On Some Analogues of Beurling's Theorem

Santanu Debnath

Joint work with Dr. Suparna Sen

Department of Pure Mathematics University of Calcutta

January 7, 2022

DMHA 17

向下 イヨト イヨト

Uncertainty principle

• For $f \in L^1(\mathbb{R})$, we define the Fourier transform of f by

$$\widehat{f}(y) = \int_{\mathbb{R}} f(x) e^{-ixy} \, dx, \quad ext{for all } y \in \mathbb{R}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

크

Uncertainty principle

• For $f \in L^1(\mathbb{R})$, we define the Fourier transform of f by

$$\widehat{f}(y) = \int_{\mathbb{R}} f(x) e^{-ixy} \, dx, \quad ext{for all } y \in \mathbb{R}.$$

 Uncertainty principle in harmonic analysis roughly says that a non-zero integrable function and its Fourier transform cannot be simultaneously "small".

ヨト イヨト イヨト

Uncertainty principle

• For $f \in L^1(\mathbb{R})$, we define the Fourier transform of f by

$$\widehat{f}(y) = \int_{\mathbb{R}} f(x) e^{-ixy} \, dx, \quad ext{for all } y \in \mathbb{R}.$$

- Uncertainty principle in harmonic analysis roughly says that a non-zero integrable function and its Fourier transform cannot be simultaneously "small".
- An example

Theorem Let $f \in L^1(\mathbb{R})$ satisfying

 $|\widehat{f}(y)| \leq Ce^{-a|y|}$ for all $y \in \mathbb{R}$ for some a > 0.

If f vanishes on any non-empty open subset of \mathbb{R} , then f is identically zero.

Theorem (Levinson, 1936)

Let $f \in L^1(\mathbb{R})$ and $\psi : [0,\infty) \to [0,\infty)$ increasing function satisfying

$$\int_0^\infty \frac{\psi(\xi)}{1+\xi^2} d\xi = \infty, \tag{1}$$

and

$$|\widehat{f}(\xi)| \le Ce^{-\psi(|\xi|)}, \quad \text{for almost every } \xi \in \mathbb{R}.$$
 (2)

If f vanishes on any non-empty open set in \mathbb{R} , then f is identically zero.

向下 イヨト イヨト

Theorem (Levinson, 1936)

Let $f \in L^1(\mathbb{R})$ and $\psi : [0,\infty) \to [0,\infty)$ increasing function satisfying

$$\int_0^\infty \frac{\psi(\xi)}{1+\xi^2} d\xi = \infty, \tag{1}$$

and

$$|\widehat{f}(\xi)| \le Ce^{-\psi(|\xi|)}, \quad \text{for almost every } \xi \in \mathbb{R}.$$
 (2)

If f vanishes on any non-empty open set in \mathbb{R} , then f is identically zero.

 We note that as ψ is increasing, from equation (1), we have ψ(x) ↑ ∞ as x → ∞. So from equation (2) it follows that f̂ decays to zero.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Levinson, 1936)

Let $f \in L^1(\mathbb{R})$ and $\psi : [0,\infty) \to [0,\infty)$ increasing function satisfying

$$\int_0^\infty \frac{\psi(\xi)}{1+\xi^2} d\xi = \infty, \tag{1}$$

and

$$|\widehat{f}(\xi)| \le Ce^{-\psi(|\xi|)}, \quad \text{for almost every } \xi \in \mathbb{R}.$$
 (2)

If f vanishes on any non-empty open set in \mathbb{R} , then f is identically zero.

- We note that as ψ is increasing, from equation (1), we have ψ(x) ↑ ∞ as x → ∞. So from equation (2) it follows that f̂ decays to zero.
- Levinson actually worked with a more general estimate of the form $\int_{\mathbb{R}} |\hat{f}(\xi)| e^{\psi(|\xi|)} d\xi < \infty$ instead of (2).

Beurling's uncertainty principle

Beurling improved the result and replaced open set with set of positive Lebesgue measure. He proved the result for complex Borel measure μ on \mathbb{R} . We define the Fourier transform $\hat{\mu}$ of μ by

$$\widehat{\mu}(\lambda) = \int_{\mathbb{R}} e^{-i\lambda t} d\mu(t), ext{ for } \lambda \in \mathbb{R}.$$

白 ト イヨト イヨト

Beurling's uncertainty principle

Beurling improved the result and replaced open set with set of positive Lebesgue measure. He proved the result for complex Borel measure μ on \mathbb{R} . We define the Fourier transform $\hat{\mu}$ of μ by

$$\widehat{\mu}(\lambda) = \int_{\mathbb{R}} e^{-i\lambda t} d\mu(t), ext{ for } \lambda \in \mathbb{R}.$$

Theorem (Beurling, 1989)

Let μ be a complex Borel measure on \mathbb{R} and $\psi : [0, \infty) \to [0, \infty)$ be an increasing function satisfying

$$\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty,$$

$$\int_{\mathbb{R}} e^{\psi(|x|)} |d\mu(x)| < \infty.$$

If $\widehat{\mu}$ vanishes on $\Lambda \subset \mathbb{R}$ such that $m(\overline{\Lambda}) > 0$ then μ is identically 0.

• Beurling assumed the estimate

$$\int_0^\infty \frac{1}{1+x^2} \log\left(\frac{1}{\int_x^\infty |d\mu(t)|}\right) dx = \infty,$$

but the one we work with follows from the above.

イロン 不同 とうほう 不同 とう

크

Beurling assumed the estimate

$$\int_0^\infty rac{1}{1+x^2} \log\left(rac{1}{\int_x^\infty |d\mu(t)|}
ight) dx = \infty.$$

but the one we work with follows from the above.

 Also Beurling assumed the vanishing set Λ to be a set of positive Lebesgue measure but since μ̂ is continuous, it is enough to assume that Λ is a set of positive Lebesgue measure. Beurling assumed the estimate

$$\int_0^\infty rac{1}{1+x^2} \log\left(rac{1}{\int_x^\infty |d\mu(t)|}
ight) dx = \infty,$$

but the one we work with follows from the above.

- Also Beurling assumed the vanishing set Λ to be a set of positive Lebesgue measure but since μ̂ is continuous, it is enough to assume that Λ is a set of positive Lebesgue measure.
- It was proved as a consequence of a characterization of the Beurling quasianalytic class (a generalisation of the famous Denjoy-Carleman quasianalytic class and Bernstein quasianalytic class), which used the concept of harmonic measure.

• • = • • = •

• Beurling assumed the estimate

$$\int_0^\infty rac{1}{1+x^2} \log\left(rac{1}{\int_x^\infty |d\mu(t)|}
ight) dx = \infty,$$

but the one we work with follows from the above.

- Also Beurling assumed the vanishing set Λ to be a set of positive Lebesgue measure but since μ̂ is continuous, it is enough to assume that Λ is a set of positive Lebesgue measure.
- It was proved as a consequence of a characterization of the Beurling quasianalytic class (a generalisation of the famous Denjoy-Carleman quasianalytic class and Bernstein quasianalytic class), which used the concept of harmonic measure.
- In the book of Koosis, it was shown that the theorem of Levinson can also be obtained as a consequence of completeness of linear span of exponentials in certain weighted space of continuous functions. This leads us to another problem in harmonic analysis which is of independent interest.

