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When the appropriate mass is used to oscillate a spring, the vertical oscillations couple to a pendular
swing. Previous calculations of various aspects of this resonance assumed a massless spring as a
simple pendulum. This paper improves the estimate of the mass necessary to induce this resonance
by describing a massive spring as a physical pendulum and obtains an expression for the mass in
terms of the spring constant and various lengths associated with the spring. Several approximations
will be considered to simplify the complete expression. Comparisons of the predictive power of
these expressions are made for various values of the spring constants. An Appendix discusses the
assumption of uniform coil density of a hanging massive spring. ©2004 American Association of Physics
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I. RESONANT SPRING PENDULUM

Several authors1–4 have discussed the resonance in wh
a vertically oscillating spring spontaneously oscillates
tween spring-bouncing and pendular-swinging. These pa
assume massless springs as simple pendula to solve the
tions of motion. The goal of this paper is to introduce ma
sive springs as physical pendula in order to more accura
predict the mass that leads to this resonance. For de
about the coupling of the modes, the resonance, the para
ric instability, and the period of oscillation between the
modes, the reader should refer to Refs. 1–4 and refere
therein. In brief, Olsson1 cautions that because this system
not linear, superposition is not applicable and, therefore, ‘‘
general motion cannot be expressed as a combination of
mal modes.’’ He also notes that the ‘‘... resonance effec
more correctly known as an autoparametric resonance
due to the lack of an explicit time dependence in the diff
ential equation. More importantly, he gives a more detai
description of the equations of motion that describe this re
nance. Lai2 solves Olsson’s equations and discusses why
conversion between the oscillation modes does not me
occur, but recurs.5

A spring with length, will oscillate vertically according to
the equation of motion:

mz̈1k~z2, !5mg, ~1!

wherez is the vertical position withz50 at the top of the
unstretched spring and positive downward,z̈ is the second
derivative in time,m is the mass attached to the spring,k is
the spring constant, andg is the magnitude of the local grav
tational field. Equation~1! is solved by a trigonometric func
tion plus a constant stretchz(t)5A cos(vst)1(,1mg/k). For
the initial positionz0 , the spring oscillates with amplitud
A5z02,2mg/k about the equilibrium point,1mg/k. For
a massless spring, the angular frequency isvs5Ak/m.

Whereas Eq.~1! describes the forces acting on a sprin
the pendular motion is due to the torques. A pendulum w
length, oscillates according to the equation of motion:

I ü1mg, sinu50. ~2!
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For simple pendula,I 5m,2, and for small angles, sinu'u.
Equation ~2! also is solved by a trigonometric functio
u(t)5Q0 cos(vpt), wherevp5Amg,/I 5Ag/,.

When the autoparametric resonance occurs, it is obse
that the period of the pendular motion,Tp , is equal to twice
the spring-like period,Ts :

2Ts5Tp , ~3!

where, for a massless spring and a simple pendulum,

Ts52pAm

k
, Tp52pA,

g
. ~4!

As mentioned in Ref. 1, Eq.~3! requires that a spring with
the unstretched length,s must be stretched to a length,
54mg/k for the resonance to occur. Because a massm will
stretch a spring to the length,5,s1mg/k, this resonance
occurs when

m5
k,s

3g
. ~5!

Equation ~5! assumes a massless spring and gives o
roughly approximate values for the various springs that
will consider. The detailed changes due to considering a m
sive spring as a physical pendulum should allow us to m
closely predict the experimental value of the required ma

The main goal of this paper is to give a more accur
calculation of the required mass, while minimizing the co
plexity of the final equation. A secondary goal is to he
students learn about approximations as well as provide
opportunity to numerically solve a cubic equation that is a
plicable to an observable phenomenon. This resonance
nomenon makes a good problem for undergraduates f
variety of reasons. The resonance is not necessarily eas
produce in an unfamiliar spring by trial and error becaus
is difficult to see how close the system is to resonance. P
dicting the resonance mass forces the students to recon
the assumptions~massless springs and simple pendula! in the
equations that have been derived in class and probably
in the laboratory.

In Sec. II, I will review how previous authors have intro
duced the spring mass into the vertical oscillations and co
818© 2004 American Association of Physics Teachers
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bine that with the physical pendulum to derive a cubic eq
tion for the mass that induces the resonance. In Sec. I
consider three approximations to this cubic equation in or
to find an expression that is more convenient. In Sec. IV
will discuss the experimental apparatus and the theore
predictions, and compare the predictions to the masses
experimentally induce a resonance in the springs. The c
clusion is in Sec. V. An appendix gives more details ab
the major underlying assumption.

II. INTRODUCING THE SPRING MASS

In this section, I will introduce the mass of the spring in
the vertical spring oscillations and then into the pendu
swing. When we combine these expressions to predict
resonance, we will find that the distribution of mass is re
tively important.

A. Massive springs

The consideration of the correction to the spring osci
tions due to including the mass of a spring has led to m
papers.6–14 There is a commonly used correction that e
ploys an approximation that should be reasonably valid
all but the softest springs. For the convenience of the rea
a brief summary will be repeated here with references to
literature for details.

There are two situations in which the mass of the spr
should be included. First, the spring mass shifts the equ
rium position of a vertically hanging spring because mo
mass must be supported by the upper portions of the sp
This static correction will modifyTp , the pendular period
but will not affectTs , the period of the spring-like bouncin
motion. Second, the inertia of a massive spring produce
dynamic correction toTs . The corrections due to these e
fects are not the same and are more prominent in a so
spring.

To see the static effect, consider a spring with massms ,
spring constantk, and unstretched length,0 . Imagine it as a
series ofN springs, labeled from top to bottom as 1 throu
N, each with massmi5ms /N, spring constantki5Nk, and
unstretched length, i05,0 /N. The i th spring supports the
(N2 i ) springs below it as well as the mass at the end
therefore each is stretched to length, i5, i01mg/ki1(N
2 i )mig/ki . The total length of the spring series is

,5 (
i 50

N21

, i5 (
i 50

N21 F, i01
mg

ki
1~N2 i !

mig

ki
G ~6a!

5 (
i 50

N21 S 1

ND F,01
mg

k
1~N2 i !

msg

Nk G
5,01

mg

k
1FN22

N~N11!

2 G msg

N2k

5,01
mg

k
1

msg

2k
. ~6b!

