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Uncertainty principle

For f ∈ L1(R), we define the Fourier transform of f by

f̂ (y) =

∫
R
f (x)e−ixy dx , for all y ∈ R.

Uncertainty principle in harmonic analysis roughly says that a
non-zero integrable function and its Fourier transform cannot
be simultaneously “small”.

An example

Theorem

Let f ∈ L1(R) satisfying

|f̂ (y)| ≤ Ce−a|y | for all y ∈ R for some a > 0.

If f vanishes on any non-empty open subset of R, then f is
identically zero.
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Levinson’s uncertainty principle

Theorem (Levinson, 1936)

Let f ∈ L1(R) and ψ : [0,∞)→ [0,∞) increasing function
satisfying ∫ ∞

0

ψ(ξ)

1 + ξ2
dξ =∞, (1)

and
|f̂ (ξ)| ≤ Ce−ψ(|ξ|), for almost every ξ ∈ R. (2)

If f vanishes on any non-empty open set in R, then f is identically
zero.

We note that as ψ is increasing, from equation (1), we have
ψ(x) ↑ ∞ as x →∞. So from equation (2) it follows that f̂
decays to zero.

Levinson actually worked with a more general estimate of the

form

∫
R
|f̂ (ξ)|eψ(|ξ|)dξ <∞ instead of (2).
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Beurling’s uncertainty principle

Beurling improved the result and replaced open set with set of
positive Lebesgue measure. He proved the result for complex Borel
measure µ on R. We define the Fourier transform µ̂ of µ by

µ̂(λ) =

∫
R
e−iλtdµ(t), for λ ∈ R.

Theorem (Beurling, 1989)

Let µ be a complex Borel measure on R and ψ : [0,∞)→ [0,∞)
be an increasing function satisfying∫ ∞

0

ψ(x)

1 + x2
dx =∞,

∫
R
eψ(|x |)|dµ(x)| <∞.

If µ̂ vanishes on Λ ⊂ R such that m(Λ) > 0 then µ is identically 0.
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Beurling assumed the estimate∫ ∞
0

1

1 + x2
log

(
1∫∞

x |dµ(t)|

)
dx =∞,

but the one we work with follows from the above.

Also Beurling assumed the vanishing set Λ to be a set of
positive Lebesgue measure but since µ̂ is continuous, it is
enough to assume that Λ is a set of positive Lebesgue
measure.
It was proved as a consequence of a characterization of the
Beurling quasianalytic class (a generalisation of the famous
Denjoy-Carleman quasianalytic class and Bernstein
quasianalytic class), which used the concept of harmonic
measure.
In the book of Koosis, it was shown that the theorem of
Levinson can also be obtained as a consequence of
completeness of linear span of exponentials in certain weighted
space of continuous functions. This leads us to another
problem in harmonic analysis which is of independent interest.
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Weighted Approximation of Exponentials

First we define a weighted space of continuous functions. Let
ψ : [0,∞)→ [0,∞) be an increasing function such that
ψ(x)→∞ as x →∞. Consider

Cψ(Rn) =

{
f : Rn → C | f is continuous and lim

|x |→∞

f (x)

eψ(|x |) = 0

}
.

We define a norm on Cψ(Rn) by

‖f ‖ψ = sup
x∈Rn

|f (x)|
eψ(|x |) , for f ∈ Cψ(Rn).

It is easy to see that (Cψ(Rn), ‖ · ‖ψ) is a normed linear space.

For any λ ∈ Rn, we define the continuous functions
eλ : Rn → C by

eλ(x) = e−iλ·x for x ∈ Rn.
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For any Λ ⊂ Rn, we consider the linear span of the above
functions given by

ΦΛ(Rn) = span{eλ : λ ∈ Λ}.

It is easy to see that ΦΛ(Rn) is a subspace of Cψ(Rn) for any
Λ ⊂ Rn.

Problems regarding weighted approximation of exponentials
pose the question for which type of sets Λ ⊂ Rn, ΦΛ(Rn) is
dense in (Cψ(Rn), ‖ · ‖ψ).