• First we define a weighted space of continuous functions. Let $\psi : [0, \infty) \rightarrow [0, \infty)$ be an increasing function such that $\psi(x) \rightarrow \infty$ as $x \rightarrow \infty$. Consider

$$C_\psi(\mathbb{R}^n) = \left\{ f: \mathbb{R}^n o \mathbb{C} \mid f ext{ is continuous and } \lim_{|x| o \infty} rac{f(x)}{e^{\psi(|x|)}} = 0
ight\}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

3

• First we define a weighted space of continuous functions. Let $\psi : [0, \infty) \rightarrow [0, \infty)$ be an increasing function such that $\psi(x) \rightarrow \infty$ as $x \rightarrow \infty$. Consider

$$C_\psi(\mathbb{R}^n) = \left\{ f: \mathbb{R}^n \to \mathbb{C} \ | \ f \text{ is continuous and } \lim_{|x| \to \infty} \frac{f(x)}{e^{\psi(|x|)}} = 0 \right\}.$$

• We define a norm on $C_{\psi}(\mathbb{R}^n)$ by

$$\|f\|_{\psi} = \sup_{x\in\mathbb{R}^n} \frac{|f(x)|}{e^{\psi(|x|)}}, \quad \text{ for } f\in C_{\psi}(\mathbb{R}^n).$$

伺下 イヨト イヨト

• First we define a weighted space of continuous functions. Let $\psi : [0, \infty) \rightarrow [0, \infty)$ be an increasing function such that $\psi(x) \rightarrow \infty$ as $x \rightarrow \infty$. Consider

$$C_\psi(\mathbb{R}^n) = \left\{ f: \mathbb{R}^n \to \mathbb{C} \ | \ f \text{ is continuous and } \lim_{|x| \to \infty} \frac{f(x)}{e^{\psi(|x|)}} = 0 \right\}.$$

• We define a norm on $C_{\psi}(\mathbb{R}^n)$ by

$$\|f\|_{\psi} = \sup_{\mathbf{x}\in\mathbb{R}^n} rac{|f(\mathbf{x})|}{e^{\psi(|\mathbf{x}|)}}, \quad ext{ for } f\in C_{\psi}(\mathbb{R}^n).$$

• It is easy to see that $(C_{\psi}(\mathbb{R}^n), \|\cdot\|_{\psi})$ is a normed linear space.

向下 イヨト イヨト

• First we define a weighted space of continuous functions. Let $\psi : [0, \infty) \rightarrow [0, \infty)$ be an increasing function such that $\psi(x) \rightarrow \infty$ as $x \rightarrow \infty$. Consider

$$C_\psi(\mathbb{R}^n) = \left\{ f: \mathbb{R}^n \to \mathbb{C} \ | \ f \text{ is continuous and } \lim_{|x| \to \infty} \frac{f(x)}{e^{\psi(|x|)}} = 0 \right\}.$$

• We define a norm on $C_{\psi}(\mathbb{R}^n)$ by

$$\|f\|_{\psi} = \sup_{x\in\mathbb{R}^n} rac{|f(x)|}{e^{\psi(|x|)}}, \quad ext{ for } f\in C_{\psi}(\mathbb{R}^n).$$

- It is easy to see that $(C_{\psi}(\mathbb{R}^n), \|\cdot\|_{\psi})$ is a normed linear space.
- For any $\lambda \in \mathbb{R}^n$, we define the continuous functions $e_{\lambda} : \mathbb{R}^n \to \mathbb{C}$ by

$$e_{\lambda}(x) = e^{-i\lambda \cdot x}$$
 for $x \in \mathbb{R}^n$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\Phi_{\Lambda}(\mathbb{R}^n) = span\{e_{\lambda} : \lambda \in \Lambda\}.$$

イロン 不同 とうほう 不同 とう

2

$$\Phi_{\Lambda}(\mathbb{R}^n) = span\{e_{\lambda} : \lambda \in \Lambda\}.$$

• It is easy to see that $\Phi_{\Lambda}(\mathbb{R}^n)$ is a subspace of $C_{\psi}(\mathbb{R}^n)$ for any $\Lambda \subset \mathbb{R}^n$.

伺下 イヨト イヨト

$$\Phi_{\Lambda}(\mathbb{R}^n) = span\{e_{\lambda} : \lambda \in \Lambda\}.$$

- It is easy to see that $\Phi_{\Lambda}(\mathbb{R}^n)$ is a subspace of $C_{\psi}(\mathbb{R}^n)$ for any $\Lambda \subset \mathbb{R}^n$.
- Problems regarding weighted approximation of exponentials pose the question for which type of sets Λ ⊂ ℝⁿ, Φ_Λ(ℝⁿ) is dense in (C_ψ(ℝⁿ), || · ||_ψ).

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\Phi_{\Lambda}(\mathbb{R}^n) = span\{e_{\lambda} : \lambda \in \Lambda\}.$$

- It is easy to see that $\Phi_{\Lambda}(\mathbb{R}^n)$ is a subspace of $C_{\psi}(\mathbb{R}^n)$ for any $\Lambda \subset \mathbb{R}^n$.
- Problems regarding weighted approximation of exponentials pose the question for which type of sets Λ ⊂ ℝⁿ, Φ_Λ(ℝⁿ) is dense in (C_ψ(ℝⁿ), || · ||_ψ).
- For example, when Λ ⊂ ℝⁿ is a non-trivial open set then Φ_Λ(ℝⁿ) is always dense in (C_ψ(ℝⁿ), || · ||_ψ). This result was used in the alternative proof of Levinson's theorem.

・ 同 ト ・ ヨ ト ・ ヨ ト

 To get the result regarding exponential density from Beurling's theorem, we first need to explicitly find the dual of (C_ψ(ℝⁿ), || · ||_ψ), denoted by (C_ψ(ℝⁿ), || · ||_ψ)*, the space of all bounded linear functionals on (C_ψ(ℝⁿ), || · ||_ψ). For that we required to assume that ψ is continuous.

伺下 イヨト イヨト

 To get the result regarding exponential density from Beurling's theorem, we first need to explicitly find the dual of (C_ψ(ℝⁿ), || · ||_ψ), denoted by (C_ψ(ℝⁿ), || · ||_ψ)*, the space of all bounded linear functionals on (C_ψ(ℝⁿ), || · ||_ψ). For that we required to assume that ψ is continuous.

Lemma

 $(C_{\psi}(\mathbb{R}^{n}), \|\cdot\|_{\psi})$ is a Banach space isometrically isomorphic to $(C_{0}(\mathbb{R}^{n}), \|\cdot\|_{\infty})$ and its dual is given by

$$(\mathcal{C}_\psi(\mathbb{R}^n),\|\cdot\|_\psi)^*=\left\{eta\in\mathcal{M}(\mathbb{R}^n):\int_{\mathbb{R}^n}e^{\psi(|\mathsf{x}|)}|deta(\mathsf{x})|<\infty
ight\}.$$

 $(\mathcal{M}(\mathbb{R}^n)$ is the space of all complex Borel measure \mathbb{R}^n .)