I have used the fact that(1
N i 5N(N11)/2 and taken the

largeN limit so that 1/N→0. In the continuum limit, Eq.~6!
can be written as6
819 Am. J. Phys., Vol. 72, No. 6, June 2004
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,5E
0

,

d,5E
0

, 1

, S ,01
mg

k
1

~,2z!ms

,

g

kDdz ~7a!

5,01
mg

k
1

msg

2k
, ~7b!

where z is measured from the top of the spring and,
2z)ms /, is the fraction of the spring below the pointz.
Equation~6! or ~7! shows a correction to the static length
which m→m1ms/2.

Note first that the term (N2 i )mig/ki in Eq. ~6a!, or
equivalently (,2z)msg/,k in Eq. ~7a!, implies that the coils
stretch more at the top, where the spring supports m
weight. This difference means that the center of mass of
spring will be lower than half-way down the spring, whic
will be of interest when we discuss the pendular motio
Second, Mak7 started from Ref. 6 and derived a piecewi
function that generalizes the static correction to include
effect of a constant force necessary to initially extend
spring, thereby providing a discrete version of Eq.~20! in
Ref. 8 and footnote 16 in Ref. 9. Finally, for convenience
will consider the freely hanging length,

,s5,01
msg

2k
, ~8!

to be a measured quantity rather than measuring,0 and add-
ing msg/2k.

The dynamic correction due to a bouncing, finite-ma
spring affects the period of oscillation. This correction can
derived in a deceptively easy manner by using the kinet11

and potential energy in Lagrangian mechanics if one assu
uniform stretch, or equivalently, an uniform mass density
uniform coil density. This derivation is deceptively easy b
cause a more careful and complicated treatment gives a
scendental equation~discussed in the following! that reduces
to the Lagrangian result in the appropriate limit. Given
spring of length,0 and massms and an uniform linear mas
densityl5ms /,, we can find the velocityv(z) of a differ-
ential portion of the spring at a distancez measured from the
top of the coils:v(z)5vmz/,, wherevm is the velocity of
the added mass and, is given by Eq.~6!. The kinetic energy
of the spring betweenz andz1dz is

dK5
1

2
l@v~z!#2dz5

1

2

lvm
2 z2

,2 dz. ~9!

The total kinetic energy of the spring is the integral of E
~9! plus that of the mass hanging from the spring:

K5
1

2
mvm

2 1E
0

, 1

2

lvm
2 z2

,2 dz5
1

2 S m1
ms

3 D vm
2 . ~10!

Equation~10! shows a correction to the dynamic length
which m→m1ms/3. When hung, the bottom of the un
loaded spring sits atz5,01msg/2k. The spring potential
energy plus the gravitational potential energy is

U~z!5
1

2
k~,02z!22mgz2msg

z

2
. ~11!

We have again assumed uniform mass density to write thems
term.
819Joseph Christensen
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The kinetic and potential energies, Eqs.~10! and~11!, can
be used in the Lagrangian formulation to derive the n
equation of motion. The generalization of Eq.~1! is

S m1
ms

3 D z̈1kz5kF,01S m1
ms

2 D g

kG , ~12!

with the solution

z~ t !5~z02, !cos~vst !1,, ~13!

wherevs5A(m1ms/3)/k and ,5,01(m1ms/2)g/k as in
Eqs. ~6! and ~7!. @A shift of the coordinate system by,
5,01(m1ms/2)g/k makes Eq.~13! look simpler, but hides
the shift in the equilibrium position.# It follows that the pe-
riod of oscillation becomes

Ts52pAm1
ms

3

k
. ~14!

The ms/3 in Eq. ~14! is the dynamic correction and may b
contrasted with thems/2 equilibrium shift of Eq.~7!, the
static correction. Students who have not seen Lagrang
can infer the dynamic correction to the period from Eq.~10!,
because it is reasonable to expect the period to see the
mass as the kinetic energy, (m1ms/3), rather than as the
equilibrium shift, (m1ms/2).

Several papers6–10,12–14have been published on these co
rections due to the effect of the spring mass. Tho
authors6–10 that consider both corrections make a point
distinguishing the static correction from the dynamic corr
tion. As alluded to earlier, a careful treatment of the dynam
spring in terms of the position of the spring shows that
cluding the mass of the spring leads to a transcendental e
tion for the period.

In an early paper, Weinstock10 considered a mass in un
form circular motion which stretches the spring the sa
amount as a hanging mass and introduced anms/3 correction
to the mass dependence of the frequency. He also consid
the mass oscillating about its equilibrium radius and fou
that the angular frequency satisfies the transcendental e
tion, which in my notation reads

2pAms /k

Ts
tanS 2pAms /k

Ts
D 5

ms

m
. ~15!

Equation~15! reduces to Eq.~14!, with dynamic correction
m1ms/3, in the smallms /m limit.

Heard and Newby8 and Cushing9 also consider both the
static and dynamic corrections. For the dynamic spring, t
solved the appropriate differential equations. Referenc
went a step further by considering a vertical soft spring
find that in thems /m→` limit, Ts→ @4/(2n11)#Ams /k,
wheren is any positive integer~corresponding to the peri
odic nature of trigonometric functions!. These periods corre
spond to the eigenvalues that solve the appropriate diffe
tial equation given in their paper. These periods also so
Eq. ~15! in the largems /m limit. Consequently, as discusse
by Galloni and Kohen,6 the dynamical correction in Eq.~14!
is different in the largems /m limit than in the smallms /m
limit. Equation~14! is given in Ref. 6 as

T52pA1

k S m1
ms

D D , ~16!
820 Am. J. Phys., Vol. 72, No. 6, June 2004
ns

me

e
f
-
c
-
a-

e

red
d
ua-

y
8

o

n-
e

whereD is given by the solution to their version of Eq.~15!
with the limiting behavior

lim
ms /m→0

D53, lim
ms /m→`

D5
p2

4
. ~17!

