An improved calculation of the mass for the resonant spring pendulum
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When the appropriate mass is used to oscillate a spring, the vertical oscillations couple to a pendular
swing. Previous calculations of various aspects of this resonance assumed a massless spring as a
simple pendulum. This paper improves the estimate of the mass necessary to induce this resonance
by describing a massive spring as a physical pendulum and obtains an expression for the mass in
terms of the spring constant and various lengths associated with the spring. Several approximations
will be considered to simplify the complete expression. Comparisons of the predictive power of
these expressions are made for various values of the spring constants. An Appendix discusses the
assumption of uniform coil density of a hanging massive spring20@ American Association of Physics
Teachers.
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. RESONANT SPRING PENDULUM For simple pendula,=m¢2, and for small angles, sifi~é.
» _ ) ~ Equation (2) also is solved by a trigonometric function
Several authofs* have discussed the resonance in Wh'Che(t)=ocos@pt), wherew,= Jmgtii=gi¢.

a vertically oscillating spring spontaneously oscillates be- "\hen the autoparametric resonance occurs, it is observed
tween spring-bouncing and pendular-swinging. These papets i the period of the pendular motih, , is equal to twice
assume massless springs as simple pendula to solve the eqya: spring-like periodT. : P

dg-

tions of motion. The goal of this paper is to introduce mas-
sive springs as physical pendula in order to more accurately 2T,=T,, 3
predict the mass that leads to this resonance. For details . .

about the coupling of the modes, the resonance, the paramé(Yhere' for a massless spring and a simple pendulum,
ric instability, and the period of oscillation between these m ¢

modes, the reader should refer to Refs. 1-4 and references Ts=2w \/; Ty=2m \ﬁ (4)
therein. In brief, Olssohcautions that because this system is 9

not linear, superposition is not applicable and, therefore, “theAs mentioned in Ref. 1, Eq3) requires that a spring with
general motion cannot be expressed as a combination of nothe unstretched length, must be stretched to a length
mal modes.” He also notes that the “... resonance effect is=4mg/k for the resonance to occur. Because a nmassill
more correctly known as an autoparametric resonance... gretch a spring to the length—= ¢+ mg/k, this resonance
due to the lack of an explicit time dependence in the differ-yo\,rs when
ential equation. More importantly, he gives a more detailedO

description of the equations of motion that describe this reso- ki
nance. L& solves Olsson’s equations and discusses why the ™M= @ ®)
conversion between the oscillation modes does not mereIE ) ) )
occur, but recurs. quation (5) assumes a massless spring anql gives only
A spring with length¢ will oscillate vertically according to  foughly approximate values for the various springs that we
the equation of motion: will consider. The detailed changes due to considering a mas-
sive spring as a physical pendulum should allow us to more
mz+k(z—€)=mg, ) closely predict the experimental value of the required mass.

The main goal of this paper is to give a more accurate
wherez is the vertical position witte=0 at the top of the calculation of the required mass, while minimizing the com-
unstretched spring and positive downwatdis the second Plexity of the final equation. A secondary goal is to help
derivative in time,m is the mass attached to the sprikgs students_learn about_ approximations as well as provllde an
the spring constant, arglis the magnitude of the local gravi- ©PPOrtunity to numerically solve a cubic equation that is ap-
tational field. Equatioril) is solved by a trigonometric func- plicable to an observable phenomenon. This resonance phe-

. = nomenon makes a good problem for undergraduates for a
tion .pl'uls a cop_stant stretczt(t)_—Acos@st)+(€fmg’k). Eor variety of reasons. The resonance is not necessarily easy to
the initial positionzy, the spring oscillates with amplitude

2 ; produce in an unfamiliar spring by trial and error because it

A=2zy—€—mg/k about the equilibrium poinf + mg/k. For g difficult to see how close the system is to resonance. Pre-

a massless spring, the angular frequencyds: \k/m. dicting the resonance mass forces the students to reconsider
Whereas Eq(1) describes the forces acting on a spring, the assumptiongnassless springs and simple pengliethe

the pendular motion is due to the torques. A pendulum withequations that have been derived in class and probably used

length ¢ oscillates according to the equation of motion: in the laboratory.
) In Sec. II, I will review how previous authors have intro-
I #+mgt sind=0. (2 duced the spring mass into the vertical oscillations and com-
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tion for the mass that induces the resonance. In Sec. Ill, | €o+ w~t 77« dz (78
consider three approximations to this cubic equation in order
to find an expression that is more convenient. In Sec. IV, | m m
will discuss the experimental apparatus and the theoretical =0+ _g+ _Sg,
predictions, and compare the predictions to the masses that k 2k
experimentally induce a resonance in the springs. The con-

clusion is in Sec. V. An appendix gives more details aboutVN€ré z is measured from the top of the spring and (
the major underlying assumption. —z)mg/{ is the fraction of the spring below the poiat

Equation(6) or (7) shows a correction to the static length in
which m—m+my/2.
Note first that the term N—i)m;g/k; in Eqg. (6a), or
II. INTRODUCING THE SPRING MASS equivalently ¢ —z)mgg/€k in Eq.(78), implies that the coils
stretch more at the top, where the spring supports more

In this section, | will introduce the mass of the spring into \qiqhy This difference means that the center of mass of the
the vertical spring oscillations and then into the pendular,

. X . ; spring will be lower than half-way down the spring, which
swing. When we combine these expressions to predict thgy e of interest when we discuss the pendular motion.

resonance, we will find that the distribution of mass is rela-ga.ond. Mak started from Ref. 6 and derived a piecewise
tively important. function that generalizes the static correction to include the
effect of a constant force necessary to initially extend a
spring, thereby providing a discrete version of EZ0) in
Ref. 8 and footnote 16 in Ref. 9. Finally, for convenience, |

The consideration of the correction to the spring oscilla-WiII consider the freely hanging length,

tions due to including the mass of a spring has led to many meg
paper$ 4 There is a commonly used correction that em- ¢ =¢,+ ——,
ploys an approximation that should be reasonably valid for 2k

all but the softest springs. For the convenience of the reade ; : )
a brief summary will be repeated here with references to thg0 be ags asured quantity rather than measuffignd add
literature for details. INg Msg/2K.