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\psi:[0,\infty)\to [0,\infty)$ be a continuous, increasing function satisfying

$$\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty.$$

For $\Lambda \subset \mathbb{R}$ such that $m(\overline{\Lambda}) > 0$, $\Phi_{\Lambda}(\mathbb{R})$ is dense in $(C_{\psi}(\mathbb{R}), \|\cdot\|_{\psi})$.

向下 イヨト イヨト

3

Let $\psi : [0,\infty) \to [0,\infty)$ be a continuous, increasing function satisfying

$$\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty.$$

For $\Lambda \subset \mathbb{R}$ such that $m(\overline{\Lambda}) > 0$, $\Phi_{\Lambda}(\mathbb{R})$ is dense in $(C_{\psi}(\mathbb{R}), \|\cdot\|_{\psi})$.

Proof.

• Let $T \in (C_{\psi}(\mathbb{R}), \|\cdot\|_{\psi})^*$ such that T vanishes on $\Phi_{\Lambda}(\mathbb{R})$.

向下 イヨト イヨト

Let $\psi : [0,\infty) \to [0,\infty)$ be a continuous, increasing function satisfying

$$\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty.$$

For $\Lambda \subset \mathbb{R}$ such that $m(\overline{\Lambda}) > 0$, $\Phi_{\Lambda}(\mathbb{R})$ is dense in $(C_{\psi}(\mathbb{R}), \|\cdot\|_{\psi})$.

Proof.

• Let $T \in (C_{\psi}(\mathbb{R}), \|\cdot\|_{\psi})^*$ such that T vanishes on $\Phi_{\Lambda}(\mathbb{R})$. • $T(f) = \int f(t) \ d\beta(t), \quad \text{for } f \in C_{\psi}(\mathbb{R}),$

where
$$eta \in \mathcal{M}(\mathbb{R}^n)$$
 satisfies $\int_{\mathbb{R}} e^{\psi(|x|)} |deta(x)| < \infty.$

向下 イヨト イヨト

Let $\psi:[0,\infty)\to [0,\infty)$ be a continuous, increasing function satisfying

$$\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty.$$

For $\Lambda \subset \mathbb{R}$ such that $m(\overline{\Lambda}) > 0$, $\Phi_{\Lambda}(\mathbb{R})$ is dense in $(C_{\psi}(\mathbb{R}), \|\cdot\|_{\psi})$.

Proof.

• Let $T \in (C_{\psi}(\mathbb{R}), \|\cdot\|_{\psi})^*$ such that T vanishes on $\Phi_{\Lambda}(\mathbb{R})$.

$$T(f) = \int_{\mathbb{R}} f(t) \ deta(t), \quad ext{ for } f \in \mathcal{C}_{\psi}(\mathbb{R}),$$

where $\beta \in \mathcal{M}(\mathbb{R}^n)$ satisfies $\int_{\mathbb{R}} e^{\psi(|x|)} |d\beta(x)| < \infty$.

• T vanishes on $\Phi_{\Lambda}(\mathbb{R})$ implies

$$\int_{\mathbb{R}} e^{-i\lambda t} deta(t) = 0, \quad orall \ \lambda \in \Lambda.$$

• Now we will extend this theorem to \mathbb{R}^n .

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

- Now we will extend this theorem to \mathbb{R}^n .
- An open set U ⊆ ℝⁿ always contains a set of the form U₁ × U₂ × ··· × U_n where each U_j ⊆ ℝ is open in ℝ for 1 ≤ j ≤ n. This type of property of the set is an important tool in the technique of extending the result to ℝⁿ using the result of ℝ. However, this property does not hold for sets of positive Lebesgue measure in ℝⁿ.

向下 イヨト イヨト

- Now we will extend this theorem to \mathbb{R}^n .
- An open set U ⊆ ℝⁿ always contains a set of the form U₁ × U₂ × ··· × U_n where each U_j ⊆ ℝ is open in ℝ for 1 ≤ j ≤ n. This type of property of the set is an important tool in the technique of extending the result to ℝⁿ using the result of ℝ. However, this property does not hold for sets of positive Lebesgue measure in ℝⁿ.
- It is due to this property of sets of positive Lebesgue measure in Rⁿ that we have assumed sets of the special form instead of any set of positive Lebesgue measure in Rⁿ.

伺下 イヨト イヨト

- Now we will extend this theorem to \mathbb{R}^n .
- An open set U ⊆ ℝⁿ always contains a set of the form U₁ × U₂ × ··· × U_n where each U_j ⊆ ℝ is open in ℝ for 1 ≤ j ≤ n. This type of property of the set is an important tool in the technique of extending the result to ℝⁿ using the result of ℝ. However, this property does not hold for sets of positive Lebesgue measure in ℝⁿ.
- It is due to this property of sets of positive Lebesgue measure in Rⁿ that we have assumed sets of the special form instead of any set of positive Lebesgue measure in Rⁿ.
- We call Λ ⊂ ℝⁿ to be "a set of positive rectangle type" if Λ contains a set of the form Λ₁ × ··· × Λ_n, where Λ_j ⊂ ℝ for each 1 ≤ j ≤ n such that the closure of Λ_j has positive Lebesgue measure in ℝ, that is, m(Λ_j) > 0.

• We have the following theorem regarding weighted approximation of exponentials:

・ 回 ト ・ ヨ ト ・ ヨ ト …

3

• We have the following theorem regarding weighted approximation of exponentials:

Theorem

Let ψ be a non-negative, continuous, increasing function on $[0, \infty)$ such that $\psi(x) \to \infty$ as $x \to \infty$. The space $\Phi_{\Lambda}(\mathbb{R}^n)$ is dense in $(C_{\psi}(\mathbb{R}^n), \|\cdot\|_{\psi})$ for any positive rectangle type set $\Lambda \subset \mathbb{R}^n$ if and only if

$$\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty.$$
 (3)

同 とう モン うけい

Let $\psi : [0, \infty) \to [0, \infty)$ be an increasing function such that $\psi(x) \to \infty \text{ as } x \to \infty \text{ and } I = \int_0^\infty \frac{\psi(x)}{1 + x^2} dx.$ (a) Let μ be a complex Borel measure on \mathbb{R}^n satisfying

 $\int_{\mathbb{R}^n} e^{\psi(|x|)} |d\mu(x)| < \infty.$ (4)

If $\hat{\mu}$ vanishes on a set $\Lambda \subset \mathbb{R}^n$ of positive rectangle type and $I = \infty$, then μ is identically zero.

伺 ト イヨト イヨト

Let $\psi : [0, \infty) \to [0, \infty)$ be an increasing function such that $\psi(x) \to \infty \text{ as } x \to \infty \text{ and } I = \int_0^\infty \frac{\psi(x)}{1 + x^2} dx.$

(a) Let μ be a complex Borel measure on \mathbb{R}^n satisfying

$$\int_{\mathbb{R}^n} e^{\psi(|x|)} |d\mu(x)| < \infty.$$
(4)

If $\hat{\mu}$ vanishes on a set $\Lambda \subset \mathbb{R}^n$ of positive rectangle type and $I = \infty$, then μ is identically zero.