The dynamical correction is discussed further in Refs.
13, 14, and 9. Three methods for solving Eq.~15! are given
in Weinstock’s later paper,12 in which it was shown that the
lowest frequency mode is sufficient to describe the sm
ms /m limit. The uniform density approximation was used
show that thems/3 dynamic correction is reasonable up
ms5m. McDonald13 showed that a closed form forD exists
for the conical spring, reproduced the result forD in Ref. 6,
and comparedms /D to the equivalent correction term fo
conical springs. Bowen14 considered an unloaded slinky wit
general initial conditions for the nonfixed end, emphasiz
the p2/4 result. Cushing9 showed explicitly that the smal
ms /m case necessarily transitions to the largems /m case so
that the lowest normal mode is always the dominant one

It should be emphasized that adding a termms/3 as in Eqs.
~10! and ~14! is based on the assumption of uniform stret
(l5ms / l is a uniform coil density!. This assumption be-
comes less applicable for softer springs and depends on
ratio ms /m, as seen in Eq.~17!. In most cases~all but the
smallerk springs cited in Refs. 7 and 9!, it seems sufficient
to usems/3 as was done here. The relevant results are
cussed in Appendix B.

B. Summary of the physical pendulum

As stated following Eq.~2!, vp5Amg,/I . For a physical
pendulum, we cannot use the simplificationI 5m,2, which
givesTp in Eq. ~4!. Rather, we must express the period mo
generally as

Tp52pA I

mg,
, ~18!

where the denominator is due to the torques that drive
oscillation. To see how this general expression changes
different assumptions, consider three cases. Case 1: A sim
pendulum with a massless string hasI 5mbob,

2. If we use
this value ofI and that the torque on the bob ismbobg,, we
have T52pA,/g. Case 2: A solid rod pendulum hasI
5 1

3mrod,
2 and, because the torque acts at the center of m

of the rod, the denominator of Eq.~18! becomesmrodg(,/2).
The period of the rod is then

T52pA 1
3 m,2

mg~,/2!
52pA2,

3g
. ~19!

Case 3: A massive support with a massive bob, like the c
of interest, combines these two cases by separately ad
the moments of inertia in the numerator,I 5mbob,

2

1 1
3mrod,

2, and the torques in the denominator,t5mbobg,
1mrodg(,/2), giving a period of

T52pA~mbob1
1
3 mrod!,

~mbob1
1
2 mrod!g

. ~20!

Note that Eq.~20! reduces to either the massless string or
solid rod pendulum when the appropriate mass is set to z
820Joseph Christensen
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It is an interesting coincidence that the moment of ine
sees the same fraction ofms as the kinetic energy discusse
in Sec. II A and that the torque sees the same fraction ofms
as the stretching of the spring. However, the mathemat
expression for the moment of inertia of the spring pendul
will be further complicated by the length dependence as
cussed in Sec. II C. A careful treatment of the length dep
dence in Eq.~18!, specifically in terms of the mass distribu
tion, shows that the length does not cancel as simply as it
in Eq. ~20!.

C. Massive spring as a physical pendulum

Now that we have introduced the mass into the bounc
spring and swinging pendulum, we can use Eqs.~14! and
~18! to derive an expression for the mass that produces
desired resonance between bouncing and swinging. As
cussed in Sec. II B, the distribution of mass in the syst
must be understood in order to express the period of
pendular motion. To account for the geometry of the swin
ing spring system, Fig. 1~a! shows the various relevan
lengths: the length,s of the spring with no added mass, th
amount of stretchmg/k due to the added mass, the distan
,1 from the top of the coils of the spring to the pivot poin
the distance,2 from the bottom of the coils of the spring t
the top of the added mass, and the distance,m from the top
of the added mass to the center of mass. The initial lengt
the hanging spring,,s , is stretched only due to its ow
weight as given by Eq.~8!, and ,2 and ,m depend on the
amount of mass added. Figure 1~b! distinguishes the theoreti
cally convenient lengths,,2 and ,m , from the experimen-
tally convenient heights: the distancehs from the coils to the
hook, the heighthh of the hanger, and the heighthm of the
masses. These lengths are related according to,25hs1hh

2hm and ,m5hm/2. For simplicity, I will assume that,2

and ,m are independent of the amount of added mass.
deed, one might expect that,m is significantly less than,s so
that the estimated value of,m is irrelevant as long as it is
close enough to its true value. As a rough approximation,
appropriate,2 and,m can be estimated by measuringhm for
the mass given by Eq.~5!. I will discuss this issue in Sec. IV

The expressions for the period of a swinging coil can
simplified by assuming that, when swinging, the spring i
rigid rod with massms , length (,s1mg/k), and center of
mass@,11(,s1mg/k)/2#. A more accurate, but much les
convenient expression for the center of mass is given in
pendix B. The moment of inertia in the numerator of Eq.~18!
l

821 Am. J. Phys., Vol. 72, No. 6, June 2004
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can then be found and is due to both the spring and the ad
mass. It also is a combination of rotations about the cente
mass,I c.m., and the effect of the parallel axis theoremI pat:

I 5I s,c.m.1I s,pat1I m,c.m.1I m,pat. ~21!

The first two terms can be written as

I s,c.m.1I s,pat5
1

12
msS ,s1

mg

k D 2

1ms
S ,11

,s1
mg

k

2
D 2

. ~22!

The first term is the moment of inertia of a slender rod~the
spring! rotating about its center of mass. If,150, the two
terms in Eq.~22! would combine to give1

3ms(,s1mg/k)2,
the moment of inertia of a slender rod about one end. T
definition,

x1[
,1

,s1mg/k
, ~23!

leads to the expression

I s,c.m.1I s,pat5msS ,s1
mg

k D 2S 1

3
1x11x1

2D . ~24!

The third term in Eq.~21! is

I m,c.m.5
1

12 m~hm!25 1
12 m~2,m!25 1

3 m,m
2 . ~25!

The length 2,m is used because,m is half the height of the
added mass,hm . The fourth term in Eq.~21! describes the
mass at the end of all of the lengths:

I m,pat5mS ,11,s1
mg

k
1,21,mD 2

. ~26!

Finally, the denominator of Eq.~18! can be expressed as

Mg,→mgF,11,s1
mg

k
1,21,mG

1msg
F ,11

S ,s1
mg

k D
2

G . ~27!

