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What is Pseudo-Differential Operator?

@ Recall a partial differential operator P(x, D) on R" is given by

P(x,D) = > aa(x)D°,

lal<m

where the coefficients a,(x) are smooth and bounded functions
defined on R".
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What is Pseudo-Differential Operator?

@ Recall a partial differential operator P(x, D) on R" is given by
P(x,D) = > aa(x)D°,
lal<m

where the coefficients a,(x) are smooth and bounded functions
defined on R".

o Let us take any function ¢ in S(R") and now

(P, D)P)(x) = D, aa(x)(D*¢)(x)

——

|a|<m

= D a()(D) (x)
|o|<m
2

20 (X) (€20) (x).

jaf<m
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What is Pseudo-Differential Operator?

(PO, D))X) = 3 aa(x)(2m) "2 f exp(ix - €)€°3(€)de

lal<m
271' n/2f Z aa )exp ix - g)qg(f)df
|al<m
— (2n) " f P(x.€) explix - £)3(€)d.

Rn
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What is Pseudo-Differential Operator?

(PO, D))X) = 3 aa(x)(2m) "2 f exp(ix - €)€°3(€)de

loj<m Rn
(2m) "2 f ) 20(x)€”) explix - )H(E)de
|a|<m
— 2m) "2 f P(x.€) explix - £)3(€)d.
Rn

Example 1

Let P be the symbol defined by

P(x,€) = cexp(=[¢[?),

for all £ in R™ and for some ¢ > 0. Then P(x, D) is an pseudo-differential
operator, but not partial differential operator.
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@ The same idea is used to define the WDOs on T", Z", Heisenberg
group, graded Lie group, compact group, for unimodular groups,
affine group, Poincaré unit disk.

@ A basic result in theory of WDOs on R" is that, if the symbol ¢ in
L2(R™ x R™) then the corresponding operator T, can be extended to
a bounded linear operator L?(R") into L?(R") and moreover it is a
Hilbert-Schmidt operator. The main result is to establish the
conditions on the symbol so that WDO is a Hilbert-Schmidt operator
on SIM(2).

Santosh Kumar Nayak (1T Delhi) WDOps on SIM(2) January 5, 2022 4/30



Similitude Group SIM(2)

o SIM(2) = {(b,a,0) : be R?,a> 0,0 < 0 < 27}

(b,a,0) = (b',a,0") = (b+aRyb,ad,0+6)
e = (0,1,0)
(b,a,0) ! = (—a lR_gb,at —0).
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Similitude Group SIM(2)

o SIM(2) = {(b,a,0) : be R?,a> 0,0 < 0 < 27}

(b,a,0) = (b',a,0") = (b+aRyb,ad,0+6)
e = (0,1,0)
(b,a,0) ! = (—a lR_gb,at —0).

@ lts left and right Haar measure given by

dbdadf dbdadf
. dur(b,a,0) = 22T

dNL(ba a, 9) = 3 2

respectively, are different. The modular function on SIM[(2), denoted
by A is given by

A(b,a, 0 :l, b, a, ) € SIM(2).
22
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Unitary representation of SIM(2)

o Let 7 : SIM(2) — U(L?(R?)) be the mapping of SIM(2) into the
group U(L?(IR?)), of all unitary operators on L2(IR?) is given by

(7(b,a,0)$)(x) = ae"®*p(aR_gx), x€R?,

for all (b, a,0) in SIM(2) and all ¢ in L?(R?).
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Unitary representation of SIM(2)

o Let 7 : SIM(2) — U(L?(R?)) be the mapping of SIM(2) into the
group U(L?(IR?)), of all unitary operators on L2(IR?) is given by

(7(b,a,0)$)(x) = ae"®*p(aR_gx), x€R?,

for all (b, a,0) in SIM(2) and all ¢ in L?(R?).