(b) If *I* < ∞, then there exists μ ∈ M(ℝⁿ) satisfying (4) such that μ̂ vanishes on a set of positive rectangle type.

・ 同 ト ・ 三 ト ・ 三 ト

Let $\psi : [0, \infty) \to [0, \infty)$ be an increasing function such that $\psi(x) \to \infty$ as $x \to \infty$ and $I = \int_0^\infty \frac{\psi(x)}{1 + x^2} dx$.

(a) Let μ be a complex Borel measure on \mathbb{R}^n satisfying

$$\int_{\mathbb{R}^n} e^{\psi(|x|)} |d\mu(x)| < \infty.$$
(4)

If $\hat{\mu}$ vanishes on a set $\Lambda \subset \mathbb{R}^n$ of positive rectangle type and $I = \infty$, then μ is identically zero.

(b) If *I* < ∞, then there exists μ ∈ M(ℝⁿ) satisfying (4) such that μ̂ vanishes on a set of positive rectangle type.

Proof.

• If
$$T_\mu(f) = \int_{\mathbb{R}^n} f(x) d\mu(x)$$
, (4) implies, $T_\mu \in (C_\psi(\mathbb{R}^n), \|\cdot\|_\psi)^*$.

・ 同 ト ・ 三 ト ・ 三 ト

Let $\psi : [0, \infty) \to [0, \infty)$ be an increasing function such that $\psi(x) \to \infty$ as $x \to \infty$ and $I = \int_0^\infty \frac{\psi(x)}{1 + x^2} dx$.

(a) Let μ be a complex Borel measure on \mathbb{R}^n satisfying

$$\int_{\mathbb{R}^n} e^{\psi(|x|)} |d\mu(x)| < \infty.$$
(4)

If $\hat{\mu}$ vanishes on a set $\Lambda \subset \mathbb{R}^n$ of positive rectangle type and $I = \infty$, then μ is identically zero.

(b) If *I* < ∞, then there exists μ ∈ M(ℝⁿ) satisfying (4) such that μ̂ vanishes on a set of positive rectangle type.

Proof.

• If
$$T_{\mu}(f) = \int_{\mathbb{R}^n} f(x) d\mu(x)$$
, (4) implies, $T_{\mu} \in (C_{\psi}(\mathbb{R}^n), \|\cdot\|_{\psi})^*$.

• $\widehat{\mu}$ vanishes on a set $\Lambda \subset \mathbb{R}^n$ implies T_{μ} vanishes on $\Phi_{\Lambda}(\mathbb{R}^n)$.

Let $\psi : [0, \infty) \to [0, \infty)$ be a continuous increasing function such that $\psi(x) \to \infty$ as $x \to \infty$. Then the following are equivalent: (1) $\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty$.

- (2) Φ_Λ(ℝⁿ) is dense in (C_ψ(ℝⁿ), | · ||_ψ), for any positive rectangle type set Λ ⊂ ℝⁿ.
- (3) There does not exist a non-zero complex Borel measure μ on \mathbb{R}^n such that

$$\int_{\mathbb{R}^n} e^{\psi(|x|)} |d\mu(x)| < \infty,$$

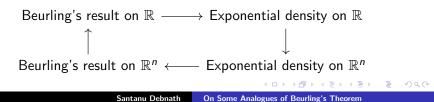
and $\widehat{\mu}$ vanishes on a set $\Lambda \subset \mathbb{R}^n$ of positive rectangle type.

Let $\psi : [0, \infty) \to [0, \infty)$ be a continuous increasing function such that $\psi(x) \to \infty$ as $x \to \infty$. Then the following are equivalent: (1) $\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty$.

- (2) $\Phi_{\Lambda}(\mathbb{R}^n)$ is dense in $(C_{\psi}(\mathbb{R}^n), |\cdot||_{\psi})$, for any positive rectangle type set $\Lambda \subset \mathbb{R}^n$.
- (3) There does not exist a non-zero complex Borel measure μ on \mathbb{R}^n such that

$$\int_{\mathbb{R}^n} e^{\psi(|x|)} |d\mu(x)| < \infty,$$

and $\widehat{\mu}$ vanishes on a set $\Lambda \subset \mathbb{R}^n$ of positive rectangle type.



Another Version Weighted Approximation of Exponentials

• In another version, one studies conditions on $\Lambda \subset \mathbb{R}^n$ and μ that ensure completeness, that is, density of $\Phi_{\Lambda}(\mathbb{R}^n)$ in $L^p(\mathbb{R}^n, \mu)$.

向下 イヨト イヨト

Another Version Weighted Approximation of Exponentials

• In another version, one studies conditions on $\Lambda \subset \mathbb{R}^n$ and μ that ensure completeness, that is, density of $\Phi_{\Lambda}(\mathbb{R}^n)$ in $L^p(\mathbb{R}^n, \mu)$.

Theorem

Let $\psi: [0,\infty)
ightarrow [0,\infty)$ be an increasing function such that

$$\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty$$
 (5)

and μ be a positive measure satisfying

$$\int_{\mathbb{R}^n} e^{\psi(|x|)} d\mu(x) < \infty.$$
 (6)

For any set of positive rectangle type $\Lambda \subset \mathbb{R}^n$, the space $\Phi_{\Lambda}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n, \mu)$, $1 \leq p < \infty$.

Proof.

Since C_c(ℝⁿ) is dense in L^p(ℝⁿ, μ), for 1 ≤ p < ∞ it is enough to prove that Φ_Λ(ℝⁿ) is dense in C_c(ℝⁿ) with respect to the corresponding || · ||_p norm of L^p(ℝⁿ, μ), for 1 ≤ p < ∞.

.

Proof.

Since C_c(ℝⁿ) is dense in L^p(ℝⁿ, μ), for 1 ≤ p < ∞ it is enough to prove that Φ_Λ(ℝⁿ) is dense in C_c(ℝⁿ) with respect to the corresponding || · ||_p norm of L^p(ℝⁿ, μ), for 1 ≤ p < ∞.

• Define
$$\psi_1(x) = \frac{\psi(x)}{p}$$
, which satisfies $\int_0^\infty \frac{\psi_1(x)}{1+x^2} dx = \infty$.

.

Proof.

Since C_c(ℝⁿ) is dense in L^p(ℝⁿ, μ), for 1 ≤ p < ∞ it is enough to prove that Φ_Λ(ℝⁿ) is dense in C_c(ℝⁿ) with respect to the corresponding || · ||_p norm of L^p(ℝⁿ, μ), for 1 ≤ p < ∞.

• Define
$$\psi_1(x) = \frac{\psi(x)}{p}$$
, which satisfies $\int_0^\infty \frac{\psi_1(x)}{1+x^2} dx = \infty$.

