Tensor products of local operator systems

Surbhi Beniwal
Research Scholar (Ph.D.)
University of Delhi, India

$17^{\text {th }}$ Discussion Meeting in Harmonic Analysis

5 January, 2022

Subspaces of $B(H)$

- C^{*}-algebra ${ }^{1}$ is a closed $*$ - subalgebra of $B(H)$
- Operator space ${ }^{2}$ is a closed subspace of $B(H)$
- Operator system ${ }^{3}$ is a unital $*$ - closed subspace of $B(H)$

[^0]
C^{*}-algebra

Definition (Concrete)
Subalgebras of $B(H)$ which is closed under the operator norm and under adjoints.

C*-algebra

Definition (Concrete)
Subalgebras of $B(H)$ which is closed under the operator norm and under adjoints.

Definition (Abstract)
An abstract C^{*}-algebra $(A,\|\|$.$) is a Banach algebra with norm satisfying$ $\left\|a a^{*}\right\|=\|a\|^{2}$ for all $a \in A$.

C^{*}-algebra

Definition (Concrete)
Subalgebras of $B(H)$ which is closed under the operator norm and under adjoints.

Definition (Abstract)
An abstract C^{*}-algebra $(A,\|\|$.$) is a Banach algebra with norm satisfying$ $\left\|a a^{*}\right\|=\|a\|^{2}$ for all $a \in A$.

Remark

For every C^{*}-algebra A there exists a Hilbert space H such that A is isometrically *-isomorphic to some C^{*}-subalgebra of $B(H)$.

Theorem (Gelfand Naimark Segal theorem)
For every C^{*}-algebra A there exists a Hilbert space H such that A is isometrically *-isomorphic to some C^{*}-subalgebra of $B(H)$.

Operator space

Definition (Concrete)
Subspaces of $B(H)$.

Operator space

Definition (Concrete)
Subspaces of $B(H)$.

Definition (Abstract)
An abstract operator space is a normed space V with a sequence of norm $\|\cdot\|_{n}: M_{n}(V) \rightarrow[0, \infty)$ satisfying:
(1) $\|v \oplus w\|_{n+m} \leq \max \left\{\|v\|_{n},\|w\|_{m}\right\}$
(2) $\|\alpha v \beta\|_{m} \leq\|\alpha\|\|v\|_{n}\|\beta\|$
where $v \in M_{n}(V), w \in M_{m}(V), \alpha \in M_{m, n}, \beta \in M_{n, m}$.

Theorem (Ruan)
If V is an abstract operator space, then V is completely isometrically isomorphic to a closed linear subspace W of $B(H)$ for some Hilbert space H.

Theorem (Ruan)
If V is an abstract operator space, then V is completely isometrically isomorphic to a closed linear subspace W of $B(H)$ for some Hilbert space H.

Remark (Morphisms)
A linear map $\phi: V \rightarrow W$ is said to be completely bounded if

$$
\|\phi\|_{c b}:=\operatorname{Sup}\left\{\left\|\phi_{n}\right\|: n \in \mathbb{N}\right\}<\infty
$$

where $\phi_{n}: M_{n}(V) \rightarrow M_{n}(W)$ is defined as $\phi_{n}\left(\left(x_{i j}\right)\right)=\left(\phi\left(x_{i j}\right)\right)$.

Operator system

Definition (Concrete)
Unital self-adjoint subspace of $B(H)$.

Operator system

Definition (Concrete)
Unital self-adjoint subspace of $B(H)$.

Definition (Abstract)
An abstract operator system is a triple $\left(V,\left\{C_{n}\right\}_{n=1}^{\infty}, e\right)$ where V is a complex *-vector space and $\left\{C_{n}\right\}_{n=1}^{\infty}$ is a matrix ordering on V and e is Archimedean matrix order unit.