If we substitute Eqs.~24!–~27! into Eq. ~18! and combine
this result withTs from Eq. ~14! as expressed by the squa
of Eq. ~3!, we find
4

m1
ms

3

k
5

msS ,s1
mg

k D 2F1

3
1x11x1

2G1
1

3
m,m

2 1mF S ,s1
mg

k D1,11,21,mG2

mgF S ,s1
mg

k D1,11,21,mG1
1

2
msgS ,s1

mg

k
12,1D . ~28!
of
The complicated expression form in Eq. ~28! explains why
it is not usually considered in this form. Note that if,1

5,25,m50, then the substitution of Eqs.~24!–~27! into
Eq. ~18! for Tp reproduces Eq.~20!. This case will be usefu
in Sec. III D. For compactness, we have written only one
the contributions in Eq.~28! in terms of x1 . If we gather
terms in powers ofm without using thex1 notation, we ob-
tain
821Joseph Christensen
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053m31F3ms12
k

g
~,s1,11,21,m!Gm2

1F2

3
ms

21
k

g S 8

3
,s1

13

3
,11,21,mDms

2
1

3 S k,m

g D 2

2S k

gD 2

~,s1,11,21,m!2Gm
1F2

3
ms

2 k

g
~,s12,m!

2msS k

gD 2S 1

3
,s

21,s,11,1
2D G . ~29!

Given the massms of the spring, the spring constantk, and

Fig. 1. The hanging spring can be separated into a variety of distinct m
surements.~a! The theoretically useful quantities;,s is the length of the
hanging spring with no mass attached but stretched due to its own mas,m

is the distance to the center of mass for the mass added. The total len
denoted as,5,11,s1mg/k1,21,m . ~b! A close up of the added mass t
relate the theoretically useful quantities~,! to the experimentally easy-to
measure quantities (hh).
822 Am. J. Phys., Vol. 72, No. 6, June 2004
the various lengths appropriate to the spring, the coefficie
can be included in a root-finding program to solve for wh
should be the best prediction of the massm that will cause
the spring to excite the autoparametric resonance.

We have made three assumptions to obtain Eq.~29!. We
assumed that the spring is a rigid rod for calculating
moment of inertiaI s , that,2 and,m are independent of the
mass, and that the spring has uniform density giving b
(m1ms/3) and the expression for the center of mass in E
~22! and ~27!. The first assumption is reasonable becau
when the appropriate mass produces the autoparametric
nance between swinging and bouncing, the few oscillati
in the purely swing-mode do not have any visible boun
that is, the swinging spring behaves as a rigid rod. The s
ond assumption will be reasonable if and only ifhm can be
estimated to sufficient precision. The details of generaliz
the third assumption are relegated to Appendix B.

III. APPROXIMATIONS TO THE CUBIC

Solving the cubic polynomial in Eq.~29! for the added
massm is straightforward using standard numerical roo
finding techniques. However, reasonable approximati
should simplify Eq.~28! considerably. In this section, I wil
introduce three seemingly reasonable approximations to
a more useful approximation to Eq.~28!.

We will consider the case,15,25,m50 in Sec. III A
and then,mÞ0 in Sec. III B. We build on these approxima
tions in Sec. III C where we keep all three lengths and S
III D where we build a mathematically convenient approx
mation.

A. The long-spring approximation

Whenx1 is set to zero, Eq.~28! remains cubic inm due to
its dependence on,2 and,m . In the long-spring approxima
tion, we set,1 ~andx1) 5,25,m50, and Eq.~28! becomes

4

m1
ms

3

k FmgS ,s1
mg

k D1
1

2
msgS ,s1

mg

k D G
5

1

3
msS ,s1

mg

k D 2

1mS ,s1
mg

k D 2

. ~30!

We can cancel (,s1mg/k) and (m1ms/3), giving an ex-
pression linear inm,

m5
k ,s

3g
2

2ms

3
, ~31!

which is a minor change from the massless spring sim
pendulum of Eq.~5!.

B. Weakening the long-spring approximation

Let us take,mÞ0 and,15,250, because,1 and,2 are
always added to,s , whereas,m is not added to a large
quantity in the 1

3m,m
2 term. With this choice, Eq.~28! be-

comes

a-

is
822Joseph Christensen
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4

m1
ms

3

k

5

1

3
msS ,s1

mg

k D 2

1
1

3
m,m

2 1mF S ,s1
mg

k D1,mG2

mgF S ,s1
mg

k D1,mG1
1

2
msgS ,s1

mg

k D .

~32!

Because Eq.~32! is still cubic in m, I will assume that,m

!,s and definexm as

xm[
,m

,s1
mg

k

'
,m

,s1
k,s

3g

g

k

5
3,m

4,s
, ~33!

wherem has been replaced by the massless-spring, sim
pendulum approximation of Eq.~5!. After we divide the nu-
merator and denominator of the right-hand side of Eq.~32!
by (,s1mg/k) and collect terms in powers ofm, we obtain
a quadratic equation form that can be solved given,m , ms ,
k, and,s ,
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F312xm2
4

3
xm

2 Gm21F S 31
4

3
xmDms

2S 112xm1
4

3
xm

2 D k,s

g Gm1F2

3
ms

22
k,sms

3g G50. ~34!

Note that Eq.~34! reduces to Eq.~31! in the limit xm→0.

C. Collecting small terms

To this point, the theoretical results either are poor pred
tors of the desired massm, such as Eqs.~5! and~31!, or are
higher-order expressions, such as Eqs.~29! and ~34!. Equa-
tion ~31! will give poor predictions form because the pre
dictions of Eq.~5! are, in most cases, smaller than the ne
essary physical mass.

The terms in Eq.~28! do not readily cancel because of th
different combinations of,1 , ,2 , and ,m . Let us first re-
place each of these by,ave, the average of these three qua
tities. This replacement reduces Eq.~28!, without thex1 no-
tation, to
4

m1
ms

3

k
5

1

3
msF S ,s1

mg

k D 2

13,aveS ,s1
mg

k D13,ave
2 G1

1

3
m,ave

2 1mF,s1
mg

k
13,aveG2

mgF,s1
mg

k
13,aveG1msg

1

2 F,s1
mg

k
12,aveG . ~35!

If we rewrite Eq.~35! in terms ofL[(,s1 mg/k 13,ave) and complete the square in thems term, we obtain

4

m1
ms

3

k
5

S m1
ms

3 DL22
ms

3 F3,aveS ,s1
mg

k D16,ave
2 G1

1

3
m,ave

2

S m1
ms

2 DgL2
1

2
msg,ave

. ~36!
lue
We define the hopefully small quantity

y[
,ave

L
, ~37!

divide the numerator and denominator byL, and find

4

m1
ms

3

k

5

S m1
ms

3 DL2msyF S ,s1
mg

k D12,aveG1
1

3
my,ave

S m1
ms

2 Dg2
1

2
msgy

.