• Consider $f \in C_c(\mathbb{R}^n) \subseteq C_{\psi_1}(\mathbb{R}^n)$. Given any $\epsilon > 0$, we get $g \in \Phi_{\Lambda}(\mathbb{R}^n)$ such that $\|f - g\|_{\psi_1} < \epsilon$. From (6) we get C > 0 such that

$$\begin{split} \|f - g\|_{p}^{p} &= \int_{\mathbb{R}^{n}} \frac{|f(x) - g(x)|^{p}}{e^{p\psi_{1}(|x|)}} e^{\psi(|x|)} d\mu(x) \\ &\leq \|f - g\|_{\psi_{1}}^{p} \int_{\mathbb{R}^{n}} e^{\psi(|x|)} d\mu(x) < C\epsilon^{p}. \end{split}$$

伺 ト イヨト イヨト

A Generalisation of Beurling's theorem

For $f \in L^1(\mathbb{R}^n, \mu)$, we define its Fourier transform by

$$\mathcal{F}_{\mu}(\lambda) = \int_{\mathbb{R}^n} f(x) e^{-i\lambda x} d\mu(x).$$

Theorem

Let $\psi: [0,\infty)
ightarrow [0,\infty)$ be an increasing function such that

$$\int_0^\infty \frac{\psi(x)}{1+x^2} dx = \infty$$

and μ be a positive measure satisfying

$$\int_{\mathbb{R}^n} e^{\psi(|x|)} d\mu(x) < \infty.$$

If $f \in L^{p}(\mathbb{R}^{n}, \mu)$, for $1 , is such that <math>\mathcal{F}_{\mu}(f)$ vanishes on a set of positive rectangle type, then f is zero a.e. μ .

Another analogue of Beurling's theorem

• We first prove an analogue of Beurling's theorem for Hankel transform by following the line of arguments.

Another analogue of Beurling's theorem

- We first prove an analogue of Beurling's theorem for Hankel transform by following the line of arguments.
- Let D ⊂ C be a bounded domain with finitely many connected components whose boundary ∂D consists of several piecewise smooth Jordan curves. It is well known that the solution of Dirichlet problem exists in the domain D, that is, if φ : ∂D → C is a continuous function, then there is a unique function U_φ harmonic in D and continuous upto ∂D such that U_φ(ζ) = φ(ζ), for all ζ ∈ ∂D.

• (1) • (

Another analogue of Beurling's theorem

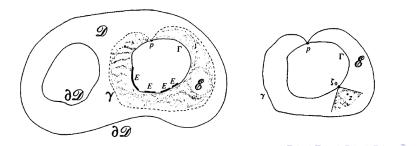
- We first prove an analogue of Beurling's theorem for Hankel transform by following the line of arguments.
- Let D ⊂ C be a bounded domain with finitely many connected components whose boundary ∂D consists of several piecewise smooth Jordan curves. It is well known that the solution of Dirichlet problem exists in the domain D, that is, if φ : ∂D → C is a continuous function, then there is a unique function U_φ harmonic in D and continuous upto ∂D such that U_φ(ζ) = φ(ζ), for all ζ ∈ ∂D.
- For any fixed $z \in D$, there is a unique measure $\omega_D(\cdot, z)$ on ∂D determined by $U_{\phi}(z)$ in the following way

$$U_{\phi}(z) = \int_{\partial \mathcal{D}} \phi(\zeta) \, d\omega_{\mathcal{D}}(\zeta, z).$$

This positive Radon measure $\omega_{\mathcal{D}}(\cdot, z)$ on $\partial \mathcal{D}$, of total mass 1 is called the harmonic measure relative to \mathcal{D} as seen from z.

Let E be a closed set lying on a single component Γ of ∂D and $\mathcal{E} \subseteq D$ be a simply connected domain whose boundary contains Γ . For almost every $\zeta_0 \in E$, if $z \in \mathcal{E}$ tends to ζ_0 from within an acute angle with vertex at ζ_0 , lying strictly in \mathcal{E} , (henceforth denoted by $z \not\rightarrow \zeta_0$), then

$$\omega_{\mathcal{D}}(E,z) \longrightarrow 1.$$



Theorem (Theorem on two constants)

Let f be a function which is analytic, bounded in \mathcal{D} and continuous up to $\partial \mathcal{D}$. If $|f(\zeta)| \leq M$ for $\zeta \in \partial \mathcal{D}$, and there is a Borel set $E \subseteq \partial \mathcal{D}$ with $|f(\zeta)| \leq m (< M)$ for $\zeta \in E$, then

$$|f(z)| \leq m^{\omega_{\mathcal{D}}(E,z)} M^{1-\omega_{\mathcal{D}}(E,z)}, \quad \text{for } z \in \mathcal{D}.$$

.

• For
$$\alpha > -\frac{1}{2}$$
, we define the measure $d\gamma_{\alpha}$ on $[0, \infty)$ by
 $d\gamma_{\alpha}(\lambda) = \frac{\lambda^{2\alpha+1}}{2^{\alpha}\Gamma(\alpha+1)} d\lambda.$

<ロ> <四> <四> <四> <三</td>

• For
$$\alpha > -\frac{1}{2}$$
, we define the measure $d\gamma_{\alpha}$ on $[0, \infty)$ by
 $d\gamma_{\alpha}(\lambda) = \frac{\lambda^{2\alpha+1}}{2^{\alpha}\Gamma(\alpha+1)} d\lambda.$

For f ∈ L¹_α(ℝ₊) = L¹([0,∞), dγ_α), we define its Hankel transform of order α > -¹/₂ by

$$\mathcal{H}_lpha(f)(t) = \int_0^\infty f(\lambda) j_lpha(\lambda t) \, d\gamma_lpha(\lambda),$$

白マ ヘビマ イロマー

• For
$$\alpha > -\frac{1}{2}$$
, we define the measure $d\gamma_{\alpha}$ on $[0, \infty)$ by
 $d\gamma_{\alpha}(\lambda) = \frac{\lambda^{2\alpha+1}}{2^{\alpha}\Gamma(\alpha+1)} d\lambda.$

For f ∈ L¹_α(ℝ₊) = L¹([0,∞), dγ_α), we define its Hankel transform of order α > -¹/₂ by

$$\mathcal{H}_lpha(f)(t) = \int_0^\infty f(\lambda) j_lpha(\lambda t) \, d\gamma_lpha(\lambda),$$

where the spherical Bessel functions j_{α} , for $\alpha > -\frac{1}{2}$ are given by $j_{\alpha}(z) = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(\alpha + n + 1)} \left(\frac{z}{2}\right)^{2n}$, for $z \in \mathbb{C}$.

• • = • • = •

• For
$$\alpha > -\frac{1}{2}$$
, we define the measure $d\gamma_{\alpha}$ on $[0, \infty)$ by
 $d\gamma_{\alpha}(\lambda) = \frac{\lambda^{2\alpha+1}}{2^{\alpha}\Gamma(\alpha+1)} d\lambda.$

For f ∈ L¹_α(ℝ₊) = L¹([0,∞), dγ_α), we define its Hankel transform of order α > -¹/₂ by

$$\mathcal{H}_lpha(f)(t) = \int_0^\infty f(\lambda) j_lpha(\lambda t) \, d\gamma_lpha(\lambda),$$

where the spherical Bessel functions j_{α} , for $\alpha > -\frac{1}{2}$ are given by $j_{\alpha}(z) = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(\alpha + n + 1)} \left(\frac{z}{2}\right)^{2n}$, for $z \in \mathbb{C}$.