For example, when Λ ⊂ Rn is a non-trivial open set then
ΦΛ(Rn) is always dense in (Cψ(Rn), ‖ · ‖ψ). This result was
used in the alternative proof of Levinson’s theorem.
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To get the result regarding exponential density from
Beurling’s theorem, we first need to explicitly find the dual of
(Cψ(Rn), ‖ · ‖ψ), denoted by (Cψ(Rn), ‖ · ‖ψ)∗, the space of all
bounded linear functionals on (Cψ(Rn), ‖ · ‖ψ). For that we
required to assume that ψ is continuous.

Lemma

(Cψ(Rn), ‖ · ‖ψ) is a Banach space isometrically isomorphic to
(C0(Rn), ‖ · ‖∞) and its dual is given by

(Cψ(Rn), ‖ · ‖ψ)∗ =

{
β ∈M(Rn) :

∫
Rn

eψ(|x |)|dβ(x)| <∞
}
.

(M(Rn) is the space of all complex Borel measure Rn.)
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Theorem

Let ψ : [0,∞)→ [0,∞) be a continuous, increasing function
satisfying ∫ ∞

0

ψ(x)

1 + x2
dx =∞.

For Λ ⊂ R such that m(Λ) > 0, ΦΛ(R) is dense in (Cψ(R), ‖ · ‖ψ).

Proof.

Let T ∈ (Cψ(R), ‖ · ‖ψ)∗ such that T vanishes on ΦΛ(R).

T (f ) =

∫
R
f (t) dβ(t), for f ∈ Cψ(R),

where β ∈M(Rn) satisfies

∫
R
eψ(|x |)|dβ(x)| <∞.

T vanishes on ΦΛ(R) implies∫
R
e−iλtdβ(t) = 0, ∀ λ ∈ Λ.
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Now we will extend this theorem to Rn.

An open set U ⊆ Rn always contains a set of the form
U1 × U2 × · · · × Un where each Uj ⊆ R is open in R for
1 ≤ j ≤ n. This type of property of the set is an important
tool in the technique of extending the result to Rn using the
result of R. However, this property does not hold for sets of
positive Lebesgue measure in Rn.

It is due to this property of sets of positive Lebesgue measure
in Rn that we have assumed sets of the special form instead
of any set of positive Lebesgue measure in Rn.

We call Λ ⊂ Rn to be “a set of positive rectangle type” if Λ
contains a set of the form Λ1 × · · · × Λn, where Λj ⊂ R for
each 1 ≤ j ≤ n such that the closure of Λj has positive
Lebesgue measure in R, that is, m(Λj) > 0.
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Weighted Approximation of Exponentials

We have the following theorem regarding weighted
approximation of exponentials:

Theorem

Let ψ be a non-negative, continuous, increasing function on [0,∞)
such that ψ(x)→∞ as x →∞. The space ΦΛ(Rn) is dense in
(Cψ(Rn), ‖ · ‖ψ) for any positive rectangle type set Λ ⊂ Rn if and
only if ∫ ∞

0

ψ(x)

1 + x2
dx =∞. (3)
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Theorem

Let ψ : [0,∞)→ [0,∞) be an increasing function such that

ψ(x)→∞ as x →∞ and I =
∫∞

0

ψ(x)

1 + x2
dx .

(a) Let µ be a complex Borel measure on Rn satisfying∫
Rn

eψ(|x |)|dµ(x)| <∞. (4)

If µ̂ vanishes on a set Λ ⊂ Rn of positive rectangle type and
I =∞, then µ is identically zero.

(b) If I <∞, then there exists µ ∈M(Rn) satisfying (4) such
that µ̂ vanishes on a set of positive rectangle type.

Proof.

If Tµ(f ) =

∫
Rn

f (x)dµ(x), (4) implies, Tµ ∈ (Cψ(Rn), ‖ · ‖ψ)∗.

µ̂ vanishes on a set Λ ⊂ Rn implies Tµ vanishes on ΦΛ(Rn).
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f (x)dµ(x), (4) implies, Tµ ∈ (Cψ(Rn), ‖ · ‖ψ)∗.