Definition

An ordered $*$-vector space is a pair $\left(V, V^{+}\right)$consisting of a $*$-vector space and a subset $V^{+} \subseteq V_{h}$ satisfying the following two properties:
(1) V^{+}is a cone in V_{h}
(2) $V^{+} \cap-V^{+}=\{0\}$

Definition

An ordered $*$-vector space is a pair $\left(V, V^{+}\right)$consisting of a $*$-vector space and a subset $V^{+} \subseteq V_{h}$ satisfying the following two properties:
(1) V^{+}is a cone in V_{h}
(2) $V^{+} \cap-V^{+}=\{0\}$

Definition

*-matrix ordering: $\left\{C_{n}\right\}_{n=1}^{\infty}$ is a matrix ordering on V if
(1) C_{n} is a cone in $M_{n}(V)_{h}$ for all $n \in \mathbb{N}$
(2) $C_{n} \cap-C_{n}=\{0\}$ for all $n \in \mathbb{N}$
(0) $X \in M_{n, m}$ for each $n, m \in \mathbb{N}$ we have $X^{*} C_{n} X \subseteq C_{m}$.

Definition

An ordered $*$-vector space is a pair $\left(V, V^{+}\right)$consisting of a $*$-vector space and a subset $V^{+} \subseteq V_{h}$ satisfying the following two properties:
(1) V^{+}is a cone in V_{h}
(2) $V^{+} \cap-V^{+}=\{0\}$

Definition

*-matrix ordering: $\left\{C_{n}\right\}_{n=1}^{\infty}$ is a matrix ordering on V if
(1) C_{n} is a cone in $M_{n}(V)_{h}$ for all $n \in \mathbb{N}$
(2) $C_{n} \cap-C_{n}=\{0\}$ for all $n \in \mathbb{N}$
(0) $X \in M_{n, m}$ for each $n, m \in \mathbb{N}$ we have $X^{*} C_{n} X \subseteq C_{m}$.

- Order unit : $e \in V_{h}$ if for all $v \in V_{h}$ there exists $r>0$ such that $r e \geq v$.
- Archimedean order unit: $v \in V$ and $r e+v \geq 0$ for all $r>0$ implies $v \in V^{+}$.
- Archimedean matrix order unit:
$e_{n}=\operatorname{diag}(e, e, \ldots, e)$

Theorem (Choi-Effros)

Every concrete operator system V is an abstract operator system. Conversely, if ($V,\left\{C_{n}\right\}_{n=1}^{\infty}, e$) is an abstract operator system, then there exists a Hilbert space H, a concrete operator system $S \subseteq B(H)$, and a complete order isomorphism $\phi: V \rightarrow S$ with $\phi(e)=I$.

Theorem (Choi-Effros)

Every concrete operator system V is an abstract operator system. Conversely, if ($\left.V,\left\{C_{n}\right\}_{n=1}^{\infty}, e\right)$ is an abstract operator system, then there exists a Hilbert space H, a concrete operator system $S \subseteq B(H)$, and a complete order isomorphism $\phi: V \rightarrow S$ with $\phi(e)=I$.

Remark (Morphisms)

- $\phi: V \rightarrow W$ is positive if $\phi\left(V^{+}\right) \subseteq W^{+}$.
- If $\phi_{n}: M_{n}(V) \rightarrow M_{n}(W)$ is positive for all n then ϕ is said to be completely positive.
- ϕ is called complete order isomorphism if ϕ is invertible and both ϕ and ϕ^{-1} are completely positive.

Projective limit

Definition

Let $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ be a family of objects of a category \mathcal{C}, where (Λ, \leq) is a directed set. Also we have family of morphism $\left\{f_{\alpha \beta}: A_{\beta} \rightarrow A_{\alpha}: \alpha \leq \beta\right\}$ such that
(1) $f_{\alpha \alpha}$ is the identity on A_{α},
(2) $f_{\alpha \beta}=f_{\alpha \gamma} \circ f_{\gamma \beta}$, for all $\alpha \leq \gamma \leq \beta$