• If $f \in L^1_{lpha}(\mathbb{R}_+)$ such that $\mathcal{H}_{lpha}f \in L^1_{lpha}(\mathbb{R}_+),$ then

$$f(\lambda) = \int_0^\infty \mathcal{H}_lpha f(t) j_lpha(\lambda t) \, d\gamma_lpha(t), \,\,\, ext{for almost every} \,\, \lambda \in [0,\infty).$$

• • = • • = •

Beurling's theorem for Hankel transform

• We have the following analogue of Beurling's theorem for Hankel transform:

白マ イヨマ イヨマ

臣

Beurling's theorem for Hankel transform

• We have the following analogue of Beurling's theorem for Hankel transform:

Theorem

Let
$$\alpha > -\frac{1}{2}$$
, $\psi : [0, \infty) \to [0, \infty)$ be an increasing function such
that $\psi(x) \to \infty$ as $x \to \infty$ and consider $I = \int_0^\infty \frac{\psi(x)}{1 + x^2} dx$.
(a) Let $I = \infty$ and $f \in L^1_\alpha(\mathbb{R}_+)$ satisfying
 $\int_0^\infty |\mathcal{H}_\alpha(f)(t)| e^{\psi(t)} d\gamma_\alpha(t) < \infty$. (7)

If f vanishes on a set $E \subseteq [0,\infty)$ of positive Lebesgue measure, then f = 0 almost everywhere on $[0,\infty)$.

(b) If I is finite then there exists a non-trivial function f on ℝ₊ satisfying (7) which vanishes on a set of positive Lebesgue measure in ℝ₊.

Outline of proof:

• We consider the simply connected domain

$$\mathcal{D} = \{\lambda \in \mathbb{C} : -\infty < \Re(\lambda) < \infty, \ 0 < \Im(\lambda) < 1\}$$

and *E* is a closed set lying on a single component of ∂D .

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

Outline of proof:

• We consider the simply connected domain

$$\mathcal{D} = \{\lambda \in \mathbb{C} : -\infty < \Re(\lambda) < \infty, \ 0 < \Im(\lambda) < 1\}$$

and *E* is a closed set lying on a single component of ∂D . • So we get that the harmonic measure $\omega_D(\cdot, z)$ satisfies

$$\omega_{\mathcal{D}}(E,\lambda) \longrightarrow 1 \quad \text{ as } \lambda \not\longrightarrow \lambda_0, \quad \text{ for almost every } \lambda_0 \in E.$$

Since *E* is a set of positive Lebesgue measure, there certainly exists $a \in E$, $a \neq 0$ such that

$$\omega_{\mathcal{D}}(E, a + i\tau) \longrightarrow 1 \quad \text{as } \tau \to 0 + . \tag{8}$$

向下 イヨト イヨト

 Since a > 0 it easily follows from the fact f ∈ L¹_α(ℝ₊) that f ∈ L¹([a,∞)) which implies that the function F on the upper half plane ℍ defined by

$$F(z) = \int_{a}^{\infty} e^{i\lambda z} f(\lambda) \, d\lambda, \quad \text{ for } z \in \mathbb{H}, \tag{9}$$

is analytic and bounded on \mathbb{H} and continuous upto \mathbb{H} . It is easy to see that if F(z) = 0 for $z \in \mathbb{H}$, then f = 0 almost everywhere on $[a, \infty)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

 Since a > 0 it easily follows from the fact f ∈ L¹_α(ℝ₊) that f ∈ L¹([a,∞)) which implies that the function F on the upper half plane ℍ defined by

$$F(z) = \int_{a}^{\infty} e^{i\lambda z} f(\lambda) \, d\lambda, \quad \text{ for } z \in \mathbb{H}, \tag{9}$$

is analytic and bounded on \mathbb{H} and continuous upto $\overline{\mathbb{H}}$. It is easy to see that if F(z) = 0 for $z \in \mathbb{H}$, then f = 0 almost everywhere on $[a, \infty)$.

Lemma

Let F be analytic on the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$ and bounded in the closed half planes $\{z \in \mathbb{C} : \Im(z) \ge h\}$, for each h > 0. If F satisfies

$$\int_0^\infty \frac{\log(|F(x+i)|)}{1+x^2}\,dx = -\infty,$$

then F is identically zero on \mathbb{H} .

• $f = f_l + \rho_l$, almost everywhere, where

$$f_l(\lambda) = \int_0^l \mathcal{H}_{lpha}(f)(t) j_{lpha}(t\lambda) \, d\gamma_{lpha}(t),$$

and $ho_l(\lambda) = \int_l^\infty \mathcal{H}_{lpha}(f)(t) j_{lpha}(t\lambda) \, d\gamma_{lpha}(t), \quad ext{for } \lambda \in [0,\infty).$

• $f = f_l + \rho_l$, almost everywhere, where

$$f_{l}(\lambda) = \int_{0}^{l} \mathcal{H}_{\alpha}(f)(t) j_{\alpha}(t\lambda) \, d\gamma_{\alpha}(t),$$

and $\rho_{l}(\lambda) = \int_{l}^{\infty} \mathcal{H}_{\alpha}(f)(t) j_{\alpha}(t\lambda) \, d\gamma_{\alpha}(t), \quad \text{for } \lambda \in [0, \infty).$
$$F(x+i) = \int_{a}^{\infty} e^{i(x+i)\lambda} f_{l}(\lambda) \, d\lambda + \int_{a}^{\infty} e^{i(x+i)\lambda} \rho_{l}(\lambda) \, d\lambda, \text{for any } x \ge 0$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Ð,

• $f = f_l + \rho_l$, almost everywhere, where

$$f_{l}(\lambda) = \int_{0}^{l} \mathcal{H}_{\alpha}(f)(t) j_{\alpha}(t\lambda) \, d\gamma_{\alpha}(t),$$

and $\rho_{l}(\lambda) = \int_{l}^{\infty} \mathcal{H}_{\alpha}(f)(t) j_{\alpha}(t\lambda) \, d\gamma_{\alpha}(t), \quad \text{for } \lambda \in [0, \infty).$
$$F(x+i) = \int_{a}^{\infty} e^{i(x+i)\lambda} f_{l}(\lambda) \, d\lambda + \int_{a}^{\infty} e^{i(x+i)\lambda} \rho_{l}(\lambda) \, d\lambda, \text{for any } x \ge 0.$$

• f_l is entire function. So by Cauchy's theorem,

$$\int_{a}^{\infty} e^{i(x+i)\lambda} f_{l}(\lambda) d\lambda = i \int_{0}^{1} e^{i(x+i)(a+i\tau)} f_{l}(a+i\tau) d\tau + \int_{a}^{\infty} e^{i(x+i)(\sigma+i)} f_{l}(\sigma+i) d\sigma.$$

$$\begin{split} |F(x+i)| &\leq 3e^{-\theta M_*(x)},\\ \text{where } \theta &= \min_{0 \leq \tau \leq 1} \{\tau + \omega_{\mathcal{D}}(E, a+i\tau)\} > 0 \text{ and}\\ M_*(x) &= \min \left\{ x, \log \left(\frac{1}{\int_x^\infty |\mathcal{H}_\alpha(f)(t)| \, d\gamma_\alpha(t)} \right) \right\}. \end{split}$$