There are wo situations in which the mass of the spring. The df%/namiﬁ corr_ec(;ior; duﬁl o a _?ﬁ_uncing, finite-mass
should be included. First, the spring mass shifts the eqUi”baz?ngdairf(:sdzfegﬁ\r/lgly %a(gc'ng[:]onnér b);sucs?:]rge(iﬂgnk(i:@ice

rium position of a vertically hanging spring because more ; . . N
masspmust be supported b§ the Sppger Bort?ons of the sprin@d Potential energy in Lagrangian mechanics if one assumes
This static correction will modifyT,, the pendular period n!form str_etch, or eqUIyaIent_Iy, an u_nlform mass density or
but will not affectT., the period of?[ﬁe spring-like bouncin’g uniform coil density. This derlvat_|on is decepnvely_easy be-

. SO i ) cause a more careful and complicated treatment gives a tran-
motion. Second, the inertia of a massive spring produces g.opqental equatiofiscussed in the followinghat reduces
dynamic correction tdl's. The corrections due to these ef- {4 ihe Lagrangian result in the appropriate limit. Given a

fects are not the same and are more prominent in a softesrpring of length¢, and massn, and an uniform linear mass

spring. . . . . densityh=mg/€, we can find the velocity (z) of a differ-
TO see the static effect, consider a spring W!th MAS  ential portion of the spring at a distanzeneasured from the

spring constank, and unstretched length,. Imagine it as a top of the coils:v(2)=v,2/¢, wherev,, is the velocity of

series ofN springs, labeled from top to bottom as 1 through,[he added masé ardis grinven,by Eq.(6)tnThe kinetic energy

N, each with massn,=mg/N, spring constank;=Nk, and of the spring betweem andz-+dz is

unstretched lengtlf;,=¢,/N. Theith spring supports the

bine that with the physical pendulum to derive a cubic equa- ¢ 1
o~ [lae= 2
¢

0 0

A. Massive springs

()

(N—i) springs below it as well as the mass at the end and 1 5 1 )\vﬁ]zz
therefore each is stretched to length=¢;o+mg/k;+ (N dK=3\[v(2)]°dz=5 —;»—dz 9)
—i)m;g/k; . The total length of the spring series is

N—1 N—1 The total kinetic energy of the spring is the integral of Eq.

m m . Y
(= -_20 = >, Ciot k_9+(N_i)k_l.g (63) (9) plus that of the mass hanging from the spring:
: ll\l_l | | K= Zmo2 f“)\vﬁqzzd 2 )2 10
1\ mg mg =gMomt | 5 gz 9= 5| Mt 5 jom (10
=& N for e TINTD R
=0 Equation(10) shows a correction to the dynamic length in
mg , N(N+1)mg which m—m+m¢/3. When hung, the bottom of the un-
=Cot TJF N“— 2 N2k loaded spring sits at= {3+ myg/2k. The spring potential
energy plus the gravitational potential energy is
—pgt 24 T (6b)
o7k 2k -

1 z
U(z)zzk(%—z)z—mgz—msgz. (11
| have used the fact thzﬁ‘lTi=N(N+1)/2 and taken the

largeN limit so that 1IN— 0. In the continuum limit, Eq(6) = We have again assumed uniform mass density to writenthe
can be written &5 term.
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The kinetic and potential energies, E¢s0) and(11), can

whereD is given by the solution to their version of E(.5)

be used in the Lagrangian formulation to derive the newwith the limiting behavior

equation of motion. The generalization of E) is

m+% 72+kz=Kk| €y+ m+% g (12
3 0 2 ) k|
with the solution
Z(t)=(zp—€)cog wet) + ¢, (13

where o=/ (Mm+my/3)/k and € =€ 5+ (m+m¢/2)g/k as in
Egs. (6) and (7). [A shift of the coordinate system by
={y+(Mm+mg2)g/k makes Eq(13) look simpler, but hides
the shift in the equilibrium positiof It follows that the pe-
riod of oscillation becomes

mS

+_
mT3

k

Ts=2m (14
The my/3 in Eq. (14) is the dynamic correction and may be
contrasted with theng/2 equilibrium shift of Eq.(7), the
static correction. Students who have not seen Lagrangia
can infer the dynamic correction to the period from Ed),
because it is reasonable to expect the period to see the sa
mass as the kinetic energyn(- m¢/3), rather than as the
equilibrium shift, (m+my/2).

Several papefsi®'?~**have been published on these cor-
rections due to the effect of the spring mass. Thos
author§1° that consider both corrections make a point of

e

. 77-2
lim D= T
mg/m—o

lim D=3,

mg/m—0

(17)

The dynamical correction is discussed further in Refs. 12,
13, 14, and 9. Three methods for solving E&5) are given
in Weinstock’s later papéf in which it was shown that the
lowest frequency mode is sufficient to describe the small
mg/m limit. The uniform density approximation was used to
show that them¢/3 dynamic correction is reasonable up to
ms=m. McDonald® showed that a closed form f@ exists
for the conical spring, reproduced the result fbiin Ref. 6,
and comparedng/D to the equivalent correction term for
conical springs. Boweéf considered an unloaded slinky with
general initial conditions for the nonfixed end, emphasizing
the 72/4 result. Cushingshowed explicitly that the small
mg/m case necessarily transitions to the langgm case so
that the lowest normal mode is always the dominant one.

It should be emphasized that adding a tengi3 as in Eqs.
(10) and(14) is based on the assumption of uniform stretch

MR =m./I is a uniform coil density This assumption be-

comes less applicable for softer springs and depends on the

Mfio m¢/m, as seen in Eq(17). In most casesall but the

smallerk springs cited in Refs. 7 and 9t seems sufficient
to usemy/3 as was done here. The relevant results are dis-
cussed in Appendix B.

distinguishing the static correction from the dynamic correc8. summary of the physical pendulum