The projective limit of $\left(\left\{A_{\alpha \in \Lambda}\right\},\left\{f_{\alpha \gamma}: \alpha \leq \gamma\right\}\right)$ is denoted by $A=\lim _{\leftarrow} A_{\alpha}$ and also, as a set, A equals to:

$$
A=\left\{\left(x_{\alpha}\right) \in \Pi_{\alpha \in \Lambda} A_{\alpha}: f_{\alpha \gamma}\left(x_{\gamma}\right)=x_{\alpha} \quad \forall \alpha \leq \gamma\right\}
$$

Pro C*-algebras

- The categories of C^{*}-algebras, Operator spaces, Operator systems are not closed under projective limits.
- Inoue in 1972 introduced locally C^{*}-algebras abstractly as complete locally *-algebra with C^{*} condition where topology is defined by a family of C^{*}-semi norms.
- Arveson called these algebras as Pro C^{*}-algebra which can be represented as projective limit of C^{*}-algebras.

Local operator spaces and local operator systems

- Local operator spaces are projective limits of operator spaces, Webster and Effros did a systematic study on local operator spaces.
- Dosiev gave a representation theorem for local operator spaces that extends Ruan's representation theorem for operator spaces.
- Dosiev also introduced the locally convex version of operator system called as concrete local operator system.

For a fixed Hilbert space H, an upward filtered family of closed subspaces $\mathcal{E}=\left\{H_{\alpha}\right\}_{\alpha \in \Lambda}$ such that their union \mathcal{D} is a dense subspace in H with $p=\left\{P_{\alpha}\right\}_{\alpha \in \Lambda}$ family of projections in $B(H)$ onto the subspaces $H_{\alpha}, \alpha \in \Lambda$. The algebra $C_{\mathcal{E}}(\mathcal{D})$ of all non-commutative continuous functions on a quantized domain E is given by

$$
C_{\mathcal{E}}(\mathcal{D})=\left\{T \in L(\mathcal{D}): T P_{\alpha}=P_{\alpha} T P_{\alpha} \in B(H), \alpha \in \Lambda\right\},
$$

where $L(\mathcal{D})$ is the associative algebra of all linear transformations on \mathcal{D}. Thus each $T \in C_{\mathcal{E}}(\mathcal{D})$ is an unbounded operator on H with domain \mathcal{D} such that $T\left(H_{\alpha}\right) \subseteq H_{\alpha}$ and $\left.T\right|_{H_{\alpha}} \in B\left(H_{\alpha}\right)$, and $C_{\mathcal{E}}(\mathcal{D})$ is a subalgebra in $L(\mathcal{D})$. The set

$$
C_{\mathcal{E}}^{*}(\mathcal{D})=\left\{T \in C_{\mathcal{E}}(\mathcal{D}): P_{\alpha} T \subseteq T P_{\alpha}, \alpha \in \Lambda\right\}
$$

of all non-commutative continuous functions on E is a unital $*$-subalgebra of $C_{\mathcal{E}}(\mathcal{D})$, with the involution $T^{*}=\left.T^{\star}\right|_{D} \in C_{\mathcal{E}}^{*}(\mathcal{D})$ for all $T \in C_{\mathcal{E}}^{*}(\mathcal{D})$ where T^{\star} is unbounded dual of T such that $\mathcal{D} \subseteq \operatorname{dom}\left(T^{\star}\right)$ and $T^{\star}(\mathcal{D}) \subseteq \mathcal{D}$.

Concrete structures

(1) Pro C^{*}-algebra is a $*$-closed subalgebra of $C_{\mathcal{E}}^{*}(\mathcal{D})$.
(2) Local operator space is a subspace of $C_{\mathcal{E}}(\mathcal{D})$.
(3) Local operator system is a unital self adjoint subspace of $C_{\mathcal{E}}^{*}(\mathcal{D})$.

Abstract(Pro C^{*}-algebras)

Definition (Abstract)
An abstract Pro C^{*}-algebra is a *-algebra with family of separating C^{*}-seminorms.

Abstract(Pro C^{*}-algebras)

Definition (Abstract)
An abstract Pro C^{*}-algebra is a *-algebra with family of separating C^{*}-seminorms.