۲

・ロ・・日・・日・・日・ のくの

$$\begin{split} |F(x+i)| &\leq 3e^{-\theta M_*(x)},\\ \text{where } \theta &= \min_{0 \leq \tau \leq 1} \{\tau + \omega_{\mathcal{D}}(E, a+i\tau)\} > 0 \text{ and}\\ M_*(x) &= \min \left\{ x, \log \left(\frac{1}{\int_x^\infty |\mathcal{H}_\alpha(f)(t)| \, d\gamma_\alpha(t)} \right) \right\}. \end{split}$$

$$\begin{split} \int_0^\infty |\mathcal{H}_\alpha(f)(t)| e^{\psi(t)} \, d\gamma_\alpha(t) < \infty, \quad \int_0^\infty \frac{\psi(x)}{1+x^2} \, dx = \infty \\ \implies \int_0^\infty \frac{\log(|F(x+i)|)}{1+x^2} \, dx = -\infty. \end{split}$$

・ロ・・日・・日・・日・ のくの

۲

۲

$$|F(x+i)| \le 3e^{-\theta M_*(x)},$$

where $\theta = \min_{0 \le \tau \le 1} \{\tau + \omega_{\mathcal{D}}(E, a + i\tau)\} > 0$ and
 $M_*(x) = \min \left\{ x, \log \left(\frac{1}{\int_x^\infty |\mathcal{H}_\alpha(f)(t)| \, d\gamma_\alpha(t)} \right) \right\}.$

$$\begin{split} &\int_0^\infty |\mathcal{H}_\alpha(f)(t)| e^{\psi(t)} \, d\gamma_\alpha(t) < \infty, \quad \int_0^\infty \frac{\psi(x)}{1+x^2} \, dx = \infty \\ \implies &\int_0^\infty \frac{\log(|F(x+i)|)}{1+x^2} \, dx = -\infty. \end{split}$$

• Hence f = 0 almost everywhere on $[a, \infty)$.

۲

۲

・ロト ・回ト ・ヨト ・ヨト

Э

$$\begin{split} |F(x+i)| &\leq 3e^{-\theta M_*(x)},\\ \text{where } \theta &= \min_{0 \leq \tau \leq 1} \{\tau + \omega_{\mathcal{D}}(E, a+i\tau)\} > 0 \text{ and}\\ M_*(x) &= \min \left\{ x, \log \left(\frac{1}{\int_x^\infty |\mathcal{H}_\alpha(f)(t)| \, d\gamma_\alpha(t)} \right) \right\}. \end{split}$$

$$\begin{split} \int_0^\infty |\mathcal{H}_\alpha(f)(t)| e^{\psi(t)} \, d\gamma_\alpha(t) < \infty, \quad \int_0^\infty \frac{\psi(x)}{1+x^2} \, dx = \infty \\ \implies \int_0^\infty \frac{\log(|F(x+i)|)}{1+x^2} \, dx = -\infty. \end{split}$$

• Hence f = 0 almost everywhere on $[a, \infty)$.

$$\mathcal{H}_{lpha}(f)(t) = \int_{0}^{a} f(\lambda) j_{lpha}(\lambda t) \, d\gamma_{lpha}(\lambda).$$

★ E ▶ E

۲

۲

۲

• $\mathcal{H}_{\alpha}(f)$ can be extended holomorphically to \mathbb{C} satisfying $|\mathcal{H}_{\alpha}(f)(z)| \leq \int_{0}^{a} |f(\lambda)| e^{\lambda |\Im(z)|} d\gamma_{\alpha}(\lambda) \leq C e^{a|\Im(z)|}, \text{ for all } z \in \mathbb{C}.$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

• $\mathcal{H}_{\alpha}(f)$ can be extended holomorphically to \mathbb{C} satisfying $|\mathcal{H}_{\alpha}(f)(z)| \leq \int_{0}^{a} |f(\lambda)| e^{\lambda |\Im(z)|} d\gamma_{\alpha}(\lambda) \leq C e^{a|\Im(z)|}, \text{ for all } z \in \mathbb{C}.$

Lemma (Bhowmik, 2020)

Suppose f is a holomorphic function on \mathbb{H} which extends continuously to $\overline{\mathbb{H}}$. Let ψ be a non negative even function on \mathbb{R} such that for positive constants τ and C

$$|f(z)| \leq Ce^{ au |\Im(z)|}, \quad ext{for all } z \in \overline{\mathbb{H}}$$

and

$$\int_{\mathbb{R}} \frac{|f(x)|e^{\psi(x)}}{1+x^2} \, dx < \infty.$$

lf

$$\int_{\mathbb{R}} \frac{\psi(x)}{1+x^2} \, dx = \infty,$$

then f vanishes identically on $\overline{\mathbb{H}}$

On Some Analogues of Beurling's Theorem

• Since Hankel transform is related with the Fourier transform of a radial function on \mathbb{R}^n , we obtain the following analogue:

▶ ★ E ▶ ★ E ▶

 Since Hankel transform is related with the Fourier transform of a radial function on \mathbb{R}^n , we obtain the following analogue:

Theorem

Let $\psi : [0,\infty) \to [0,\infty)$ be an increasing function such that $\psi(x) \to \infty$ as $x \to \infty$ and consider $I = \int_0^\infty \frac{\psi(x)}{1+x^2} dx$.

(a) Let $I = \infty$ and $f \in L^1(\mathbb{R}^n)$ be a radial function satisfying

$$\int_{\mathbb{R}^n} |\widehat{f}(x)| e^{\psi(|x|)} \, dx < \infty. \tag{10}$$

If f vanishes on a set of positive Lebesgue measure in \mathbb{R}^n , then f is zero almost everywhere on \mathbb{R}^n .

(b) If I is finite then there exists a non-trivial radial function f on \mathbb{R}^n satisfying (10) which vanishes on a set of positive Lebesgue measure in \mathbb{R}^n .

• We also have the following analogue:

白マ イヨマ イヨマ

臣

• We also have the following analogue:

Theorem

Let $\psi : [0, \infty) \to [0, \infty)$ be an increasing function such that $\psi(x) \to \infty$ as $x \to \infty$ and consider $I = \int_0^\infty \frac{\psi(x)}{1+x^2} dx$. (a) If $I = \infty$, $f \in S(\mathbb{R}^n)$ satisfies

$$\int_{\mathbb{R}^n} |\widehat{f}(x)| e^{\psi(|x|)} \, dx < \infty \tag{11}$$

and f vanishes on an annular type set of positive Lebesgue measure in \mathbb{R}^n , then f is identically zero.

(b) If $I < \infty$, then \exists a non-trivial $f \in S(\mathbb{R}^n)$ satisfying (11) which vanishes on an annular type set of positive Lebesgue measure.

 $E' \subset \mathbb{R}^n$ is called an annular type set if $x \in E'$ implies that $|x|\omega \in E'$, for all $\omega \in S^{n-1}$.