(18

Mg
=

(19

tion. As alluded to earlier, a careful treatment of the dynamic
spring in terms of the position of the spring shows that in-  As stated following Eq(2), w,=ymgf/I. For a physical
cluding the mass of the spring leads to a transcendental equpendulum, we cannot use the simplificatiba mé¢?2, which
tion for the period. givesT, in Eq. (4). Rather, we must express the period more
. . . . p
In an early paper, Weinstotkconsidered a mass in uni- generally as
form circular motion which stretches the spring the same
amount as a hanging mass and introducechgB correction T—2 [ ]
to the mass dependence of the frequency. He also considered P & mg’
the mass oscillating about its equilibrium radius and found . . .
that the angular frequency satisfies the transcendental equil€re the denominator is due to the torques that drive the
tion. which in m . oscillation. To see how this general expression changes with
, y notation reads ; X : A
different assumptions, consider three cases. Case 1: A simple
2mymg/k 2m\mg/k pendulum with a massless string hasmy,£2. If we use
ta this value ofl and that the torque on the bobrig,,g¢, we
Ts Ts
) ) ) ) have T=2x€/g. Case 2: A solid rod pendulum hds
ET;“?S”(;nS)trzgdsurrﬁzﬁrr:O/rllzqql('rl‘né?)t, with dynamic correction  _ 1, 02 anqd, because the torque acts at the center of mass
53, | s/ M lImit. of the rod, the denominator of E6L8) becomesn,,g(£/2).
Heard and Newlyand Cushing also consider both the .y - 48 odd(£/2)
: ; ; . X The period of the rod is then
static and dynamic corrections. For the dynamic spring, they
solved the appropriate differential equations. Reference 8 ime2 2¢
went a step further by considering a vertical soft spring to T=2#« W=27r 3q" (19
find that in themy/m—co limit, To— [4/(2n+1)]ymq/K, mg(¢/2) g
wheren is any positive integetcorresponding to the peri- Case 3: A massive support with a massive bob, like the case
odic nature of trigonometric functionsThese periods corre- Of interest, combines these two cases by separately adding
spond to the eigenvalues that solve the appropriate differeithe  moments of inertia in the numeratol,=my?
tial equation given in their paper. These periods also solver im, 42, and the torques in the denominater my,g¢
Eq. (15 in the largems/m limit. Consequently, as discussed +m,,g(€/2), giving a period of
by Galloni and Koheri,the dynamical correction in E¢14) -
is different in the largems/m limit than in the smallmg/m ) [(Mpopt 5 Mrog) €
limit. Equation(14) is gi in Ref. 6 77 :
imit. Equation(14) is given in Ref. 6 as (Moo £ Mo

T (20)

_ E Ms Note that Eq(20) reduces to either the massless string or the
T=2m m+ , (16) . i .
k D solid rod pendulum when the appropriate mass is set to zero.
820 Am. J. Phys., Vol. 72, No. 6, June 2004 Joseph Christensen 820



It is an interesting coincidence that the moment of inertiacan then be found and is due to both the spring and the added
sees the same fraction of, as the kinetic energy discussed mass. It also is a combination of rotations about the center of
in Sec. Il A and that the torque sees the same fractiomof mass,.m,., and the effect of the parallel axis theorepy;:

as the stretching of the spring. However, the mathematical = o b 21)
expression for the moment of inertia of the spring pendulum s,¢.m. = s,pat’ tm,c.m. = Tm, pat:

will be further complicated by the length dependence as disThe first two terms can be written as

cussed in Sec. Il C. A careful treatment of the length depen- 2

dence in Eq(18), specifically in terms of the mass distribu- +1 Fim 0+ mg
tion, shows that the length does not cancel as simply asitdid ~ >“™ >P%* 1275 "¢ k
in Eq. (20). 2
ot
. . . S k
C. Massive spring as a physical pendulum g €yt 5 22)

Now that we have introduced the mass into the bouncing
spring and swinging pendulum, we can use Edgh) and  The first term is the moment of inertia of a slender (ttke
(18) to derive an expression for the mass that produces thepring rotating about its center of mass. 4f=0, the two
desired resonance between bouncing and swinging. As diserms in Eq.(22) would combine to giveim(€s+mg/k)2,

cussed in Sec. IIB, the distribution of mass in the systempe moment of inertia of a slender rod about one end. The
must be understood in order to express the period of thgefinition,

pendular motion. To account for the geometry of the swing-
ing spring system, Fig. (&) shows the various relevant €1

lengths: the lengtif ¢ of the spring with no added mass, the X1= ¢+ mgk’ 23
amount of stretctmg/k due to the added mass, the distanceIeads to the expression

€, from the top of the coils of the spring to the pivot point,

the distance’, from the bottom of the coils of the spring to 21 2

the top of the added mass, and the distafygdrom the top Lsem1s pai=Ms| £+ & | |zt (24)

of the added mass to the center of mass. The initial length Qf_h hird i Ea(2D) i

the hanging spring{., is stretched only due to its own | N€ third term in q(2y is

weight as given by Eq(8), and ¢, and ¢, depend on the I mem=1zM(hp)?=Hm(2€,)%=5me2 . (25)
amount of mass added. Figuréldistinguishes the theoreti-

cally convenient lengths(, and ¢,, from the experimen-
tally convenient heights: the distankgfrom the coils to the
hook, the height,, of the hanger, and the height, of the
masses. These lengths are related according, toh+ hy,
—h, and €,,=h./2. For simplicity, | will assume thaf, I par=M| €1+ €5+ T+€2+€m : (26)
and ¢, are independent of the amount of added mass. In-_ _

deed, one might expect théy, is significantly less thafi, so Finally, the denominator of Eq18) can be expressed as

The length Z,, is used becausé,, is half the height of the
added masdy,,. The fourth term in Eq(21) describes the
mass at the end of all of the lengths:

mg 2

that the estimated value df,, is irrelevant as long as it is mg

close enough to its true value. As a rough approximation, the  Mg€—mg &1+ €+ <=+ o+

appropriatef , and{,, can be estimated by measurihg for

the mass given by Ed5). | will discuss this issue in Sec. IV. mg
The expressions for the period of a swinging coil can be Ot e

simplified by assuming that, when swinging, the spring is a +mgg| €1+ — | (27)
rigid rod with massmg, length s+ mg/k), and center of

mass[ ¢+ (£s+mg/k)/2]. A more accurate, but much less  If we substitute Eqs(24)—(27) into Eq.(18) and combine
convenient expression for the center of mass is given in Apthis result withTg from Eq. (14) as expressed by the square
pendix B. The moment of inertia in the numerator of ELp) of Eq. (3), we find

2

mg mg\?[1 1, mg
m+? Mg €5+T §+X1+X1 +§m€m+m €S+T +l+€+ €,
4 K = mg 1 mg . (29
mg €S+T +l+ 0+, +§msg €S+T+2€1

The complicated expression far in Eqg. (28) explains why in Sec. llID. For compactness, we have written only one of
it is not usually considered in this form. Note thatéf  the contributions in Eq(28) in terms ofx,. If we gather
={,={,=0, then the substitution of Eq$24)—(27) into  terms in powers ofn without using thex,; notation, we ob-
Eq. (18) for T, reproduces Eq20). This case will be useful tain
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4
mg I, + 532
A
11’2
m Tim

Bottom of Spring

hs
lo=hs+hp—hnp

b I = B /2

| A ] —

(b)

Fig. 1. The hanging spring can be separated into a variety of distinct me

the various lengths appropriate to the spring, the coefficients
can be included in a root-finding program to solve for what
should be the best prediction of the masghat will cause

the spring to excite the autoparametric resonance.