µ̂ vanishes on a set Λ ⊂ Rn implies Tµ vanishes on ΦΛ(Rn).
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Theorem

Let ψ : [0,∞)→ [0,∞) be a continuous increasing function such
that ψ(x)→∞ as x →∞. Then the following are equivalent:

(1)

∫ ∞
0

ψ(x)

1 + x2
dx =∞.

(2) ΦΛ(Rn) is dense in (Cψ(Rn), | · ‖ψ), for any positive rectangle
type set Λ ⊂ Rn.

(3) There does not exist a non-zero complex Borel measure µ on
Rn such that ∫

Rn

eψ(|x |)|dµ(x)| <∞,

and µ̂ vanishes on a set Λ ⊂ Rn of positive rectangle type.

Beurling’s result on R Exponential density on R

Beurling’s result on Rn Exponential density on Rn
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Another Version Weighted Approximation of Exponentials

In another version, one studies conditions on Λ ⊂ Rn and µ
that ensure completeness, that is, density of ΦΛ(Rn) in
Lp(Rn, µ).

Theorem

Let ψ : [0,∞)→ [0,∞) be an increasing function such that∫ ∞
0

ψ(x)

1 + x2
dx =∞ (5)

and µ be a positive measure satisfying∫
Rn

eψ(|x |)dµ(x) <∞. (6)

For any set of positive rectangle type Λ ⊂ Rn, the space ΦΛ(Rn) is
dense in Lp(Rn, µ), 1 ≤ p <∞.
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Proof.

Since Cc(Rn) is dense in Lp(Rn, µ), for 1 ≤ p <∞ it is
enough to prove that ΦΛ(Rn) is dense in Cc(Rn) with respect
to the corresponding ‖ · ‖p norm of Lp(Rn, µ), for 1 ≤ p <∞.

Define ψ1(x) =
ψ(x)

p
, which satisfies

∫ ∞
0

ψ1(x)

1 + x2
dx =∞.

Consider f ∈ Cc(Rn) ⊆ Cψ1(Rn). Given any ε > 0, we get
g ∈ ΦΛ(Rn) such that ‖f − g‖ψ1 < ε. From (6) we get C > 0
such that

‖f − g‖pp =

∫
Rn

|f (x)− g(x)|p

epψ1(|x |) eψ(|x |)dµ(x)

≤ ‖f − g‖pψ1

∫
Rn

eψ(|x |)dµ(x) < Cεp.
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A Generalisation of Beurling’s theorem

For f ∈ L1(Rn, µ), we define its Fourier transform by

Fµ(λ) =

∫
Rn

f (x)e−iλxdµ(x).

Theorem

Let ψ : [0,∞)→ [0,∞) be an increasing function such that∫ ∞
0

ψ(x)

1 + x2
dx =∞

and µ be a positive measure satisfying∫
Rn

eψ(|x |)dµ(x) <∞.

If f ∈ Lp(Rn, µ), for 1 < p ≤ ∞, is such that Fµ(f ) vanishes on a
set of positive rectangle type, then f is zero a.e. µ.
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Another analogue of Beurling’s theorem

We first prove an analogue of Beurling’s theorem for Hankel
transform by following the line of arguments.

Let D ⊂ C be a bounded domain with finitely many
connected components whose boundary ∂D consists of several
piecewise smooth Jordan curves. It is well known that the
solution of Dirichlet problem exists in the domain D, that is, if
φ : ∂D → C is a continuous function, then there is a unique
function Uφ harmonic in D and continuous upto ∂D such that
Uφ(ζ) = φ(ζ), for all ζ ∈ ∂D.
For any fixed z ∈ D, there is a unique measure ωD(·, z) on
∂D determined by Uφ(z) in the following way

Uφ(z) =

∫
∂D
φ(ζ) dωD(ζ, z).