7 Is the only infinite dimensional, irreducible and unitary representation of
SIM(2).
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Fourier transform on SIM(2)

o Let ¢ € L2(R?). Define the function D¢ on R? by,

(Do) (x) = [ x[e(x), (2.1)
and it can be verified that

A(b, a,0)?Dr(b,a,0) = 7(b,a,0)D, (b,a,0) e SIM(2).
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Fourier transform on SIM(2)

o Let ¢ € L2(R?). Define the function D¢ on R? by,

(Do) (x) = [ x[e(x), (2.1)
and it can be verified that

A(b, a,0)?Dr(b,a,0) = 7(b,a,0)D, (b,a,0) e SIM(2).

o Let f e L1(SIM(2)) n L2(SIM(2)) and define the Fourier transform f

—

of f on SIM(2) = {n} by

dbdad?f
33

)

(F(m)d)(x) = f £(b, 3,0)(n(b, 2,0) D) (x)

SIM(2)

for all ¢ € L2(R?).
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Plancherel Formula

Let f € L1(SIM(2)) A L2(SIM(2)). Then #(r) is a Hilbert Schmidt
operator with kernel given by

y-y 1 Xy Xl
K (x,y) = { T10) (Xv\/—x.xvc"s (—nxnny)> i X # 0y #0

0, otherwise.

A (2.2)
Moreover | f(?T)H%.Lg

T —
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Inversion Formula

N

Df(m)m(b, a,0)* is an integral operator with kernel
SEm(x, w) = aHXHKf(X, R _gaw)e®", x,weR?

where K (x, y) is defined in (2.2), and f € L?(SIM(2)) and z = (b, a,#) in
SIM(2).

v
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Inversion Formula

R

A~

Df(m)m(b, a,0)* is an integral operator with kernel
SEm(x, w) = aHXHKf(X, R _gaw)e®", x,weR?

where K (x, y) is defined in (2.2), and f € L?(SIM(2)) and z = (b, a,#) in
SIM(2).

v

Next we obtained the Fourier inversion formula.

Let f € L(SIM(2)). Then

f(b,a,0) = A(b,a,0) 2 Tr(Df (m)m(b, a,0)*),
for all (b, a,0) € SIM(2).
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VDO on SIM(2)

—

o Let o : SIM(2) x SIM(2) — B(L?(R?)) be an operator valued symbol
such that

o((b,a,0),m) e B(L2(R?)), (b,a,b)e SIM(2),

where B(L%(R?)) is the C*-algebra of all bounded linear operators
from L2(R?) into L2(R?).
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VDO on SIM(2)

—

o Let o : SIM(2) x SIM(2) — B(L?(R?)) be an operator valued symbol
such that

o((b,a,0),m) e B(L2(R?)), (b,a,b)e SIM(2),

where B(L%(R?)) is the C*-algebra of all bounded linear operators
from L2(R?) into L2(R?).

@ We define the pseudo-differential operator T, corresponding to the
operator valued symbol symbol, ¢ as;

(T, F)(b,3,0) = A(b,a,0)>Tr (Do (b, a,0,)F (m)(b,2,0)*)

for all f € L2(SIM(2)) and (b, a,0) € SIM(2).
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L2 — [? Boundedness of VDO

Theorem 6

——

Let o : SIM(2) x SIM(2) — B(L?(R?)) be an operator-valued symbol
such that for all (b, a,0) € SIM(2), Do (b, a,0) is an integral operator,
from L?(R?) into L?(R?) with kernel So (g, i L?(R? x R?).
Furthermore, suppose the function G on SIM(2) defined by

1
G(b7 a, 0) = A(b7 a, 0)T HSa'(b,a,G,ﬂ)Ha

is in L2(SIM(2)). Then the pseudo-differential operator corresponding to
given symbol o,
T, - L2(SIM(2)) — L?(SIM(2))

is a bounded operator and

1 Toll B2y < 1Gll2smac2))-
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[? — LP Boundedness of WDO

Let 2 < p < o0 and q be conjugate index of p, i.e.,
1 1
—+—=1.
p q

Let o : SIM(2) x {7} — B(L?(R?)) be an operator valued symbol such
that for all (b, a, ) in SIM(2)

Do (b, a,8,m) € Sq(R?),

where D is the Duflo-Moore operator defined in 2.1 and the function G on
SIM(2) defined by

G(b,a,0) = A3|Do(b, a,0,7)|s, € LP(SIM(2)).