We have made three assumptions to obtain (£6). We
assumed that the spring is a rigid rod for calculating the
moment of inertid g, that{, and{, are independent of the
mass, and that the spring has uniform density giving both
(m+m¢/3) and the expression for the center of mass in Egs.
(22) and (27). The first assumption is reasonable because
when the appropriate mass produces the autoparametric reso-
nance between swinging and bouncing, the few oscillations
in the purely swing-mode do not have any visible bounce,
that is, the swinging spring behaves as a rigid rod. The sec-
ond assumption will be reasonable if and onhhjf can be
estimated to sufficient precision. The details of generalizing
the third assumption are relegated to Appendix B.

Ill. APPROXIMATIONS TO THE CUBIC

Solving the cubic polynomial in Eq29) for the added
massm is straightforward using standard numerical root-
finding techniques. However, reasonable approximations
should simplify Eq.(28) considerably. In this section, | will
introduce three seemingly reasonable approximations to find
a more useful approximation to E(8).

We will consider the casé,=¢,=¢,=0 in Sec. IllA
and then(¢,#0 in Sec. Il B. We build on these approxima-
tions in Sec. 11l C where we keep all three lengths and Sec.
Il D where we build a mathematically convenient approxi-
mation.

A. The long-spring approximation

Whenx; is set to zero, Eq.28) remains cubic irm due to
its dependence o6, and{,. In the long-spring approxima-
at_ion, we setf; (andx;) ={¢,=¢,=0, and Eq(28) becomes

surements(a) The theoretically useful quantitieg;; is the length of the mg
hanging spring with no mass attached but stretched due to its own fijass; m-+ —
is the distance to the center of mass for the mass added. The total Iength}f 3 mal €+ m n E 0t m_g
denoted ag = ¢+ { +mgk+€,+¢,,. (b) Aclose up of the added mass to k g ts k 2 msg{ s k
relate the theoretically useful quantitié®) to the experimentally easy-to-
measure gquantitiesh(). 1 mg 2 mg 2
=§ms €S+T +m fs‘f'T (30

0=3m3+ m?

k
O

2 , k(8 1
§ms+§ §€s+§€l+€2+€m Mg

1(k€m\2 (k)2 ,
“3l7g ) ~lg) (et tar e e?|m

J’_

*3

2k
_msa(es_’_ 2€m)

k\2(1 , )
3 ettt e, (29

J— mS
Given the massng of the spring, the spring constakyt and

822 Am. J. Phys., Vol. 72, No. 6, June 2004

We can cancel {s;+mg/k) and (m+m¢/3), giving an ex-
pression linear imm,
ks 2mg
“ 3 3
which is a minor change from the massless spring simple
pendulum of Eq(5).

m (31

B. Weakening the long-spring approximation

Let us takef,,#0 and¢,=¢,=0, becaus&, and{, are
always added tdg, whereast, is not added to a larger
quantity in theim¢2 term. With this choice, Eq(28) be-
comes

Joseph Christensen 822



Ms 45 5 4
m+? 3+ 2Xm— §Xm m<+|| 3+ §Xm Mg
4
k P 2, ki)
1 mg 2 4 , mg 2 —| 1+ Xm+§xm ?m+ §ms— 39 =0. (34
Mgl €+ —| +omép+m | €+ —|+ €, i o
-3 k 3 k Note that Eq{(34) reduces to Eq(31) in the limit x,,— 0.
mg 1 mg
mg €S+T +€m +§msg €S+T

(32

Because Eq(32) is still cubic inm, | will assume thatt
< {4 and definex,, as

C. Collecting small terms

To this point, the theoretical results either are poor predic-
Ay i 3l tors of the desired mass, such as Eqg5) and(31), or are
Xm= mg = klsg - 40, (33 higher-order expressions, such as E@®) and (34). Equa-
€+ s s+ @ K tion (31) will give poor predictions form because the pre-
dictions of Eq.(5) are, in most cases, smaller than the nec-
wherem has been replaced by the massless-spring, simpleessary physical mass.
pendulum approximation of Ed5). After we divide the nu- The terms in Eq(28) do not readily cancel because of the
merator and denominator of the right-hand side of 8% different combinations of,, ¢,, and ¢,,. Let us first re-
by ({s+mg/k) and collect terms in powers of, we obtain  place each of these ., the average of these three quan-
a quadratic equation fan that can be solved givefy,, mg, tities. This replacement reduces Eg8), without thex; no-

k, and{, tation, to
J
mg 1 mg\? mg , 1 mg 2
m+? §ms es"'? +3€av €S+T +3€ave +§m€ave+m €S+T+3€ave
4 K = - mg 1 mg . (35
mg €S+T+3€ave +m5g§ €S+T+2€ave

If we rewrite Eq.(35) in terms ofL=(€{,+ mg/k +3¢€,,9 and complete the square in thg term, we obtain

m m mg | m 1
m-+ ?S m-+ ?S L2 ?s 3(5%( O+ Tg) +662,+ §m€§we
4 Ko e 1 . (36
m+ ? gl—_ Emsggave
|
We define the hopefully small quantity g Mg Mg
A4=\m+ || m+—
¢ k 3 2
=" (37 ( ms)
={m+—|L
3
divide the numerator and denominator by and find m.| m.g Ml e
+y|2 m+? " —mS(L—(ia\,QvLT (39
mS
m+ ?
4 K If we divide through by (n+ my/3), solve form, and collect
they terms toO(y), we find
mg mg 1
m+? L—myy €S+T +2€a\,e+§my€a\,e K 9
M, 1 m= @((isﬁt 3Cave — §ms+ o(y). (40
m+ 519~ 5 Mgy
(38 If we ignore terms of ordey, Eqg. (40) gives a better esti-
mate of the mass. Alternatively, given the experimental value
We then multiply both sides byn{+ my/2)g— im.gy, col-  for the mass, we can estimate the magnitude of @fg)
lect terms of ordey on the right, and obtain terms and evaluate the approximatigps<L.
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Table I. The physical dimensions of the springs used. For all but the two stiffest springs, a mass-hanger with
height h,=8.000(4) cm was used. The second stiffest spring used a hangehywtthi4.806(4) cm. The
stiffest spring used one with,,=28.2(1) cm. The other lengths can be found frép+ hs+hy,—h,, and €,

=h./2. The height of the added masg is given for the mass predicted by the equation indicated. All lengths
are in centimeters.