Remark

The $*$-algebra $C_{\mathcal{E}}^{*}(\mathcal{D})$ equipped with the topology defined by the family of C^{*}-seminorms $p_{\alpha}(T)=\left\|\left.T\right|_{H_{\alpha}}\right\|$ is a Pro C^{*}-algebra.

Abstract (Local operator spaces)

Definition

Let V be a vector space and $\left\{p_{\alpha}^{n}: \alpha \in \Lambda\right\}$ be a family of separating seminorms for each $n \in \mathbb{N}$ satisfying following properties:
(1) $p_{\alpha}^{n+m}(v \oplus w) \leq \max \left\{p_{\alpha}^{n}(v), p_{\alpha}^{m}(w)\right\}$ for each α
(2) $p_{\alpha}^{m}(P \vee Q) \leq\|P\| p_{\alpha}^{n}(v)\|Q\|$ for each α
where $v \in M_{n}(V), w \in M_{m}(V), P \in M_{m, n}, Q \in M_{n, m}$.

Local operator systems

Definition

Let V be a $*$-vector space consisting of downward filtered family of cones $\left\{\mathcal{C}_{\alpha}\right.$: $\alpha \in \Gamma\}$ satisfying two properties \mathcal{C}_{α} is a cone (need not be proper) in V where $\mathcal{C}_{\alpha} \subseteq V_{h}=\left\{v \in V: v^{*}=v\right\}$ and $\bigcap\left(\mathcal{C}_{\alpha} \cap-\mathcal{C}_{\alpha}\right)=\{0\}$.
Then V is called local $*$-ordered vector space and the elements of \mathcal{C}_{α} are called local positive elements, denoted by $v \geq_{\alpha} 0$. Also, we write $v_{1} \geq_{\alpha} v_{2}$ if $v_{1}-v_{2} \geq_{\alpha} 0$ in V.

Definition

For a local $*$-ordered vector space ($V,\left\{\mathcal{C}_{\alpha}: \alpha \in \Gamma\right\}$), an element $e \in V_{h}$ is called an ordered unit for V if for all $v \in V_{h}$ and for every $\alpha \in \Gamma$ there exists $r_{\alpha}>0$ such that $r_{\alpha} e \geq_{\alpha} v$. If, in addition whenever $r e+v \geq_{\alpha} 0$ for all $r>0$ and $\alpha \in \Gamma$ and $v \in V_{h}$ implies $v \in C_{\alpha}$ we call e is an Archimedean order unit and the triple ($V,\left\{\mathcal{C}_{\alpha}: \alpha \in \Gamma\right\}, e$) an Archimedean local $*$-ordered vector space or in short A.L.O.U space.

Definition

Let V be a *-vector space. We say that the family $\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}$ is a local matrix ordering on V if
(1) $\left(M_{n}(V),\left\{\mathcal{C}_{\alpha}^{n}: \alpha \in \Gamma\right\}\right)$ is a local $*$-ordered vector space for each $n \in \mathbb{N}$,
(2) for each $n, m \in \mathbb{N}$ and $X \in M_{n, m}$ and all α, we have that $X^{*} \mathcal{C}_{\alpha}^{n} X \subseteq \mathcal{C}_{\alpha}^{m}$. In this case, we call $\left(V,\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}\right)$ a local matrix $*$-ordered vector space.

For $e \in V_{h}$, let $e_{n}=\operatorname{diag}(e, e, \ldots, e)$ be the corresponding diagonal matrix in $M_{n}(V)$. We say that e is a matrix order unit for V if e_{n} is an order unit for $\left(M_{n}(V),\left\{\left\{\mathcal{C}_{\alpha}^{n}: \alpha \in \Gamma\right\}\right\}\right)$ for each n. We say that e is an Archimedean matrix order unit if e_{n} is an Archimedean order unit for $\left(M_{n}(V),\left\{\left\{\mathcal{C}_{\alpha}^{n}: \alpha \in \Gamma\right\}\right\}\right)$ for each n.

Definition

An abstract local operator system is a triple $\left(V,\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty} ; \alpha \in \Gamma\right\}, e\right)$, where V is a local *-ordered vector space, $\left.\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}\right\}$ is a local matrix ordering on V and e is an Archimedean matrix order unit.

