On the boundedness of pseudo-differential operators, J. Math. Soc. Japan 23 (1971), 374–378.
- X. T. Duong, E. M. Ouhabaz, and A. Sikora, *Plancherel-type* estimates and sharp spectral multipliers, J. Funct. Anal. **196** (2002), no. 2, 443–485.

э

イロト イポト イヨト イヨト

Reference

- J. Epperson, *Hermite multipliers and pseudo-multipliers*, Proc. Amer. Math. Soc. **124** (7) (1996), 2061–2068.
- V. V. Grushin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83 (1970), 456–473.
- E. Lorist, On pointwise I^r-sparse domination in a space of homogeneous type, J. Geom. Anal. **31** (2021), no. 9, 9366–9405.
- N. Miller, Weighted Sobolev spaces and pseudodifferential operators with smooth symbols, Trans. Amer. Math. Soc. 269 (1982), no. 1, 91–109.
- E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton (1993).

э

26 / 27

イロト イポト イヨト イヨト

Thank You!

	-				
	_		-	-	
		-	-		

3

<ロト < 四ト < 三ト < 三ト