Eq. (5) Eq. (42 Experimental

k (N/m) ms (kg) £ 4 he hm A hm

3.0591) 0.67792) 293.31) 2.005) 2.005) 3.4194) N/A N/A

6.6963) 0.339G2) 121.41) 0.00 2.005) 3.2724) 1.3464) 1.2764)
25.164) 0.08292) 26.61) 1.235) 1.325) 2.8484) 3.3164) 3.4584)
28.635) 0.08242) 27.61) 1.4Q05) 0.955) 3.2924) 3.7424) 3.8094)
36.268) 0.08842) 27.11)  1.305) 1.305) 4.1094) 4.5354) 4.9124)
40.91) 0.08462) 27.11) 1.205) 1.2055) 4.3154) 4.9924) 5.5184)
51.42) 0.07862) 27.21) 1.505) 1.305) 5.0124) 7.3464) 6.8494)
10022) 0.06292) 6.71)  1.11) 5.005) 6.355) 20.455) 23.845)

D. A mathematically convenient approximation down, | was able to investigate the results fdr

We have seen that the spring-like oscillation is affected by~ 3:059 N/m anck=6.696 N/m. Finally, a spring-scale was
the spring mass by a factor ofni- m¢/3). We also saw that femoved from its casing to test a highspring.
a rod-mass pendulum has the moment of ineftia(m The values ofk in Table | are not needed becauseap-
+ my/3)¢? and torquer=(m+ my/2)g¢ as if each saw the pears in the ratik/g, which can be measured directly. A
additional mass at the bottom of the spring. Although physiimass hanging in equilibrium from a spring will satisky

cally inappropriate, if we simply extend ECRO) by includ- =mg; therefore, the slope of the displacement versus the
ing the lengths1, ¢, and¢,, and substitute this result into  added maséthe independent variablevill give g/k. To ob-
Eq. (3) as before, we find tain the values of the spring constant, we assunged
mq mq mg 2 =9.80(1) m/4. These values are listed &sn Table 1. Ap-
m+—= Mt bt =l €m) pendix A discusses some of the relevant details of this mea-
4 T - - . (41)  surement. . _ o _
mt — gl 4+ €.+ _9+€2+€m While addressing the _unlfor_m density |ssumsec_i at the
2 k end of Sec. Il A, Appendix B discusses an alternative, direct

Equation(41) should be compared to E€8) to see how it meaguresment df. Becausek can be measured directly, it is
differs from a more physically accurate treatment. EquatiorP0ssiblé® to combine the measurements gfk and k to
(41) is, however, mathematically convenient and easily recalculate the local gravitational field.

duces to Table | also lists the physical lengths of the equipment.
K 5 The lengthf was measured with a meter stick. The lengths
m= @((ger O+ ,+4,)— 3Ms, (420 €, andhg were measured with a vernier caliper, which has a

precision of 0.002 cm. To account for slight awkwardness in
which is Eq.(40) without theO(y) term. The physical inter- measuring as well as for the possibility that the support ring
pretation is that if¢,, €,, and¢,, are sufficiently less than Mmight stretch when weight was added, this uncertainty was
{5, they can be handled conveniently as in &), but even  increased to 0.05 cm. The value lof is not listed because
small values are not so small that they can be set to zero as the same mass hanger was used for five of the seven springs.

Eqg. (31). This hanger hadh,=8.000(4) cm. The second stiffest
spring used a mass hanger with=14.806(4) cm. These
V. ANALYSIS OF THE APPROXIMATIONS two were measured with a caliper with the error doubled to

account for slight awkwardness. The stiffest-spring mass-

After describing the experimental apparatus and the uncehanger was measured with a meter stick and Hgd
tainty, we will compare the predictions of the various ap—:28_2(1) cm.

proximations to the mass that actually induces the resonance. no mentioned in Sec. 1B and shown in Fig(bl, the

A. The experiment other needed lengths can be found frég+ hg+ h,—h,, and
. . . {m=h./2. To find an appropriath,,, we estimated a value
Our goal is to find a useful expression for the mass thah:\r the added mass from E¢6) and, using standard masses

induces the autoparametric resonance between the vertica

oscillations and the pendular swinging of a spring. To anafjlnd a vernier caliper, measuréxh,. If Eq. (42) with this

lyze the accuracy of the predictions, seven springs werdalue ofh, predicts a mass with a height that is significantly
used. The spring constants, masses, and various lengths &liferent than this value oh,, we measured they, for the
given in Table |. The five springs with spring constants rangredicted mass and recalculated E4p). One or two itera-

ing from 25 to 52 N/m were selected from a standard undertions were sufficient for consistent results. The last three col-
graduate laboratory set. A wave-demonstration spring waamns of Table | indicate how mudiy,, can vary between the
used to test the predictions on a ldwspring. By first using predictions from these equations. So, even if we are careful
the full length of the spring and then clamping it half-way to measure the lengths very precisely, there is an inherent
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Table Il. Comparison of the predicted mass values to the experimental masses. Except(fr thg.calculation for the predicted mass requires a value for

the height of the mass being calculatig,. As a rough estimate, E¢5) is used to estimatk,, in the other equations. To improve the prediction, the result

of Eq. (42) is then used to re-estimakg,. This estimation process was self-consistent within three iterations. The two rightmost columns compare the rms
average difference= \/EiLl(mifmexpgz/N between the predicted and experimental masses. The second-to-last column is averaged over the seven stiffest
springs. The last column averages over six springs by excluding the softest and stiffest springs. All units are kilograms. E2@atods42) are
significantly better predictors of the mass that experimentally excites the spring-pendulum resonance.

Mass prediction for eight springs, sorted by spring constariy/m) rms difference
Eq. used to Eg. used to

predictm estimateh, 3.0591) 6.6963) 25.164) 28.635  36.288) 40.91) 51.42) 10022) all k k<100

5) 0.30523) 0.27634) 0.2281) 0.2691) 0.3341) 0.37712) 0.4763) 2.293) 3.217 0.123

(29) (5) —-0.1124 0.0647 0.257 0.306 0.389 0.438 0.692 9.8 0.375 0.032
(42 (5) —0.1361(6) 0.07Q0) 0.2503) 0.2994) 0.3815) 0.4305) 0.6847) 9.2(1) 0.605 0.034

(29 (42 —0.1144 0.066 0.255 0.303 0.386 0.434 0.673 10.8 0.027 0.029
(42 (42 —0.1339(5) 0.07@) 0.2483) 0.2964) 0.3785) 0.4255) 0.6637) 10.51) 0.118 0.032

(34) (42 —0.1460 0.051 0.185 0.231 0.302 0.354 0.488 9.64 0.449 0.102
Experimental range N/A 0.065) 0.2455) 0.3188) 0.42010) 0.48Q010) 0.63515 10.82)

systematic uncertainty in that we do not actually know thediction. This can be done by checking the self-consistency
mass for which we should be measuring the height, mentioned at the end of Sec. IV A.