Definition

An abstract local operator system is a triple $\left(V,\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty} ; \alpha \in \Gamma\right\}, e\right)$, where V is a local $*$-ordered vector space, $\left.\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}\right\}$ is a local matrix ordering on V and e is an Archimedean matrix order unit.

Remark

Every concrete local operator system is abstract local operator system. Proof: Let V be concrete local operator system, so there exists H a Hilbert space and a quantized domain in H of upward filtered family $\mathcal{E}=\left\{H_{\alpha}\right\}_{\alpha \in \Gamma}$ of closed subspaces in H whose union $\mathcal{D}=\cup H_{\alpha}$ is dense in H. Here we have family of cones as $\mathcal{C}_{\alpha}=\left\{T \in C_{\mathcal{E}}^{*}(\mathcal{D}) \cap V:\left.T\right|_{H_{\alpha}} \geq 0\right\}$.

Examples

(1) Every operator system is a local operator system.
(2) Consider the set $C(\mathbb{R})$, the space of all complex valued continuous functions defined on \mathbb{R}.For every compact subset K of \mathbb{R}, we define a family of cones as $C_{K}=\left\{f \in C(\mathbb{R})_{h}: f(x) \geq 0 \forall x \in K\right\}$ and Archimedean matrix order unit is $\mathrm{I}(x)=1 \forall x \in \mathbb{R}$, then $\left(C(\mathbb{R}),\left\{\left\{C_{K}^{n}\right\}: K \subseteq \mathbb{R}, K\right.\right.$ is compact $\left.\}, I\right)$ is a local operator system.
(0) Let H be Hilbert space, \mathcal{D} is dense subspace in H . Take $T \in C_{\mathcal{E}}^{*}(\mathcal{D})$ we have $\mathcal{L O S}(T)=\operatorname{span}\left\{I, T, T^{*}\right\}$ is a local operator subsystem of $C_{\mathcal{E}}^{*}(\mathcal{D})$.

Remark

- Every local operator system is projective limit of operator systems.

Proposition

Let V be a local operator system with family of cones $\left.\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}\right\}$ and e is Archimedean matrix order unit and for each $X \in M_{n}(V)$ set $\|X\|_{\alpha}^{n}=\inf \left\{r \geq 0:\left(\begin{array}{cc}r e_{n} & X \\ X^{*} & r e_{n}\end{array}\right) \in \mathcal{C}_{\alpha}^{2 n}\right\}$, then $\|\cdot\|_{\alpha}^{n}$ is a separating family of *-seminorms on $M_{n}(V)$ and \mathcal{C}_{α}^{n} is a closed subset of $M_{n}(V)$ in the topology induced by this separating family of $*$-seminorms. Hence, $\left\{V,\left\{\|\cdot\|_{\alpha}^{n}\right\}_{n=1}^{\infty}\right\}$ is a local operator space.

Definition

Let V and W be two abstract local operator systems with $\left\{C_{\alpha}: \alpha \in \Gamma\right\}$ and $\left\{D_{\beta}\right.$ $: \beta \in \Omega\}$ family of cones, respectively. A linear map $\Phi: V \longrightarrow W$ is called local positive if for each $\beta \in \Omega$ there corresponds $\alpha \in \Gamma$ such that $\Phi\left(C_{\alpha}\right) \subseteq D_{\beta}$. If in addition, $\Phi(e)=f$ where e and f are the Archimedean local matrix units of V and W, respectively then Φ will be called unital local positive. Moreover, if Φ is unital local positive at each matrix level, we call it unital local completely positive map, in short ULCP.

Definition

A linear map $\Phi: V \longrightarrow W$ is called local order isomorphism if Φ is bijective, $\Gamma=\Omega$ and $\Phi\left(C_{\alpha}\right)=D_{\alpha}$ for all $\alpha \in \Gamma$.