This positive Radon measure ωD(·, z) on ∂D, of total mass 1
is called the harmonic measure relative to D as seen from z .
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A theorem regarding harmonic measure

Theorem

Let E be a closed set lying on a single component Γ of ∂D and
E ⊆ D be a simply connected domain whose boundary contains Γ.
For almost every ζ0 ∈ E , if z ∈ E tends to ζ0 from within an acute
angle with vertex at ζ0, lying strictly in E , (henceforth denoted by
z ∠−→ ζ0), then

ωD(E , z) −→ 1.
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Another theorem regarding Harmonic measure

Theorem (Theorem on two constants)

Let f be a function which is analytic, bounded in D and
continuous up to ∂D. If |f (ζ)| ≤ M for ζ ∈ ∂D, and there is a
Borel set E ⊆ ∂D with |f (ζ)| ≤ m (< M) for ζ ∈ E , then

|f (z)| ≤ mωD(E ,z)M1−ωD(E ,z), for z ∈ D.
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Preliminaries for Hankel transform

For α > −1
2 , we define the measure dγα on [0,∞) by

dγα(λ) =
λ2α+1

2αΓ(α + 1)
dλ.

For f ∈ L1
α(R+) = L1([0,∞), dγα), we define its Hankel

transform of order α > −1
2 by

Hα(f )(t) =

∫ ∞
0

f (λ)jα(λt) dγα(λ),

where the spherical Bessel functions jα, for α > −1
2 are given

by jα(z) = Γ(α + 1)
∞∑
n=0

(−1)n

n! Γ(α + n + 1)

(z
2

)2n
, for z ∈ C.

If f ∈ L1
α(R+) such that Hαf ∈ L1

α(R+), then

f (λ) =

∫ ∞
0
Hαf (t)jα(λt) dγα(t), for almost every λ ∈ [0,∞).
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Beurling’s theorem for Hankel transform

We have the following analogue of Beurling’s theorem for
Hankel transform:

Theorem

Let α > −1
2 , ψ : [0,∞)→ [0,∞) be an increasing function such

that ψ(x)→∞ as x →∞ and consider I =

∫ ∞
0

ψ(x)

1 + x2
dx .

(a) Let I =∞ and f ∈ L1
α(R+) satisfying∫ ∞

0
|Hα(f )(t)|eψ(t) dγα(t) <∞. (7)

If f vanishes on a set E ⊆ [0,∞) of positive Lebesgue
measure, then f = 0 almost everywhere on [0,∞).

(b) If I is finite then there exists a non-trivial function f on R+

satisfying (7) which vanishes on a set of positive Lebesgue
measure in R+.
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Outline of proof:

We consider the simply connected domain

D = {λ ∈ C : −∞ < <(λ) <∞, 0 < =(λ) < 1}

and E is a closed set lying on a single component of ∂D.

So we get that the harmonic measure ωD(·, z) satisfies

ωD(E , λ) −→ 1 as λ ∠−→ λ0, for almost every λ0 ∈ E .

Since E is a set of positive Lebesgue measure, there certainly
exists a ∈ E , a 6= 0 such that

ωD(E , a + iτ) −→ 1 as τ → 0 + . (8)

Santanu Debnath On Some Analogues of Beurling’s Theorem



Outline of proof:

We consider the simply connected domain

D = {λ ∈ C : −∞ < <(λ) <∞, 0 < =(λ) < 1}

and E is a closed set lying on a single component of ∂D.
So we get that the harmonic measure ωD(·, z) satisfies

ωD(E , λ) −→ 1 as λ ∠−→ λ0, for almost every λ0 ∈ E .

Since E is a set of positive Lebesgue measure, there certainly
exists a ∈ E , a 6= 0 such that

ωD(E , a + iτ) −→ 1 as τ → 0 + . (8)

Santanu Debnath On Some Analogues of Beurling’s Theorem



Since a > 0 it easily follows from the fact f ∈ L1
α(R+) that

f ∈ L1([a,∞)) which implies that the function F on the upper
half plane H defined by

F (z) =

∫ ∞
a

e iλz f (λ) dλ, for z ∈ H, (9)

is analytic and bounded on H and continuous upto H. It is
easy to see that if F (z) = 0 for z ∈ H, then f = 0 almost
everywhere on [a,∞).