~38!

We then multiply both sides by (m1 ms/2)g2 1
2msgy, col-

lect terms of ordery on the right, and obtain
4
g

k S m1
ms

3 D S m1
ms

2 D
5S m1

ms

3 DL

1yF2S m1
ms

3 D msg

k
2ms~L2,ave!1

m,ave

3 G . ~39!

If we divide through by (m1ms/3), solve form, and collect
the y terms toO(y), we find

m5
k

3g
~,s13,ave!2

2

3
ms1O~y!. ~40!

If we ignore terms of ordery, Eq. ~40! gives a better esti-
mate of the mass. Alternatively, given the experimental va
for the mass, we can estimate the magnitude of theO(y)
terms and evaluate the approximationl ave!L.
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Table I. The physical dimensions of the springs used. For all but the two stiffest springs, a mass-hang
height hh58.000(4) cm was used. The second stiffest spring used a hanger withhh514.806(4) cm. The
stiffest spring used one withhh528.2(1) cm. The other lengths can be found from,25hs1hh2hm and ,m

5hm/2. The height of the added masshm is given for the mass predicted by the equation indicated. All leng
are in centimeters.

k ~N/m! ms ~kg! ,s ,1 hs

Eq. ~5!
hm

Eq. ~42!
hm

Experimental
hm

3.059~1! 0.6779~2! 293.3~1! 2.00~5! 2.00~5! 3.419~4! N/A N/A
6.696~3! 0.3390~2! 121.4~1! 0.00 2.00~5! 3.272~4! 1.346~4! 1.276~4!
25.16~4! 0.0829~2! 26.6~1! 1.23~5! 1.32~5! 2.846~4! 3.316~4! 3.456~4!
28.63~5! 0.0824~2! 27.6~1! 1.40~5! 0.95~5! 3.292~4! 3.742~4! 3.809~4!
36.26~8! 0.0884~2! 27.1~1! 1.30~5! 1.30~5! 4.109~4! 4.535~4! 4.912~4!
40.9~1! 0.0846~2! 27.1~1! 1.20~5! 1.20~5! 4.315~4! 4.992~4! 5.518~4!
51.4~2! 0.0786~2! 27.2~1! 1.50~5! 1.30~5! 5.012~4! 7.346~4! 6.849~4!
1002~2! 0.0629~2! 6.7~1! 1.1~1! 5.00~5! 6.35~5! 20.45~5! 23.84~5!
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D. A mathematically convenient approximation

We have seen that the spring-like oscillation is affected
the spring mass by a factor of (m1ms/3). We also saw tha
a rod-mass pendulum has the moment of inertiaI 5(m
1 ms/3),2 and torquet5(m1 ms/2)g, as if each saw the
additional mass at the bottom of the spring. Although phy
cally inappropriate, if we simply extend Eq.~20! by includ-
ing the lengths,1 , ,2 , and,m and substitute this result int
Eq. ~3! as before, we find

4

m1
ms

3

k
5

S m1
ms

3 D S ,11,s1
mg

k
1,21,mD 2

S m1
ms

2 DgS ,11,s1
mg

k
1,21,mD . ~41!

Equation~41! should be compared to Eq.~28! to see how it
differs from a more physically accurate treatment. Equat
~41! is, however, mathematically convenient and easily
duces to

m5
k

3g
~,s1,11,21,m!2

2

3
ms , ~42!

which is Eq.~40! without theO(y) term. The physical inter-
pretation is that if,1 , ,2 , and,m are sufficiently less than
,s , they can be handled conveniently as in Eq.~40!, but even
small values are not so small that they can be set to zero
Eq. ~31!.

IV. ANALYSIS OF THE APPROXIMATIONS

After describing the experimental apparatus and the un
tainty, we will compare the predictions of the various a
proximations to the mass that actually induces the resona

A. The experiment

Our goal is to find a useful expression for the mass t
induces the autoparametric resonance between the ve
oscillations and the pendular swinging of a spring. To a
lyze the accuracy of the predictions, seven springs w
used. The spring constants, masses, and various length
given in Table I. The five springs with spring constants ran
ing from 25 to 52 N/m were selected from a standard und
graduate laboratory set. A wave-demonstration spring
used to test the predictions on a lowk spring. By first using
the full length of the spring and then clamping it half-wa
hys., Vol. 72, No. 6, June 2004
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down, I was able to investigate the results fork
53.059 N/m andk56.696 N/m. Finally, a spring-scale wa
removed from its casing to test a highk spring.

The values ofk in Table I are not needed becausek ap-
pears in the ratiok/g, which can be measured directly.
mass hanging in equilibrium from a spring will satisfykz
5mg; therefore, the slope of the displacement versus
added mass~the independent variable! will give g/k. To ob-
tain the values of the spring constant, we assumedg
59.80(1) m/s2. These values are listed ask in Table I. Ap-
pendix A discusses some of the relevant details of this m
surement.

While addressing the uniform density issues~raised at the
end of Sec. II A!, Appendix B discusses an alternative, dire
measurement ofk. Becausek can be measured directly, it i
possible15 to combine the measurements ofg/k and k to
calculate the local gravitational field.

Table I also lists the physical lengths of the equipme
The length,s was measured with a meter stick. The lengt
,1 andhs were measured with a vernier caliper, which ha
precision of 0.002 cm. To account for slight awkwardness
measuring as well as for the possibility that the support r
might stretch when weight was added, this uncertainty w
increased to 0.05 cm. The value ofhh is not listed because
the same mass hanger was used for five of the seven spr
This hanger hadhh58.000(4) cm. The second stiffes
spring used a mass hanger withhh514.806(4) cm. These
two were measured with a caliper with the error doubled
account for slight awkwardness. The stiffest-spring ma
hanger was measured with a meter stick and hadhh