To be explicit, the 4, term appears in Eq44) as the
uncertainty in€s+€,+¢,+¢,; however, these uncertain-
ties are not actually all the same. Some terms are measured

Table Il gives the predictions from the various approxima-with a meter stick(precision of 0.05 ctnand some with a
tions as well as the experimental values that produce thealiper(precision of 0.002 cm For awkward measurements,
resonance. The experimental masses were found by trial antese precisions were increased. Further=hg+h,—h,,
error starting from the predicted values. The central value igind each of these measurements increases the uncertainty.

that which subjectively seemed to give the most pronounce¢jith this in mind, 4r, is actually 0.1 cm(from ¢,)
effect. The error bars on the experimental mass are the extenty o5 cm (from €,) 0.05 cm (from h, in €,) +0.004 cm
. . s .

to which | could adjust the mass and see a pendular swin . .
that retained a small amount of bouncing. Including masse?rom My in €;) +0.004 cm(from hy, in £5) +0.002 cm
that produced a moderate swing without significantly dimin-(Tom ¢m=Ny/2) =0.210 cm. If the added mass or the
ishing the vertical oscillation would typically double or triple hanger is measured with a ruls for the stiffer springs that
the listed uncertainty. require more applied masso, becomes 0.256 cm.

Table 1l also estimates the precision of some predicted Regarding the systematic uncertainty, we see from Table |
values. Because E@5) is a product, the relative uncertain- that h,,, can be off by as much as 2 cm if the mass is not

B. Uncertainty and precision

ties can be added in quadrature: predicted accurately. I, is taken to be 0.5 cm so that the
k€, 0\ 2 [00\2 [0q)2 40, term matches this 2 cm uncertainty, thep/m~5%.
"’"'SIE\/ ?) 7 (g) (43)  For the 51 N/m spring which requires an added mass of
0

0.635 kg, this 5% relative uncertainty;,,/m, implies an
The precision of Eqs(29) and (34) could be found by a uncertainty ofo,,=0.032 kg. Unfortunately, Table Il shows

Monte Carlo analysis, but was not due to the consistencyhat | only obtained a good resonance within 0.015 kg of
between Egs(29) and (42) and the measurements. The de- g 635 kg. This variation indicates that it is important to mini-

termination of the precision of E¢42) is only slightly more  mjze the systematic uncertainty by verifying the consistency
complicated than Eq43) due to the additional terms: between the mass used to estimate and the predicted

K(€o+3€ 0 mass. However, this may not be of dire necessity when one
"m,422T considers that withr,~0.5 cm, the prediction of Eq29) is
5 . . still within 20m' of the' experimental value. .
% \/ ﬂ) n 4oy é) n Ty N EU The uncertainties !ls_ted for the masses in Table Il reflect
k €o+30,, 37 ms the roughly 1% precision of the length measurements. That
(44) these uncertainties do not overlap with the experimental val-

ues, especially using ER9), suggests that there is an addi-
The relative uncertainty in d, /(£+3¢,,) dominates the tional source of uncertainty. This discrepancy will be consid-
right-hand side of Eq44). The relative uncertainty dd and  ered in Sec. IVC where we will discuss the underlying
g are below 1% and usually much less. The relative uncerassumptions.

taintieso, /€, and 4o, /(€ o+ 3£, are such that for every The precision quoted for the predictions in Table Il indi-
millimeter that o, is increasedg,/m increases by about cates only how much the result will vary due to the measure-
1%. This important point cannot be emphasized enough t§ent uncertainties. It does not indicate how close the predic-
those who wish to utilize these equations. If the lengths ardion is to the experimental value, because it does not include
not measured carefully, then the precision of the predictionghe systematic uncertainties such as the 2 cm variation in the
is reduced. Further, we must control the systematic uncemprediction ofh,,. In addition, no attempt was made to indi-
tainty of using a precise measurement of an inaccurate pre&ate the size of the terms dropped in the approximations
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because doing so would only indicate how far the variougions that the spring is a rigid rod and has uniform density.
approximations are from E@29), not how far the prediction Equation(42) uses only these assumptions and the inclusion
is from the experimental value. of £,, €,, and{,, and gives predictions that are comparable
To estimate the quality of the predictive value of eachto Eq. (29) for the five central springs. Equatio@?2) is
expression, the rightmost columns of Table Il show the rootwithin about 3% of the experimental value for the very stiff
mean-square difference between each predicted mass and #sring, where one might expect these assumptions to be

experimental mass averaged over the various springs: more reasonable, and is about 11% off for the softest spring,
N where these assumptions are more suspect. Equ@ans
o= \/1 2 (Meg— Mexo) 2. (45) close in both cases. As mentioned, the.rigid rod assumption
NegEr 4 P should be reasonable because the swing mode at the reso-

nance mass does not have a discernible bounce. The uniform

I is th includi I . The | lsc‘}ensity assumption, on the other hand, might warrant further
column is the rms error including all springs. The last col-j, etigation. See Appendix B for further details.
umn is the rms error not including the stiffest spring. Be-

cause the stiffest spring involves masses that are over an
order of magnitude larger, these differences can significantly
overwhelm the others. On average, E2Q) predicts the ex- V. CONCLUSIONS

perimental value to within 0.027 kg, even when the stiffest ] ) ) o
spring is included. The purpose of this paper is to improve the prediction for

the mass, not to solve the differential equations of motion
that would generalize the analysis of Refs. 1 and 2 describing
the motion of the oscillating mass. Although the expression
As expected, Table Il shows that Eq29), (34), and(42)  that predicts the mass for a massless spring as a simple pen-
are significant improvements over the assumption of a masslulum, Eq.(5), is easy to derive, it is possible to improve the
less spring in Eq(5). For the smallesk spring in Table Il, prediction by extending the derivation to describe the mas-
the negative mass values are consistent with not finding agive spring as a physical pendulum. This extension gives Eq.
experimental value. Although the prediction of E§) for  (29), a cubic polynomial for the mass that will induce the
this spring is 0.305 kg, the measured period of swinging anépring-pendulum resonance. A rough approximation also was
of bouncing indicates thak, cannot equal Z as needed for developed that gives a much simpler expression, (Eg),
the resonance. In fact, the massless spring approximatiognd comparable results. It is clear from Table II that both
Eq. (5), only has a chance of being coincidentally correct forEgs. (42) and (29) are much better predictors of the mass
k~20 N/m. Fork above this value, Eq5) predicts a mass than Eq.(5). Equations(29) and(42) assume that the swing-
that is too small and becomes worse for larger valuds @i "9 SPring is arigid rod with uniform density. Because in full
spite of the expectation that this approximation might jm-SWing. it does not bounce, the rigid rod assumption is prob-
prove for stiff springs. In fact, ak increases, the need to 201 reasonable, at least for springs that are not too long.
include£,, £,, and€., becomes more relevant, presumably However, the_ uniform mass assumption is somgwhgt suspect
becausela{ st?f’fer spriﬂg requires more mass to’osc(ﬂn&k— (see Append_lx $_The Ieng;hs{fz and{py, (shown in F'gf 1
ing at leastt,, harder to ignoreand the inclusion of these also play a significant role in the accuracy of the predictions.