Lemma

Let F be analytic on the upper half plane H = {z ∈ C : =(z) > 0}
and bounded in the closed half planes {z ∈ C : =(z) ≥ h}, for
each h > 0. If F satisfies∫ ∞

0

log(|F (x + i)|)
1 + x2

dx = −∞,

then F is identically zero on H.
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f = fl + ρl , almost everywhere, where

fl(λ) =

∫ l

0
Hα(f )(t)jα(tλ) dγα(t),

and ρl(λ) =

∫ ∞
l
Hα(f )(t)jα(tλ) dγα(t), for λ ∈ [0,∞).

F (x+i) =

∫ ∞
a

e i(x+i)λfl(λ) dλ+

∫ ∞
a

e i(x+i)λρl(λ) dλ, for any x ≥ 0.

fl is entire function. So by Cauchy’s theorem,∫ ∞
a

e i(x+i)λfl(λ) dλ = i

∫ 1

0
e i(x+i)(a+iτ)fl(a + iτ) dτ

+

∫ ∞
a

e i(x+i)(σ+i)fl(σ + i) dσ.
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|F (x + i)| ≤ 3e−θM∗(x),

where θ = min
0≤τ≤1

{τ + ωD(E , a + iτ)} > 0 and

M∗(x) = min

{
x , log

(
1∫∞

x |Hα(f )(t)| dγα(t)

)}
.

∫ ∞
0
|Hα(f )(t)|eψ(t) dγα(t) <∞,

∫ ∞
0

ψ(x)

1 + x2
dx =∞

=⇒
∫ ∞

0

log(|F (x + i)|)
1 + x2

dx = −∞.

Hence f = 0 almost everywhere on [a,∞).

Hα(f )(t) =

∫ a

0
f (λ)jα(λt) dγα(λ).
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Hα(f ) can be extended holomorphically to C satisfying

|Hα(f )(z)| ≤
∫ a

0
|f (λ)|eλ|=(z)|dγα(λ) ≤ Cea|=(z)|, for all z ∈ C.

Lemma (Bhowmik, 2020)

Suppose f is a holomorphic function on H which extends
continuously to H. Let ψ be a non negative even function on R
such that for positive constants τ and C

|f (z)| ≤ Ceτ |=(z)|, for all z ∈ H

and ∫
R

|f (x)|eψ(x)

1 + x2
dx <∞.

If ∫
R

ψ(x)

1 + x2
dx =∞,

then f vanishes identically on H.
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Some more analogues for Fourier transform on Rn

Since Hankel transform is related with the Fourier transform
of a radial function on Rn, we obtain the following analogue:

Theorem

Let ψ : [0,∞)→ [0,∞) be an increasing function such that

ψ(x)→∞ as x →∞ and consider I =

∫ ∞
0

ψ(x)

1 + x2
dx .

(a) Let I =∞ and f ∈ L1(Rn) be a radial function satisfying∫
Rn

|f̂ (x)|eψ(|x |) dx <∞. (10)

If f vanishes on a set of positive Lebesgue measure in Rn,
then f is zero almost everywhere on Rn.

(b) If I is finite then there exists a non-trivial radial function f on
Rn satisfying (10) which vanishes on a set of positive
Lebesgue measure in Rn.
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Some more analogues for Fourier transform on Rn

We also have the following analogue:

Theorem

Let ψ : [0,∞)→ [0,∞) be an increasing function such that

ψ(x)→∞ as x →∞ and consider I =
∫∞

0
ψ(x)
1+x2 dx .

(a) If I =∞, f ∈ S(Rn) satisfies∫
Rn

|f̂ (x)|eψ(|x |) dx <∞ (11)

and f vanishes on an annular type set of positive Lebesgue
measure in Rn, then f is identically zero.

(b) If I <∞, then ∃ a non-trivial f ∈ S(Rn) satisfying (11) which
vanishes on an annular type set of positive Lebesgue measure.