528.2(1) cm.
As mentioned in Sec. II B and shown in Fig. 1~b!, the

other needed lengths can be found from,25hs1hh2hm and
,m5hm/2. To find an appropriatehm , we estimated a value
for the added mass from Eq.~5! and, using standard masse
and a vernier caliper, measuredhm . If Eq. ~42! with this
value ofhm predicts a mass with a height that is significan
different than this value ofhm , we measured thehm for the
predicted mass and recalculated Eq.~42!. One or two itera-
tions were sufficient for consistent results. The last three c
umns of Table I indicate how muchhm can vary between the
predictions from these equations. So, even if we are car
to measure the lengths very precisely, there is an inhe
824Joseph Christensen
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Table II. Comparison of the predicted mass values to the experimental masses. Except for Eq.~5!, the calculation for the predicted mass requires a value
the height of the mass being calculated,hm . As a rough estimate, Eq.~5! is used to estimatehm in the other equations. To improve the prediction, the res
of Eq. ~42! is then used to re-estimatehm . This estimation process was self-consistent within three iterations. The two rightmost columns compare
average differences5A( i 51

N (mi2mexpt)
2/N between the predicted and experimental masses. The second-to-last column is averaged over the seve

springs. The last column averages over six springs by excluding the softest and stiffest springs. All units are kilograms. Equations~29! and ~42! are
significantly better predictors of the mass that experimentally excites the spring-pendulum resonance.

Eq. used to
predictm

Eq. used to
estimatehm

Mass prediction for eight springs, sorted by spring constant,k ~N/m! rms difference

3.059~1! 6.696~3! 25.16~4! 28.63~5! 36.26~8! 40.9~1! 51.4~2! 1002~2! all k k,100

~5! 0.3052~3! 0.2765~4! 0.228~1! 0.269~1! 0.334~1! 0.377~2! 0.476~3! 2.29~3! 3.217 0.123
~29! ~5! 20.1124 0.0647 0.257 0.306 0.389 0.438 0.692 9.8 0.375 0.0
~42! ~5! 20.1361(6) 0.070~1! 0.250~3! 0.299~4! 0.381~5! 0.430~5! 0.684~7! 9.2~1! 0.605 0.034
~29! ~42! 20.1144 0.066 0.255 0.303 0.386 0.434 0.673 10.8 0.027 0.0
~42! ~42! 20.1339(5) 0.072~1! 0.248~3! 0.296~4! 0.378~5! 0.425~5! 0.663~7! 10.5~1! 0.118 0.032
~34! ~42! 20.1460 0.051 0.185 0.231 0.302 0.354 0.488 9.64 0.449 0.1
Experimental range N/A 0.065~5! 0.245~5! 0.318~8! 0.420~10! 0.480~10! 0.635~15! 10.8~2!
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systematic uncertainty in that we do not actually know
mass for which we should be measuring the height,hm .

B. Uncertainty and precision

Table II gives the predictions from the various approxim
tions as well as the experimental values that produce
resonance. The experimental masses were found by trial
error starting from the predicted values. The central valu
that which subjectively seemed to give the most pronoun
effect. The error bars on the experimental mass are the ex
to which I could adjust the mass and see a pendular sw
that retained a small amount of bouncing. Including mas
that produced a moderate swing without significantly dim
ishing the vertical oscillation would typically double or trip
the listed uncertainty.

Table II also estimates the precision of some predic
values. Because Eq.~5! is a product, the relative uncertain
ties can be added in quadrature:

sm,55
k,0

3g
AS sk

k D 2

1S s,

,0
D 2

1S sg

g D 2

. ~43!

The precision of Eqs.~29! and ~34! could be found by a
Monte Carlo analysis, but was not due to the consiste
between Eqs.~29! and ~42! and the measurements. The d
termination of the precision of Eq.~42! is only slightly more
complicated than Eq.~43! due to the additional terms:

sm,425
k~,013,ave!

3g

3AS sk

k D 2

1S 4s,

,013,ave
D 2

1S sg

g D 2

1
2

3
sms.

~44!

The relative uncertainty in 4s, /(,013,ave) dominates the
right-hand side of Eq.~44!. The relative uncertainty ofk and
g are below 1% and usually much less. The relative unc
taintiess, /,0 and 4s, /(,013,ave) are such that for every
millimeter that s, is increased,sm /m increases by abou
1%. This important point cannot be emphasized enough
those who wish to utilize these equations. If the lengths
not measured carefully, then the precision of the predicti
is reduced. Further, we must control the systematic un
tainty of using a precise measurement of an inaccurate
825 Am. J. Phys., Vol. 72, No. 6, June 2004
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diction. This can be done by checking the self-consiste
mentioned at the end of Sec. IV A.

To be explicit, the 4s, term appears in Eq.~44! as the
uncertainty in,s1,11,21,m ; however, these uncertain
ties are not actually all the same. Some terms are meas
with a meter stick~precision of 0.05 cm! and some with a
caliper~precision of 0.002 cm!. For awkward measurement
these precisions were increased. Further,,25hs1hh2hm

and each of these measurements increases the uncert
With this in mind, 4s, is actually 0.1 cm ~from ,s)
10.05 cm ~from ,1) 0.05 cm ~from hs in ,2) 10.004 cm
~from hh in ,2) 10.004 cm ~from hm in ,2) 10.002 cm
~from ,m5hm/2) 50.210 cm. If the added mass or th
hanger is measured with a ruler~as for the stiffer springs tha
require more applied mass!, 4s, becomes 0.256 cm.

Regarding the systematic uncertainty, we see from Tab
that hm can be off by as much as 2 cm if the mass is n
predicted accurately. Ifs, is taken to be 0.5 cm so that th
4s l term matches this 2 cm uncertainty, thensm /m'5%.
For the 51 N/m spring which requires an added mass
0.635 kg, this 5% relative uncertainty,sm /m, implies an
uncertainty ofsm50.032 kg. Unfortunately, Table II show
that I only obtained a good resonance within 0.015 kg
0.635 kg. This variation indicates that it is important to min
mize the systematic uncertainty by verifying the consisten
between the mass used to estimatehm and the predicted
mass. However, this may not be of dire necessity when
considers that withs,'0.5 cm, the prediction of Eq.~29! is
still within 2sm of the experimental value.

The uncertainties listed for the masses in Table II refl
the roughly 1% precision of the length measurements. T
these uncertainties do not overlap with the experimental
ues, especially using Eq.~29!, suggests that there is an add
tional source of uncertainty. This discrepancy will be cons
ered in Sec. IV C where we will discuss the underlyin
assumptions.