Theorem (Representation theorem)
Let V be an abstract local operator system, then there exists a unital complete local order embedding Φ from V into $C_{\mathcal{E}}^{*}(D)$. Hence abstract local operator systems are equivalent to concrete local operator systems.

LOMIN and LOMAX structures

- Let $\left(V,\left\{V_{\alpha}^{+}: \alpha \in \Gamma\right\}, e\right)$ be an Archimedean local order unit space. For each $n \in \mathbb{N}$ and each $\alpha \in \Gamma$, define

$$
\left(\mathcal{C}_{\alpha}^{n}\right)^{\min }(V):=\left\{\left(v_{i j}\right) \in M_{n}(V): \sum_{i, j=1}^{n} \bar{\lambda}_{i} \lambda_{j} v_{i j} \in \mathcal{C}_{\alpha} \forall \lambda_{1}, \ldots . \lambda_{n} \in \mathbb{C} .\right\}
$$

Definition

Let $\left(V,\left\{\mathcal{C}_{\alpha}: \alpha \in \Gamma\right\}, e\right)$ be an Archimedean local ordered unit space. We define $\operatorname{LOMIN}(V)$ to be the local operator system $\left(V,\left\{\left\{\left(\mathcal{C}_{\alpha}^{n}\right)^{\min }(V)\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}, e\right)$.

Remark

Let $\left(V,\left\{V_{\alpha}^{+}\right\}: \alpha \in \Gamma, e\right)$ be an A.L.O.U space. If $\left(V,\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}, e\right)$ is any local operator system on V with $\mathcal{C}_{\alpha}^{1}=V_{\alpha}^{+}$, for each α, then $\mathcal{C}_{\alpha}^{n} \subseteq\left(\mathcal{C}_{\alpha}^{n}\right)^{\min }(V)$ for all n and all α. Thus $\operatorname{LOMIN}(V)$ is the weakest local operator system.

Cont.

- Let $\left(V,\left\{V_{\alpha}^{+}: \alpha \in \Gamma\right\}, e\right)$ be a local order $*$-vector space. Define $\left(\mathcal{D}_{\alpha}^{n}\right)^{\max }(V)=\left\{\sum_{i=1}^{k} a_{i} \otimes v_{i} ; v_{i} \in V_{\alpha}^{+}, a_{i} \in M_{n}^{+}, i=1,2, \ldots, k ; k \in \mathbb{N}\right\}$ and $D_{\alpha}^{\max }(V)=\left\{\left(\mathcal{D}_{\alpha}^{n}\right)^{\max }(V)\right\}_{n=1}^{\infty}$ for each α.

Proposition
Let $\left(V,\left\{V_{\alpha}^{+}: \alpha \in \Gamma\right\}, e\right)$ be an Archimedean local order unit space, then the cones $\left(\mathcal{D}_{\alpha}^{n}\right)^{\text {max }}(V)$ are given by
$\left(\mathcal{D}_{\alpha}^{n}\right)^{\max }(V)=\left\{\gamma \operatorname{diag}\left(v_{1}, v_{2}, \ldots, v_{m}\right) \gamma^{*}: \gamma \in M_{n, m}, v_{i} \in V_{\alpha}^{+}, i=1,2, \ldots, m ; m \in\right.$

Remark

With the above cones; we get the strongest local operator system LOMAX (V).

Tensor products

Definition

Given local operator systems $\left(V,\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}, e_{V}\right)$ and $\left(W,\left\{\left\{\mathcal{D}_{\beta}^{n}\right\}_{n=1}^{\infty}: \beta \in \Lambda\right\}, e_{W}\right)$, a local operator system structure $I \tau$ on $V \otimes W$ is a matricial cone structure given by $\left\{\left\{\mathcal{T}_{\gamma}^{n}\right\}_{n=1}^{\infty}: \gamma \in \Omega\right\}$ where $\Omega \cong \Gamma \times \Lambda$ such that:

- ($\left.\left.V \otimes W,\left\{\left\{\mathcal{T}_{\gamma}^{n}\right\}_{n=1}^{\infty}: \gamma \in \Omega\right\}\right\}, e_{V} \otimes e_{W}\right)$ is a local operator system.
- For every $\alpha \in \Gamma$ and $\beta \in \Lambda$, there exists a $\gamma \in \Omega$ such that $\mathcal{C}_{\alpha}^{n} \otimes \mathcal{D}_{\beta}^{m} \subseteq \mathcal{T}_{\gamma}^{n m}$ for all $n, m \in \mathbb{N}$ and for every $\gamma \in \Omega$, there exist $\alpha \in \Gamma$ and $\beta \in \Lambda$ such that $\mathcal{C}_{\alpha}^{n} \otimes \mathcal{D}_{\beta}^{m} \subseteq \mathcal{T}_{\gamma}^{n m}$ for all $n, m \in \mathbb{N}$.
- If $\phi \in \operatorname{ULCP}\left(V, M_{n}\right)$ and $\psi \in \operatorname{ULCP}\left(W, M_{m}\right)$ w.r.t \mathcal{C}_{α} and \mathcal{D}_{β} respectively, then $\phi \otimes \psi \in U L C P\left(V \otimes W, M_{n m}\right)$ w.r.t $\mathcal{T}_{(\alpha, \beta)}$ for all $n, m \in \mathbb{N}$.

Cont.

Let τ_{1} and τ_{2} be two local operator system structure on $S \otimes T$. τ_{1} is greater than τ_{2} if the identity map from $S \otimes_{\tau_{1}} T$ to $S \otimes_{\tau_{2}} T$ is local completely positive map.

- I τ is functorial if for any four local operator systems $V_{1}, V_{2}, W_{1}, W_{2}$;
$\phi \in U L C P\left(V_{1}, V_{2}\right)$ and $\psi \in U L C P\left(W_{1}, W_{2}\right)$ implies the linear map $\phi \otimes \psi: V_{1} \otimes W_{1} \rightarrow V_{2} \otimes W_{2}$ belongs to $\operatorname{ULCP}\left(V_{1} \otimes_{I \tau} W_{1}, V_{2} \otimes_{I \tau} W_{2}\right)$
- I τ is a symmetric if the map $\theta: v \otimes w \rightarrow w \otimes v$ extends to a unital local complete order isomorphism from $V \otimes_{I_{\tau}} W$ onto $W \otimes_{I_{\tau}} V$
- Given local operator systems $V_{1} \subseteq V_{2}$ and $W_{1} \subseteq W_{2}$, if the inclusion map $V_{1} \otimes_{I \tau} W_{1} \subseteq V_{2} \otimes_{I \tau} W_{2}$ is a local complete order isomorphism onto its range then $I \tau$ is injective local operator system tensor product.

Proposition

Let V and W be two local operator systems such that $V=\lim _{\leftarrow} V_{\alpha}$ and $W=\lim _{\leftrightarrows} W_{\beta}$. Then corresponding to any operator system tensor product η, we have a local tensor product $\eta_{\text {I }}$ such that $V \otimes_{\eta} W=\lim V_{\alpha} \otimes_{\eta} W_{\beta}$.

Minimal tensor product

Let $\left(V,\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}, e_{V}\right)$ and $\left(W,\left\{\left\{\mathcal{D}_{\beta}^{n}\right\}_{n=1}^{\infty}: \beta \in \Lambda\right\}, e_{W}\right)$ be local operator systems. For each $\alpha \in \Gamma, \beta \in \Lambda, n \in \mathbb{N}$, define

$$
\mathcal{T}_{(\alpha, \beta)}^{n(\text { Imin })}:=\left\{\left(p_{i j}\right) \in M_{n}(V \otimes W):\left((\phi \otimes \psi)\left(p_{i j}\right)\right) \in M_{n k m}^{+}, \text {for all } \phi: V \rightarrow M_{k}\right.
$$ and $\psi: W \rightarrow M_{m}$, unital local completely positive maps w.r.t. cones \mathcal{C}_{α} and \mathcal{D}_{β} resp. for all $\left.k, m \in \mathbb{N}\right\}$

Definition

We call $\left(V \otimes W,\left\{\left\{\mathcal{T}_{(\alpha, \beta)}^{n(1 \text { min })}\right\}_{n=1}^{\infty}:(\alpha, \beta) \in \Gamma \times \Lambda\right\}, e_{V} \otimes e_{W}\right)$ the minimal local tensor product of V and W and denote it by $V \otimes_{\min } W$.