Then the pseudo-differential operator T, : L?>(SIM(2)) — LP(SIM(2)) is a
bounded linear operator.
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Theorem 8

Let o : SIM(2) x SIM(2) — B(L?(R?)) be a symbol such that satisfies
assumption of the Theorem 6. Furthermore, suppose that

——

SIMI(2) x SIM(2) 3 (b, a,8,7) — (Do(b,a,0,m)w(b,a,0)* €Sy (2.3)

is weakly continuous. Then T,f =0 for all f in L?>(SIM(2)) if and only if

e

o(b,a,0,m) =0 for almost all (b, a,0, ) in SIM(2) x SIM(2).

Corollary 8.1
Let f € L2(SIM(2)). Then

where
or = 2m) R TKT,

and T : L2(R?) — L2(R?) is the unitary twisting operator defined by

(Te)(s,) =g (s+5,5-5), (s)eRxR
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Theorem 9

—

Let o : SIM(2) x SIM(2) — S, be an operator valued symbol such that
the hypothesis of Theorem 8 are satisfied. Then the corresponding
pseudo-differential operator T, : L?(SIM(2)) — L?(SIM(2)) is a
Hilbert-Schmidt operator if and only if

Do(b,a,0,m) = w(b, a,0)W,

Ta(b,a,0)

(b, a,6) € SIM(2),

where Ta(b,a,0) (x,y) = ]:2_1 TKa(b,a,e) (x,y), and

_ . 1, Xy

i 1 a(b,a,0) <X, y-y o 1(
oo X x X[y

0, otherwise.

)), if x#0,y #
Ka(b,a,0)(X;¥) = )

Also, o : SIM(2) — L?(SIM(2)) is a weakly continuous mapping for which

dbdadf
— s < ©

(b, a, Q)Hiz(sm(z)) 3

SIM(2)
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Proof:

@ We first show the sufficiency part. Let f € S(SIM(2)), Schwartz
space on SIM(2).

(T,F)(b,2,0) = A(b,a,0)"2Tr (Do(b,a,0,m)F(m)m(b,2,0)%)
= A(b,a,0) 3 Tr (w(b, 2,0)* Do (b, a,9,7r)7?(7r)>

A(b, a,e)—%Tr(W W, )

Ta(b,a,0) " " Of
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Proof:

@ We first show the sufficiency part. Let f € S(SIM(2)), Schwartz
space on SIM(2).

(T,F)(b,2,0) = A(b,a,0)"2Tr (Do(b,a,0,m)F(m)m(b,2,0)%)
= A(b,a,0) 3 Tr (w(b, 2,0)* Do (b, a,9,7r)7?(7r)>
- A(b,a,e)—%Tr(W W, )

Ta(b,a,0) " " Of

Tr (W W, ) (2.4)

Ta(b,a,0) ogf
- JN Ta(b,a,0) (X, Y)or(x, y)dxdy

= Rt ]:2_1 TKa(b,a,G)(Xa}/)]:2 TKf(X,y)dXdy
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dxda’ do’

1
= 5 | abao s i ST 2s)

SIM(2)
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dxda’ do’

1
= 5 | abao s i ST 2s)

SIM(2)

@ So the kernel of T, is the function k on SIM(2) x SIM(2) given by

k(b,a,0,b',d,0") = a(b,a,0)(b,d,0), (b,a,b),(b,a,0)eSIM(2).
(26)
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dxda’ do’

1
= 5 | abao s i ST 2s)

SIM(2)
@ So the kernel of T, is the function k on SIM(2) x SIM(2) given by
k(b,a,0,b',d,0") = a(b,a,0)(b,d,0), (b,a,b),(b,a,0)eSIM(2).

(2.6)

@ By Fubini's theorem and Plancheral theorem,

|k(b,a,0,b,a, 0" dbdad® db’'da' do’
R al 23
SIMI(2) SIM(2)
dbdad@

SIMI(2)
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Conversely, suppose that T, : L2(SIM(2)) — L2(SIM(2)) is a
Hilbert-Schmidt operator. Then there exists a function k in
L?(SIMI(2) x SIM(2)) such that for all f in L2(SIM(2)),

db'da’ do’

(Tf)(b.20) = [ Kb.ab.. 207 (8,500 25

SIM(2)
Let o : SIM(2) — L2(SIM(2)) is a mapping defined by
a(b,a,0)(b,a,0') = k(b,a,6,b,a, 0.