E ′ ⊂ Rn is called an annular type set if x ∈ E ′ implies that
|x |ω ∈ E ′, for all ω ∈ Sn−1.
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Analogue for spectral projections associated to Laplacian

For suitable function f , spectral projections associated to the
Euclidean Laplacian given by

f ∗ φλ(x) =

∫
Sn−1

f̂ (λω)e iλx ·ωdσ(ω),

where φλ(x) =
∫
Sn−1 e

iλx ·ωdσ(ω).

Theorem

Let ψ and I defined as before.

(a) Let I =∞ and f ∈ S(Rn) satisfying

|f ∗ φλ(x)| ≤ Ce−ψ(λ), for λ ≥ 0, x ∈ Rn. (12)

If f vanishes on an annular type set of positive Lebesgue
measure in Rn, then f is identically zero.

(b) I <∞, then ∃ a non-trivial function f ∈ S(Rn) satisfying (12)
which vanishes on a set of positive Lebesgue measure in Rn.
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Analogue for Jacobi transform

We consider the Jacobi operator

L =
d2

dt2
+

A′(t)

A(t)

d

dt
,

where for α ≥ β ≥ −1
2 ,

A(t) = (2 sinh t)2α+1(2 cosh t)2β+1, for t ∈ [0,∞).

For each λ ∈ C, 2ρ = α + β + 1, we define φλ as the unique
solution of

Lf + (λ2 + ρ2)f = 0, with f (0) = 1, f ′(0) = 0.

For a function f ∈ L1(R+,A(t)dt), we define the Jacobi
transform of f by

f̂ (λ) =

∫ ∞
0

f (t)φλ(t)A(t) dt, for λ ∈ R+.
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Analogue for Jacobi transform

For f ∈ L1(R+,A(t)dt) and f̂ ∈ L1(R+, |c(λ)|−2dλ) we have the
following inversion formula

f (t) =

∫ ∞
0

f̂ (λ)φλ(t)|c(λ)|−2 dλ, for a.e. t ∈ R+, (13)

where c(λ) is the Harish-Chandra c-function.

Theorem

Let I and ψ be defined as before.

(a) Let I =∞ and f ∈ L1(R+,A(t)dt) satisfying∫ ∞
0
|f̂ (λ)|eψ(λ)|c(λ)|−2 dλ <∞. (14)

If f vanishes on a set E ⊆ [0,∞) of positive Lebesgue
measure, then f = 0 almost everywhere on [0,∞).

(b) If I is finite, then there exists a function f on R+ satisfying
(14) which vanishes on a set of positive Lebesgue measure.
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Mathématiques 155(2019), 33-73.

Debnath, S.; Sen, S. Analogues of Beurling’s Theorem for
some Integral Transforms, Integral Transforms and Special
Functions (2021), DOI: 10.1080/10652469.2021.1979972

Debnath, S.; Sen, S. Completeness of exponentials and
Beurling’s Theorem regarding Fourier transform on Rn and Tn,
arXiv:2007.09458v2 (communicated)

De Jeu, M. Subspaces with equal closure Constructive
Approximation 20 (2004), no. 1, 93-157.

Santanu Debnath On Some Analogues of Beurling’s Theorem



Ganguly, P.; Thangavelu, S. An uncertainty principle for
spectral projections on rank one symmetric spaces of
noncompact type, Ann. Mat. Pura Appl., (2021).
DOI:10.1007/s10231-021-01116-3.

Ganguly, P.; Thangavelu, S. Theorems of Chernoff and Ingham
for certain eigenfunction expansions, Adv. Math., 386 (2021),
107815, 31 pp. DOI:10.1016/j.aim.2021.107815. MR4267517

Koosis, P. The logarithmic Integral I, Cambridge Studies in
Advanced Mathematics, 12, Cambridge University Press,
Cambridge, 1998. MR1670244 (99j:30001)

Levinson, N. On a Class of Non-Vanishing Functions, Proc.
London Math. Soc. (2) 41 (1936), no. 5, 393-407. MR1576177

Poltoratski, A. A problem on completeness of exponentials,
Ann. of Math. (2) 178 (2013), no. 3, 983–1016. MR3092474

Santanu Debnath On Some Analogues of Beurling’s Theorem



Thank You !!!

Santanu Debnath On Some Analogues of Beurling’s Theorem