) . The precision of the predictions in Table Il are due primaril
terms is a better measure of the pendular length, which co P b P y

trols the pendular period. Because the long-spring approxri}-0 the uncertainty in the lengths.

mation, Eq.(31) (£;=¢,={,=0), is necessarily smaller
than the massless spring of E®), the predictions of Eq.
(31) were not included in Table II. APPENDIX A: DETAILS OF MEASURING k/g

As seen in the rms averages of Table Il, the consistency . .
between Eqs(42) and (29) is impressive. Although the rms __ Eightéen masses were gradually added to each spring and
difference over all springs is 0.605 kg for Hd?2), it predicts the corres_pqm_ﬁng stretch was measured using a mirrored
the mass to within 3% for the stiffest spring and has an rmgulér to minimize parallax. The masses used to cause the
difference of only 0.032 kg for the other springs. This pre-Strétch ranged from 0.150 to 1 kg for the springs with mid-
dictive capability is not too different from Eq29), which ~ ange stiffness, 0.010 to 0.500 kg for the soft spring, and 3 to
has an rms difference below 0.03 kg whether the stiff springt® kg for the stiff spring. The first two mass ranges were
is included or not. If Eq(42) does not give accurate results measured to a precision of 0.1 g; the third was measured to
and one wishes to avoid solving a cubic polynomial, oneWithin 2 g. The corresponding displacement was measured to

could use the calculated mass to estimatecig) terms in  0-1 ¢m for all but the two softest springs. Due to limitations
Eq. (40) to determine how far this prediction is from Eq, [N construction, these were measured to a precision of 0.2

(29). cm. The slope was found by.a Ieast—squar fit account

It is interesting that Eq29) does not give exact results. It OF the measurement uncertainty in both the added mass and
is possible that the problem is due to the systematic unceF—he stretch. To give an idea of the value of the spring con-
tainty discussed in Sec. IV B. As noted there, for half of theStants for the springs used, we ass.Lgmq_eQ.SO(l).m/% and
springs, the predictions of Eq29) are within o, of the divide by the slopeg/k. This vlalue2 is Ilzsted .ak in Tables
experimental value and withing, for the remaining springs =!Il- The reducedy” of these fitsx,= x*/» with » equal to
if we assume thatr,=0.5 cm. This is a sizable uncertainty he degrees of freedom, are listed in Table IIl. Each spring
for the measurement of lengths and so this estimate may onfj2S eighteen data points except for te25 N/m spring.
account for a portion of the difference. Another explanation!he value ofy>~0.3 indicates that the precision in the dis-
for the inaccuracy of Eq.29) might come from the assump- placement may have been overestimated, sokthalues

C. The results
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Table IlI. Tests of the uniform stretdicoil density assumption. The values &fare from the slope of a graph
of m vs x, assuming thag=9.80(1) m/é. (The reduced chi-squarg,ﬁ, values indicate that the precision of
the displacement may be overestimaxdthe ratioZ. ,,, /¢ compares the distance from the top of the spring to
the calculated center of masg, ., , to the length of the spring;,. This ratio is evaluated at the experimental
mass value and deviations from 50% indicate the nonuniformity of the stretch. A grapi2af)¢ vs mass has
slopes and intercepb. If we assume uniform stretch as discussed in Appendix B, the reciprocal slape (1/
should givek (without assuming a value @), the ratio 3/s should give the mass of the spring, and the ratio
of b/(sm) should be 1/3. Differences from these values should correlate to differenZes,iff from 50%.

k (N/m) X2 v Zem € (%) ms (kg) /s 3b/s b/(smy)
3.0591) 1196 16 55.08 06779 3.2608) 08503  0.4182)
6.6963) 0336 16 52.67 03399 6.83719  0.3591)  0.3531)
25.164) 0309 15 50.71 00829 25.446) 00984  0.402
28.635) 0355 16 50.60 00828 28815 00943 0371
36.268) 0316 16 50.51 00882 36.586) 00953  0.361)
40.91) 0379 16 50.44 0.0848) 41145 00943 0371
51.42) 0164 16 50.31 00788 51.91) 00834 0362
10022) 0494 16 50.03 0.0629) 10153)  0.079) 0.4(5)
assume the common uncertainty= o7 ,,ex>, Which gives (m+mg)g
0.=0.03-0.06 cm for all but the two softest cases, which Cot k 1
haveo,=0.3 cm. Zem=+t g T e (mEmogik) |
K Co+ mg/k
(B5)
APPENDIX B: NONUNIFORM COIL DENSITY IN A
MASSIVE SPRING mk—=0p 1 mglk mg) 2
Zem = 3T T34, mgk ( k ) (B6)

In a massive spring, each coil stretches all of the coils
above it and none of the coils below it, which implies a ) )
nonuniform distribution of the coils of the spring. When Equation(B5) shows that Eq922) and(27) should be modi-
hung under its own weight, the density must increase towardied significantly to account for the shift in the center of
the bottom. The mass per coil is still considered uniform; it ismass. EquatioiB6) shows that for either a light spring or a
the nonuniform distribution of the coils that produces a non-stiff spring, the center of mass approaches the midway point,

uniform distribution of the spring mass. In fact, the masst/2. o ) ] )
density is As an initial test of the nonuniformity of the springs, Eq.

(B6) was used to calculate the location of the center of mass
for the static hanging spring. If the spring is perfectly uni-
mg f—zmg’ (B1)  form in stretch, therZ. ,, should be 50% of ={,+mgk
Co+ T+ — ; +mgg/2k. Table IlI lists the ratioZ. /€ for the springs
used in this experiment. The mass used was that predicted by
) . . o . Eqg. (29). The value for the ratio will, of course, change with
wherel is a dimensionless normalization constant given byyiferent m. The assumption of uniform density might war-

Mg

)\(Z):)\o

. rant further investigation for better accuracy in the softer
€0+ mg . myg springs, but fronZ, ,, , the assumption seems reasonable for
L k k 82 all but the softest springs.
0™ ke mg After relaxing the uniform density assumption, E40)
o+ e can still be integrated, but is rather more involved. It is pos-

sible to derive dfairly complicated formula for the effect of
the spring mass in terms df,, k, m, andmg, which does
not seem more useful than previous approximations.