The precision quoted for the predictions in Table II ind
cates only how much the result will vary due to the measu
ment uncertainties. It does not indicate how close the pre
tion is to the experimental value, because it does not incl
the systematic uncertainties such as the 2 cm variation in
prediction ofhm . In addition, no attempt was made to ind
cate the size of the terms dropped in the approximati
825Joseph Christensen
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because doing so would only indicate how far the vario
approximations are from Eq.~29!, not how far the prediction
is from the experimental value.

To estimate the quality of the predictive value of ea
expression, the rightmost columns of Table II show the ro
mean-square difference between each predicted mass an
experimental mass averaged over the various springs:

s5A1

N (
eq51

N

~meq2mexpt!
2. ~45!

Two values are given for each equation. The second-to-
column is the rms error including all springs. The last c
umn is the rms error not including the stiffest spring. B
cause the stiffest spring involves masses that are ove
order of magnitude larger, these differences can significa
overwhelm the others. On average, Eq.~29! predicts the ex-
perimental value to within 0.027 kg, even when the stiff
spring is included.

C. The results

As expected, Table II shows that Eqs.~29!, ~34!, and~42!
are significant improvements over the assumption of a m
less spring in Eq.~5!. For the smallestk spring in Table II,
the negative mass values are consistent with not finding
experimental value. Although the prediction of Eq.~5! for
this spring is 0.305 kg, the measured period of swinging
of bouncing indicates thatTp cannot equal 2Ts as needed for
the resonance. In fact, the massless spring approxima
Eq. ~5!, only has a chance of being coincidentally correct
k'20 N/m. Fork above this value, Eq.~5! predicts a mass
that is too small and becomes worse for larger values ofk, in
spite of the expectation that this approximation might i
prove for stiff springs. In fact, ask increases, the need t
include,1 , ,2 , and,m becomes more relevant, presumab
because a stiffer spring requires more mass to oscillate~mak-
ing at least,m harder to ignore! and the inclusion of these
terms is a better measure of the pendular length, which c
trols the pendular period. Because the long-spring appr
mation, Eq.~31! (,15,25,m50), is necessarily smalle
than the massless spring of Eq.~5!, the predictions of Eq.
~31! were not included in Table II.

As seen in the rms averages of Table II, the consiste
between Eqs.~42! and ~29! is impressive. Although the rm
difference over all springs is 0.605 kg for Eq.~42!, it predicts
the mass to within 3% for the stiffest spring and has an r
difference of only 0.032 kg for the other springs. This p
dictive capability is not too different from Eq.~29!, which
has an rms difference below 0.03 kg whether the stiff spr
is included or not. If Eq.~42! does not give accurate resul
and one wishes to avoid solving a cubic polynomial, o
could use the calculated mass to estimate theO(y) terms in
Eq. ~40! to determine how far this prediction is from Eq
~29!.

It is interesting that Eq.~29! does not give exact results.
is possible that the problem is due to the systematic un
tainty discussed in Sec. IV B. As noted there, for half of t
springs, the predictions of Eq.~29! are within sm of the
experimental value and within 2sm for the remaining springs
if we assume thats,50.5 cm. This is a sizable uncertain
for the measurement of lengths and so this estimate may
account for a portion of the difference. Another explanat
for the inaccuracy of Eq.~29! might come from the assump
826 Am. J. Phys., Vol. 72, No. 6, June 2004
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tions that the spring is a rigid rod and has uniform dens
Equation~42! uses only these assumptions and the inclus
of ,1 , ,2 , and,m and gives predictions that are comparab
to Eq. ~29! for the five central springs. Equation~42! is
within about 3% of the experimental value for the very st
spring, where one might expect these assumptions to
more reasonable, and is about 11% off for the softest spr
where these assumptions are more suspect. Equation~29! is
close in both cases. As mentioned, the rigid rod assump
should be reasonable because the swing mode at the
nance mass does not have a discernible bounce. The uni
density assumption, on the other hand, might warrant furt
investigation. See Appendix B for further details.

V. CONCLUSIONS

The purpose of this paper is to improve the prediction
the mass, not to solve the differential equations of mot
that would generalize the analysis of Refs. 1 and 2 describ
the motion of the oscillating mass. Although the express
that predicts the mass for a massless spring as a simple
dulum, Eq.~5!, is easy to derive, it is possible to improve th
prediction by extending the derivation to describe the m
sive spring as a physical pendulum. This extension gives
~29!, a cubic polynomial for the mass that will induce th
spring-pendulum resonance. A rough approximation also
developed that gives a much simpler expression, Eq.~42!,
and comparable results. It is clear from Table II that bo
Eqs. ~42! and ~29! are much better predictors of the ma
than Eq.~5!. Equations~29! and~42! assume that the swing
ing spring is a rigid rod with uniform density. Because in fu
swing, it does not bounce, the rigid rod assumption is pr
ably reasonable, at least for springs that are not too lo
However, the uniform mass assumption is somewhat sus
~see Appendix B!. The lengths,2 and,m ~shown in Fig. 1!
also play a significant role in the accuracy of the predictio
The precision of the predictions in Table II are due primar
to the uncertainty in the lengths.

APPENDIX A: DETAILS OF MEASURING kÕg

Eighteen masses were gradually added to each spring
the corresponding stretch was measured using a mirro
ruler to minimize parallax. The masses used to cause
stretch ranged from 0.150 to 1 kg for the springs with m
range stiffness, 0.010 to 0.500 kg for the soft spring, and 3
15 kg for the stiff spring. The first two mass ranges we
measured to a precision of 0.1 g; the third was measure
within 2 g. The corresponding displacement was measure
0.1 cm for all but the two softest springs. Due to limitatio
in construction, these were measured to a precision of
cm. The slope was found by a least-squares fit16 to account
for the measurement uncertainty in both the added mass
the stretch. To give an idea of the value of the spring c
stants for the springs used, we assumeg59.80(1) m/s2 and
divide by the slopeg/k. This value is listed ask in Tables
I–III. The reducedx2 of these fits,xn

25x2/n with n equal to
the degrees of freedom, are listed in Table III. Each spr
has eighteen data points except for thek525 N/m spring.
The value ofxn

2'0.3 indicates that the precision in the di
placement may have been overestimated, so thek values
826Joseph Christensen
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Table III. Tests of the uniform stretch~coil density! assumption. The values ofk are from the slope of a graph
of m vs x, assuming thatg59.80(1) m/s2. ~The reduced chi-square,xn