Theorem

The mapping Imin: $\mathcal{L O} \times \mathcal{L O} \rightarrow \mathcal{L O}$ sending (V, W) to $V \otimes_{\text {Imin }} W$ is an injective, associative, symmetric, functorial, minimal local operator system tensor product.

Remark
$V \otimes_{\operatorname{lmin}} W=\underset{\longleftarrow}{\lim } V_{\alpha} \otimes_{\min } W_{\beta}=V \otimes_{\min ,} W$

Maximal tensor product

Let $\left(V,\left\{\left\{\mathcal{C}_{\alpha}^{n}\right\}_{n=1}^{\infty}: \alpha \in \Gamma\right\}, e_{V}\right)$ and $\left(W,\left\{\left\{\mathcal{D}_{\beta}^{n}\right\}_{n=1}^{\infty}: \beta \in \Lambda\right\}, e_{W}\right)$ be two local operator systems. For each $n \in \mathbb{N}$ and $(\alpha, \beta) \in \Gamma \times \Lambda$, define

$$
\mathcal{K}_{(\alpha, \beta)}^{n(\operatorname{lmax})}:=\left\{L(P \otimes Q) L^{*}: P \in \mathcal{C}_{\alpha}^{k} \text { and } Q \in \mathcal{D}_{\beta}^{m}, L \in M_{n, k m}, k, m \in \mathbb{N}\right\} .
$$

Definition

We call the local operator system
$\left(V \otimes W,\left\{\left\{\mathcal{T}_{(\alpha, \beta)}^{n(\operatorname{lmax})}\right\}_{n=1}^{\infty}:(\alpha, \beta) \in \Gamma \times \Lambda\right\}, e_{V} \otimes e_{W}\right)$ the maximal local operator system tensor product of V and W and denote it by $V \otimes_{\operatorname{lmax}} W$.

Theorem

The mapping lmax : $\mathcal{L O} \times \mathcal{L O} \rightarrow \mathcal{L O}$ sending (V, W) to $V \otimes_{\operatorname{lmax}} W$ is a symmetric, associative, functorial, maximal local operator system tensor product.

Remark
$V \otimes_{\operatorname{Imax}} W=\lim _{\leftarrow} V_{\alpha} \otimes_{\max } W_{\beta}=V \otimes_{\text {max }} W$

- For local operator system tensor products $l \eta$ and $l \gamma, V$ is $(l \eta, l \gamma)$-nuclear if the identity map between $V \otimes_{l_{\eta}} W$ and $V \otimes_{1 \gamma} W$ is a local complete order isomorphism for every local operator system W.

References

Thankyou for your kind attention！
國 Inoue，Locally C^{*}－algebra，Mem．Fac．Sci．Kyushu Univ．Ser．A（1971）．
囲 Dosiev Local operator spaces，unbounded operators and multinormed C＊－algebras J．Functional Anal． 255 （2008）
國 Effros and Webster，Operator analogues of locally convex spaces，Operator algebras and applications（Samos）， 1996
荀 Kavruk，Paulsen，Todorov，and Tomforde，Tensor products of operator systems，J．Functional Anal．， 261 （2011）．
國 Paulsen，Todorov，and Tomforde，Operator system structures on ordered spaces，Proc．Lond．Math．Soc．（3） 102 （2001）．

嗇 Asadi, Mohammad B., Z. Hassanpour-Yakhdani, and S. Shamloo. "Unbounded operator algebras." Annals of Functional Analysis 12.2 (2021): 1-15.

[^0]: ${ }^{1}$ Israel Gelfand and Mark Naimark in 1943
 ${ }^{2}$ Ruan in 1988
 ${ }^{3}$ Choi and Effros in 1977