On the other hand, it is possible to account for variations
in the mg coefficient without doing any more work than it
1 would take to measure the spring constant, which can be

(B3) done using Eq(14) rather than via Hooke’s law. First attach
the spring to the desired support, which ideally will not flex
with the bouncing of the spring. Then, for a collection of

We can verify thatfg)\(z)dz= mg, that the average density masses, let the spring oscillate and measure each period. If
matches the uniform density used in Sec. Il A, and that ~ we rearrange Eq.14) as

and{={y+ (g/k) (m+ m¢/2). Because the argument of the
logarithm also can be expressed ag-+(mg/2k)/(€
— mgg/2k), it is possible to writexy as

m m
Ao= =9 {tanhl( Sg)

T ke 2k¢

1 L B7

1 (¢ T
Zc.m.EE Oz)\(z)dz, (B4) 5= .
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we see that a plot 0ﬂ'(/277)2 vs m will give a straight line ®Equation(25) in Ref. 2 for the period with which the energy oscillates
with slope 1k and an intercept that. when divided by the between these modes involves elliptical integrals of the first kind, even for

L the case of a massless spring as a simple pendulum.
sIope, should be close th/s' Any deviation from m5/3 SE. E. Galloni and M. Kohen, “Influence of the mass of the spring on its

would indicate the value that should be used in @d). We  static and dynamic effects,” Am. J. Phy7 (12), 107610781979,
can use the ratio of intercept divided by the slope and the’s. v. mak, “The static effectiveness mass of a slinky,” Am. J. PH55.

actual mass of the spring in place of the 1/3 that currently (11), 994-997(1987. See also P. K. Glanz, “Note on energy changes in
multiplies mg in Eq. (14). In other words, the ratio of inter-  aspring,”ibid. 47 (12), 109110921979 for a discussion of the effect of
cept divided by the slope is a direct measurement ofCthe 8pfe"°ad'”9 a spring on the conservation of energy. _

that appears in Eq16) T. C. Heard and N. D. Newby, Jr., “Behavior of a soft spring,” Am. J.

As a second test of the nonuniform density, the springg\?h%'s'é15 (hl.l)’ llTth ~11081977. See especially Edq,,zg)' 3 PBALO
tant for each spring was found by measuring the period.,. caoine 1€ SPring-mass system fevisited,” Am. J. B0,
cons pring y g p 925-937(1984. See footnote 16.

‘?f 18 different masses over 109 oscillatiorifty OSCI||a2— 1%R. Weinstock, “Spring-mass correction in uniform circular motion,” Am.
tions were used for the soft spring$he graphs of T/27) J. Phys.32 (5), 370-376(1964. See also M. Parkinson, “Spring-mass
vs m are available from the author. The last three columns of correction,”ibid. 33 (4), 341-342(1965 for the same result from iterative
Table Il are from this graph. The reciprocal of the slopg 1/ _methods rather than differential equations.

1 ; ) )
should give the spring constant. These differ from those R. J. Stephensomechanics and Properties of Mattéwiley, New York,

. . 1952, pp. 113-114. See also L. Ruby, “Equivalent mass of a coil spring,”
listed in Table |, because Table | assurges9.80(l) m/§. Phys. Teach38, 140—141(2000 for the same result from iterative meth-

Three times the int_ercept divided by the slop&{s§ should ods to avoid the calculus for an algebra-based course. Ruby also attempts
be close tang. Equivalently, the quantiti/(sm) should be a simplified nonuniform approximation, but incorrectly relates M#Ref.
close to 1/3, the coefficient used fon;. These last two 127) static correction to his dynamic correction. _
comparisons are equivalent measures of the accuracy of th&}: V\./eln.stock, “Osu_llat.lon_s of a particle attached to a heavy spring: An
assumption of uniform coil density. The valuet{sm,) for application of the Stieltjes integral,” Am. J. Phy&7 (6), 508—-514(1979.

. . . . . 8 F. A. McDonald, “Deceptively simple harmonic motion: A mass on a
the stiffest spring also is consistent with 1/3, having a some- spiral spring,” Am. J. Phys48 (3), 189—192(1980.

Wh.at Imprecise reSUIF of 0(8). |nt_ere_5t|_n9|Yv t_he SOftQSt 143, M. Bowen, “Slinky oscillations and the motion of effective mass,” Am.

spring has a larger ratio, 0.4@8, which is inconsistent with 3. phys50 (12), 1145-11481982.

the 4/%=0.4052847 predicted by Refs. 6, 8, 9, and 14.%5As mentioned in this article, a mass hanging in equilibrium from a spring
Except for the stiffest and softest springs, the weighted av- will satisfy kz=mg. A graph of displacement versus added-mass then
erage of the results is 0.384, which indicates a difference  gives aslope of/k. As described in Appendix B, a mass that is hung from
from 1/3 and might explain why the cubic error bars do not a spring and set to oscillating has a characteristic period. A pIoEafr]?

overlap the experiment in every case. vsm then gives a line with slope R/ In principle,g/k divided by 1k will
give a calculation of the local gravitational field. In a paper in preparation,

aElectronic mail: christej@mcmurryadm.mem.edu these values are compared to the acceleration due to gravity measured by
M. G. Olsson .“Why does a mass on .a striﬁg sometimes misbehave?.” & spark-machine free-fall experiment and the gravitational field measured

Am. J. Phys44 (12), 1211-12121976. by a swinging pendulum. The free-fall experiment gave repeatable results
24 M. Lai, “On the recurrence phenomenon of a resonant spring pendu- consistently lower than expected. The springs and pendula independently
lum,” Am. J. Phys.52 (3), 219—-223(1984). gave repeatable results that were higher than expected and consistent with
SW. R. Mellen, “Spring string swing thing,” Phys. TeacB2, 122-123 each other. The systematic uncertainties are still being investigated.
(1994). 8philip R. Bevington and D. Keith Robinsomata Reduction and Error

“D. E. Holzwarth and J. Malone, “Pendulum period versus hanging-spring Analysis for the Physical Scienc@dcGraw—Hill, New York, 1992, 2nd
period,” Phys. Teach38, 47 (2000. ed., Chaps. 6, 11.
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