Analogue for spectral projections associated to Laplacian

• For suitable function *f*, spectral projections associated to the Euclidean Laplacian given by

$$f * \phi_{\lambda}(x) = \int_{S^{n-1}} \widehat{f}(\lambda \omega) e^{i\lambda x \cdot \omega} d\sigma(\omega),$$

where $\phi_{\lambda}(x) = \int_{S^{n-1}} e^{i\lambda x \cdot \omega} d\sigma(\omega)$.

Image: A image: A

Analogue for spectral projections associated to Laplacian

• For suitable function *f*, spectral projections associated to the Euclidean Laplacian given by

$$f * \phi_{\lambda}(x) = \int_{S^{n-1}} \widehat{f}(\lambda \omega) e^{i\lambda x \cdot \omega} d\sigma(\omega),$$

where $\phi_{\lambda}(x) = \int_{S^{n-1}} e^{i\lambda x \cdot \omega} d\sigma(\omega)$.

Theorem

Let ψ and I defined as before.

(a) Let $I = \infty$ and $f \in \mathcal{S}(\mathbb{R}^n)$ satisfying

$$|f * \phi_{\lambda}(x)| \le Ce^{-\psi(\lambda)}, \quad \text{for } \lambda \ge 0, \ x \in \mathbb{R}^{n}.$$
 (12)

If f vanishes on an annular type set of positive Lebesgue measure in \mathbb{R}^n , then f is identically zero.

(b) I < ∞, then ∃ a non-trivial function f ∈ S(ℝⁿ) satisfying (12) which vanishes on a set of positive Lebesgue measure in ℝⁿ.

• We consider the Jacobi operator

$$\mathcal{L}=rac{d^2}{dt^2}+rac{A'(t)}{A(t)}rac{d}{dt},$$

where for $\alpha \ge \beta \ge -\frac{1}{2}$,

$$A(t)=(2\sinh t)^{2lpha+1}(2\cosh t)^{2eta+1},\quad ext{for }t\in[0,\infty).$$

白マ イヨマ イヨマ

크

• We consider the Jacobi operator

$$\mathcal{L}=rac{d^2}{dt^2}+rac{A'(t)}{A(t)}rac{d}{dt},$$

where for $\alpha \ge \beta \ge -\frac{1}{2}$, $A(t) = (2\sinh t)^{2\alpha+1}(2\cosh t)^{2\beta+1}$, for $t \in [0, \infty)$.

• For each $\lambda \in \mathbb{C}, \ 2\rho = \alpha + \beta + 1$, we define ϕ_{λ} as the unique solution of

$$\mathcal{L}f + (\lambda^2 + \rho^2)f = 0$$
, with $f(0) = 1, f'(0) = 0$.

同トイヨトイヨト

• We consider the Jacobi operator

$$\mathcal{L}=rac{d^2}{dt^2}+rac{A'(t)}{A(t)}rac{d}{dt},$$

where for $\alpha \ge \beta \ge -\frac{1}{2}$, $A(t) = (2\sinh t)^{2\alpha+1}(2\cosh t)^{2\beta+1}$, for $t \in [0, \infty)$.

• For each $\lambda \in \mathbb{C}, \ 2\rho = \alpha + \beta + 1$, we define ϕ_{λ} as the unique solution of

$$\mathcal{L}f + (\lambda^2 + \rho^2)f = 0$$
, with $f(0) = 1, f'(0) = 0$.

For a function f ∈ L¹(ℝ₊, A(t)dt), we define the Jacobi transform of f by

$$\widehat{f}(\lambda) = \int_0^\infty f(t)\phi_\lambda(t)A(t)\,dt, \quad \text{for } \lambda \in \mathbb{R}_+.$$

For $f \in L^1(\mathbb{R}_+, A(t)dt)$ and $\widehat{f} \in L^1(\mathbb{R}_+, |c(\lambda)|^{-2}d\lambda)$ we have the following inversion formula

$$f(t) = \int_0^\infty \widehat{f}(\lambda) \phi_\lambda(t) |c(\lambda)|^{-2} d\lambda, \quad ext{for a.e. } t \in \mathbb{R}_+, \qquad (13)$$

where $c(\lambda)$ is the Harish-Chandra *c*-function.

• • = • • = •

For $f \in L^1(\mathbb{R}_+, A(t)dt)$ and $\widehat{f} \in L^1(\mathbb{R}_+, |c(\lambda)|^{-2}d\lambda)$ we have the following inversion formula

$$f(t) = \int_0^\infty \widehat{f}(\lambda) \phi_\lambda(t) |c(\lambda)|^{-2} d\lambda, \quad \text{for a.e. } t \in \mathbb{R}_+,$$
 (13)

where $c(\lambda)$ is the Harish-Chandra *c*-function.

Theorem

Let I and ψ be defined as before.

(a) Let $I = \infty$ and $f \in L^1(\mathbb{R}_+, A(t)dt)$ satisfying

$$\int_0^\infty |\widehat{f}(\lambda)| e^{\psi(\lambda)} |c(\lambda)|^{-2} \, d\lambda < \infty. \tag{14}$$

If f vanishes on a set $E \subseteq [0, \infty)$ of positive Lebesgue measure, then f = 0 almost everywhere on $[0, \infty)$.

(b) If I is finite, then there exists a function f on ℝ₊ satisfying (14) which vanishes on a set of positive Lebesgue measure.

References:

- Beurling, A. *Collected works of Arne Beurling, Volume 1,* Contemporary mathematicians. Birkhäuser Boston, Inc., Boston, MA, 1989.
- Bhowmik, M.; Ray, S.; Sen, S. Around Theorems of Ingham-type Regarding Decay of Fourier Transform on ℝⁿ, Tⁿ and Two Step Nilpotent Lie Groups, Bulletin des Sciences Mathématiques 155(2019), 33-73.
- Debnath, S.; Sen, S. Analogues of Beurling's Theorem for some Integral Transforms, Integral Transforms and Special Functions (2021), DOI: 10.1080/10652469.2021.1979972
- Debnath, S.; Sen, S. Completeness of exponentials and Beurling's Theorem regarding Fourier transform on ℝⁿ and Tⁿ, arXiv:2007.09458v2 (communicated)

De Jeu, M. *Subspaces with equal closure* Constructive Approximation 20 (2004), no. 1, 93-157.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Ganguly, P.; Thangavelu, S. An uncertainty principle for spectral projections on rank one symmetric spaces of noncompact type, Ann. Mat. Pura Appl., (2021). DOI:10.1007/s10231-021-01116-3.

- Ganguly, P.; Thangavelu, S. *Theorems of Chernoff and Ingham for certain eigenfunction expansions,* Adv. Math., 386 (2021), 107815, 31 pp. DOI:10.1016/j.aim.2021.107815. MR4267517
- Koosis, P. The logarithmic Integral I, Cambridge Studies in Advanced Mathematics, 12, Cambridge University Press, Cambridge, 1998. MR1670244 (99j:30001)
- Levinson, N. On a Class of Non-Vanishing Functions, Proc. London Math. Soc. (2) 41 (1936), no. 5, 393-407. MR1576177
- Poltoratski, A. A problem on completeness of exponentials, Ann. of Math. (2) 178 (2013), no. 3, 983–1016. MR3092474

イロト イヨト イヨト イヨト

Thank You !!!

<ロ> <四> <四> <四> <三</td>