Reversing the sufficiency part, we get

(ToF)(6:2,0) = 2 (Tr (Wh,js.0 Wor ) )

which gives
DO'(b, a, 0, 77) = ﬂ-(ba a, 9) WTa(b,a,G)’

for (b, a,0) € SIM(2).
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Theorem 10
Let a € L?(SIM(2) x SIM(2)) be such that

dbdad
f a(b,a,0,b,2,6) 2% < o
SIM(2) a

Let o : SIM(2) x SIM(2) — B(L2(R?)) be a symbol in preceeding
theorem. Then T, : L?(SIM(2)) — L?(SIM(2)) is a trace class operator

and
dbdad6f

23

T(T,) = J a(b, a,b,b,a,0)
SIM(2)

Proof.

The proof follows from the formula (2.6) on the kernel of the
pseudo-differential operator in the proof of the preceding theorem. []

| \

.

Santosh Kumar Nayak (IIT Delhi) WDOps on SIM(2) January 5, 2022 18 /30



Theorem 11

—

Let o : SIM(2) x SIM(2) — S» be a symbol satisfying the hypothesis of
Theorem 8. Then pseudo-differential operator

T, : L?(SIM(2)) — L?(SIM(2)) is a trace class operator if and only if
Do(b, a,0,m) = (b, a,H)WTa(b’a’e),

where o : SIM(2) — L?(SIM(2)) is a mapping such that the conditions of
Theorem 9 (Hilbert-Schmidt Operator) are satisfied and

a(b,2,0)(b.3.0) = [ au(bat)(t". 5. 8)
SIMI(2)
1 " "
oa(b", 2, 0") (1, 0) L 90
for all (b, a,0),(b',a',0") € SIM(2). Here o; : SIM(2) — L?(SIM(2)),
i = 1,2, are such that

dbdadf

2
i (b, a,0) |72 —
- L(SIM(2)) 3
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Weyl transform

The classical Weyl transform was first introduced by Herman Weyl, which
was arising in quantum mechanics. This theory has been vastly used in
PDE and physics. Weyl transforms are look like pseudo-differential
operators on R”, or you can say a type of WDOs. But these are not same,
because former one is selfadjoint whereas other one is not. Weyl transform
were investigated in Heisenberg group, affine group, Poincaré unit disk,

locally compact abelian group. We investigated the Weyl transform on
polar affine group.
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Weyl Transform on R”

Let o be in L2(R" x R"). Then the Weyl transform
W, : L2(R") — L?(R™) corresponding to o is defined by

(Wof,)pazm = (27) 2 f f o (x, ) W(F. g)(x, € dxd,

R2n

for all f, g € L?(R"), where W(f, g) is the Wigner transform of f and g, is
defined by

WE,£)(0,6) = @r) "2 | e <2F(x 4 p/2)g(x — p/2)db. x& R

n

The Fourier-Wigner transform V/(f, g) of f and g, are in L2(R"), is
defined by

V(f,g)(q,p) = (2m)~"/? f e f(y +p/2)g(y — p/2)dy, q,peR".

n
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Weyl transform on SIM(2)

For all (b, a, ) in SIM(2), there exists a unique element (b, 5, 0) € SIM(2)
such that S
(b,&,0) = (b,,0) = (b,a,0).

Then

1
l1+a+ 2\/5cosg

5=1+/a,0 = g,Bz (b++/aR_gb).

Denote, (b, a, 0)1/2 = (m(b + '\/ER_Q/Zb), \/5, %) . With this
preparation, we are ready to define Fourier-Wigner transforms on SIM(2).
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o Let f, g € L2(SIM(2)). We define the Fourier-Wigner transform
V(f,g) of f and g on SIM(2) x SIM(2) as the mapping,

V(f,g) : SIM(2) x SIM(2) — B(L*(R?)),

by

(V(f, g)(m, §)p)(x) = J f(€2sw)g(z" % €2)(m(w)Dg) (x)dpus (w)

SIM(2)

for all ¢ € L?(R?) and & € SIM(2), where the left Haar measure
dpr(w) = 9240
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o Let f, g € L2(SIM(2)). We define the Fourier-Wigner transform
V(f,g) of f and g on SIM(2) x SIM(2) as the mapping,