2 , values indicate that the precision o
the displacement may be overestimated.! The ratioZc.m./, compares the distance from the top of the spring
the calculated center of mass,Zc.m., to the length of the spring,,. This ratio is evaluated at the experiment
mass value and deviations from 50% indicate the nonuniformity of the stretch. A graph of (T/2p)2 vs mass has
slopes and interceptb. If we assume uniform stretch as discussed in Appendix B, the reciprocal slopes)
should givek ~without assuming a value ofg), the ratio 3b/s should give the mass of the spring, and the ra
of b/(sms) should be 1/3. Differences from these values should correlate to differences inZc.m./, from 50%.

k ~N/m! xn
2 n Zc.m./, ~%! ms ~kg! 1/s 3b/s b/(sms)

3.059~1! 1.196 16 55.08 0.6779~2! 3.260~8! 0.850~3! 0.418~2!
6.696~3! 0.336 16 52.67 0.3390~2! 6.837~9! 0.359~1! 0.353~1!
25.16~4! 0.309 15 50.71 0.0829~2! 25.44~6! 0.098~4! 0.40~2!
28.63~5! 0.355 16 50.60 0.0824~2! 28.81~5! 0.092~3! 0.37~1!
36.26~8! 0.316 16 50.51 0.0884~2! 36.56~6! 0.095~3! 0.36~1!
40.9~1! 0.379 16 50.44 0.0846~2! 41.14~5! 0.094~3! 0.37~1!
51.4~2! 0.164 16 50.31 0.0786~2! 51.9~1! 0.085~4! 0.36~2!
1002~2! 0.494 16 50.03 0.0629~2! 1015~3! 0.07~9! 0.4~5!
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2 xn
2 , which gives

sc50.03– 0.06 cm for all but the two softest cases, wh
havesc50.3 cm.

APPENDIX B: NONUNIFORM COIL DENSITY IN A
MASSIVE SPRING

In a massive spring, each coil stretches all of the co
above it and none of the coils below it, which implies
nonuniform distribution of the coils of the spring. Whe
hung under its own weight, the density must increase tow
the bottom. The mass per coil is still considered uniform; i
the nonuniform distribution of the coils that produces a no
uniform distribution of the spring mass. In fact, the ma
density is

l~z!5l0

ms

,01
mg

k
1

,2z

,

msg

k

, ~B1!

wherel0 is a dimensionless normalization constant given

l05
msg

k, F lnS ,01
mg

k
1

msg

k

,01
mg

k

D G 21

~B2!

and,5,01 (g/k) (m1 ms/2). Because the argument of th
logarithm also can be expressed as (,1 msg/2k)/(,
2 msg/2k), it is possible to writel0 as

l05
msg

k, F tanh21S msg

2k, D G21

. ~B3!

We can verify that*0
,l(z)dz5ms , that the average densit

matches the uniform density used in Sec. II A, and that

Zc.m.[
1

ms
E

0

,

zl~z!dz, ~B4!
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h

s

rd
s
-
s

y

Zc.m.5,F ,01
~m1ms!g

k

msg

k

2
1

lnS ,01~m1ms!g/k

,01mg/k D G ,

~B5!

Zc.m. →
ms /k→0 ,

2
2

1

12

msg/k

,01mg/k
1OS msg

k D 2

. ~B6!

Equation~B5! shows that Eqs.~22! and~27! should be modi-
fied significantly to account for the shift in the center
mass. Equation~B6! shows that for either a light spring or
stiff spring, the center of mass approaches the midway po
,/2.

As an initial test of the nonuniformity of the springs, E
~B6! was used to calculate the location of the center of m
for the static hanging spring. If the spring is perfectly un
form in stretch, thenZc.m. should be 50% of,5,01mg/k
1msg/2k. Table III lists the ratioZc.m./, for the springs
used in this experiment. The mass used was that predicte
Eq. ~29!. The value for the ratio will, of course, change wi
different m. The assumption of uniform density might wa
rant further investigation for better accuracy in the sof
springs, but fromZc.m., the assumption seems reasonable
all but the softest springs.

After relaxing the uniform density assumption, Eq.~10!
can still be integrated, but is rather more involved. It is po
sible to derive a~fairly complicated! formula for the effect of
the spring mass in terms of,0 , k, m, andms , which does
not seem more useful than previous approximations.

On the other hand, it is possible to account for variatio
in the ms coefficient without doing any more work than
would take to measure the spring constant, which can
done using Eq.~14! rather than via Hooke’s law. First attac
the spring to the desired support, which ideally will not fle
with the bouncing of the spring. Then, for a collection
masses, let the spring oscillate and measure each perio
we rearrange Eq.~14! as

S T

2p D 2

5
1

k
m1

ms

3k
, ~B7!
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we see that a plot of (T/2p)2 vs m will give a straight line
with slope 1/k and an intercept that, when divided by th
slope, should be close toms/3. Any deviation fromms/3
would indicate the value that should be used in Eq.~14!. We
can use the ratio of intercept divided by the slope and
actual mass of the spring in place of the 1/3 that curren
multiplies ms in Eq. ~14!. In other words, the ratio of inter
cept divided by the slope is a direct measurement of theD
that appears in Eq.~16!.

As a second test of the nonuniform density, the spr
constant for each spring was found by measuring the pe
of 18 different masses over 100 oscillations.~Fifty oscilla-
tions were used for the soft springs.! The graphs of (T/2p)2

vs m are available from the author. The last three columns
Table III are from this graph. The reciprocal of the slope 1s
should give the spring constant. These differ from tho
listed in Table I, because Table I assumesg59.80(1) m/s2.
Three times the intercept divided by the slope (3b/s) should
be close toms . Equivalently, the quantityb/(sms) should be
close to 1/3, the coefficient used forms . These last two
comparisons are equivalent measures of the accuracy o
assumption of uniform coil density. The value ofb/(sms) for
the stiffest spring also is consistent with 1/3, having a som
what imprecise result of 0.4~5!. Interestingly, the softes
spring has a larger ratio, 0.418~2!, which is inconsistent with
the 4/p250.405 284 7 predicted by Refs. 6, 8, 9, and 1
Except for the stiffest and softest springs, the weighted
erage of the results is 0.354~1!, which indicates a difference
from 1/3 and might explain why the cubic error bars do n
overlap the experiment in every case.
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