V(f,g) : SIM(2) x SIM(2) — B(L*(R?)),

by
(V(f,g)(m, §)d)(x) = J F(€3xw)g(z71 # €3)(n(w) D) (x)dpur (w)

SIM(2)

for all ¢ € L?(R?) and & € SIM(2), where the left Haar measure
dpr(w) = 9240

o Let F¢ be a function on SIM(2) given by
Fé(w) = £(£2 » w)g(w™t # €2),

then
V(f,&)(r, &) = (Fsmue) FO) (7).
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——

o Define the vector space, L2 (S]IM(2) x SIM(2), HS(L2(R2))) , over C
by,
12 (SEME) x S]IM(2),HS(L2(]R2))>
— {F|F : SIM(2) x SIM(2) — HS(L*(R?))},
where HS(L?(IR?)) be the set of Hilbert-Schmidt operator from
L?(R?) to L2(R?), and the inner product is defined by

(F,G) = f Tr(F(m, w)G(m,w)*)dur(w).
SIM(2)
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o Define the vector space, L2 (SﬁI\T/[@) x SIM(2), HS(L2(R2))) , over C
by,
12 (SW) x S]IM(2),HS(L2(]R2))>
— {F|F : SIM(2) x SIM(2) — HS(L*(R?))},
where HS(L?(IR?)) be the set of Hilbert-Schmidt operator from
L?(R?) to L2(R?), and the inner product is defined by

(F,G) = f Tr(F(m, w)G(m,w)*)dur(w).
SIM(2)

We then have the following Moyal identity.

Let f1,f, 81,8 € L2(S]IM(2)). Then

(V(h,81), V(fé’g2)>L2(SM(\2)XSHM(2),H$ (f, f2>L2(SHM <g1 g2>L2 (SIMI(2))!
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o Letf,ge L2(S]IM( )). Then the Wigner transform W(f, g) of f and
g on SIM(2) x S]IM(2) is a mapping,

W(f,g) : SIM(2) x SIM(2) — B(L3(R?)),
defined by

W(f,g)(W,ﬂ') = (FS]IM(2) 2‘FS]IM(2) 1 (f,g))(W,?T).
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—

o Let L?(SIM(2) x SIM(2), HS(L?(R?))) be the space of measurable

e

functions F : SIM(2) x SIM(2) — HS(L?(R?)) such that

F(w,n) e HS(L*(R?)), w e SIM(2)).

—

Then for all F, G € L2(SIM(2) x SIM(2), HS(L?(R?))), we define
the inner product of F and G by

(F,G) Tr(F(b,a,0,7)G(b,a,0,m)*)du.(b, a,

12 (sIM(2)xSIM(2)) JS]IM(2)

Next we prove the following Moyal's identity for the Wigner transform.

Let fl, fg,gl, & € L2 (SHM(2)) Then

Wit 81): W, 82)) 2 (smp(o sty sus) = <o o2 12(sma2)){81 82) 12 (smap)
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e

Let o : SIM(2) x SIM(2) — B (L?(R?)) be an operator-valued symbol.
Then the Weyl transform corresponding to the symbol o is defined by

Wof,g)r2sm(e)) = J Tr(Do(b,a,0)W(f,g)(b,a,0,m)) dui(b,a,b),
SIMI(2)

for all functions f and g in L?(SIM(2)), where W(f, g) is the Wigner
transform of f and g defined earlier.
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e

Let o : SIM(2) x SIM(2) — B (L?(R?)) be an operator-valued symbol.
Then the Weyl transform corresponding to the symbol o is defined by

Wof,g)r2sm(e)) = J Tr(Do(b,a,0)W(f,g)(b,a,0,m)) dui(b,a,b),
SIMI(2)

for all functions f and g in L?(SIM(2)), where W(f, g) is the Wigner
transform of f and g defined earlier.

Theorem 14

——

Let o : SIM(2) x SIM(2) — B(L?(R?)) be an operator valued symbol

—

such that Do € L2(SIM(2) x SIM(2), HS), then
W,, : L2(SIM(2)) — L?(SIM(2)) is a bounded linear operator.
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