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Quantum Biology

Does quantum mechanics play any role in biology?

Quantum mechanics implicitly/covertly chemical reactions
and bonding scheme of molecules

‘Quantum biology’ is concerned with explicit/overt quantum
mechanical effects in biological systems




Quantum Biological Systems
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temperature." Nature 463.7281 (2010): 644-647.



Quantum Biological Systems
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Avian Magnetoreception

If They Could Talk By Sheri Davies
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“Last year at this time, we would've been headed north
while relaxing in first class. In a way, I'm glad the
economy forced us to go back to simpler times”



Avian Magnetoreception: Behavioral
Characteristics

Behavioral experiments performed
at Frankfurt.
Local geomagnetic field = 46 uT

The avian compass is only polarity compass
No distinction between magnetic north and south

Operational only in presence of certain range of optical
frequencies



Avian Magnetoreception: Behavioral
Characteristics

Function Window
+ 30 % of the local geomagnetic field

RF disruption

A weak (50 nT) transverse RF field (1.315 MHz)
destroys the compass action



The Radical Pair Mechanism
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The Radical Pair Mechanism: Summary
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The Radical Pair Reaction

~ Takes place in bird’s retina

Cryptochrome

Solov'yov, Schulten, SPIE Newsroom (2009).
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Spin Dynamics of the Radical Pair

Radical pair spin state
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Radical pair spin state

undergo intersystem crossing

(singlet &<-> triplet)
Recombination

Define

Singlet Yield: Fraction of
radical pairs recombining
through singlet channel

Triplet Yield: Fraction of
radical pairs recombining
through triplet channel
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Theoretical Model: Hamiltonian

RF field (1.316 MHz) disruption of .
compass i ;nm?ac?mn\

anisotropic hyperfine

One electron is free from hyperfine interaction
Interactions

=

<

ﬂ E. M. Gauger, et al. PRL 106.4 2011.

Hamiltonian
H=vB-(51+S2)+1-A-5;
| ) \ )

| |
Zeeman Interaction  Hyperfine Interaction

B = B,(cos¢ sin}, sing sin1, cos})
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Theoretical Model: Dynamics

RP System - Three spin system - 8 dims Hilbert space
Consider the singlet and triplet channels as two more states

Radical pair + Nucleus density matrix

P = Pnuc D Peteci Q Petec2] + 2 recomb. channel states
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Theoretical Model: Dynamics

Phenomenological master equation for radical pairs
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[ 1
y=——[H,p]+ kY P;pP} —=(P]P;p+pP]P,
p=—7lH.p] 2.PirP, 5(Pi Pip +pP;i P))

Py = ISCXS T And four similar operators
b = TC)<T0 1 corresponding to nuclear down
P; = |TCKT,. 1T spin states
P, = |[TCXT_1
" ' 1 (g
Initial State: £(0) = 31x & [5)(5

Radical pair state is singlet state: 1) = 7 (| 1) = 11))

Nuclear state is completely mixed state
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Some Earlier Results
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In artificial systems, quantum superposition and entanglement typically decay rapidly unless cryogenic
temperatures are used. Could life have evolved to exploit such delicate phenomena? Certain migratory
birds have the ability to sense very subtle variations in Earth’s magnetic field. Here we apply quantum
information theory and the widely accepted “radical pair” model to analyze recent experimental
observations of the avian compass. We find that superposition and entanglement are sustained in this
living system for at least tens of microseconds, exceeding the durations achieved in the best comparable
man-made molecular systems. This conclusion is starkly at variance with the view that life is too “‘warm
and wet” for such quantum phenomena to endure.
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Results: State Transitions

The aim Is to investigate the spin transitions involved in the
radical pair model

The transitions induced due to hyperfine and Zeeman
Interactions

In order to achieve this, the singlet and triplet yields are
calculated for a large number of hyperfine interactions
strengths (yB,/100 to 100yB,) for

H:WB-(§1+§2)+f-@o§2
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Results: State Transitions
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Results: State Transitions

< --» Hyperfine

P X-Zeeman

y-Zeeman
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Spin transition for hyperfine and Zeeman Hamiltonian interactions



Decoherence: State Transitions Peaks

The singlet yield plot has conspicuous peaks at certain

magnetic field inclinations
alyB=1

—
o

Coherence quantifier

C(p) = S(paiag) — S(p)

where, von Neumann
entropy:  S(p) = —tr{plnp}

Normalized Quantity
o
(0 0]

| —m— Singlet Yield
—e— Relative Entropy of Coherence
| 2 | 2 |

The peak In singlet yield 06l |
corresponds to the dip in coherence ° ™ “é4 Sug w2
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Results: Decoherence

The coherence time of the radical pair spin state is around
tens of microseconds

Two decoherence mechanisms in the systems
Nuclear Decoherence (Intrinsic)

When environmental interactions are not taken into
account

Environmental Decoherence (Extrinsic)

Environmental interaction leading to lose of radical
pair coherence

21



Nuclear Decoherence

The nuclear decoherence does not disrupt the compass action

The peak disappears when nuclear state is disentangled from
radical pair state
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Environmental Decoherence

With Lindblad noise operators the master equation gets
modified as:

: b
1 1
p=- %[H pl+kY PipP| —=(P[Pip+pP[P) + ZR(LEPLJ —5LiLip +pL] LJ)-
i=1 ‘

Where, ' Is noise rate.
The Lindblad noise operators L, are given as:

Li =1, ®o, QI
L2=12®Jy®12
L;y=1L Q0,1
L,=5L KX, R o,
L5=12®12®Jy
Le=1, ®1, ® ag,

E. M. Gauger, et al. PRL 106.4 2011 23



Environmental Decoherence
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Functional Window

Functional Window

Selectivity of avian compass (£30% around geomagnetic
field)

Vital for navigation

Analyzed the compass sensitivity as function of the

geomagnetic field intensity for a large number of compass
parameters

Observed ‘functional window’ behavior in RP system with
‘biologically feasible parameters set’
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Functional Window
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Conclusions & Outlook

Coherence is believed to be persisting upto microseconds

In our study, we have incorporated all behavioral
characteristics of the compass

Collaborative role of Zeeman and hyperfine interaction is
highlighted

Spin transitions giving rise to magneto-sensitive behavior of
avian compass are identified

Distinctive role of nuclear and environmental decoherence
IS identified
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Conclusions and Outlook

G. Balasubramanian, et al.,

Biologically feasible parameter Nat. Mater. 2009,

regime is discovered for avian
compass

Envisaging solid state emulation of
the avian compass = terrestrial
magnetism based positioning

Diamond NV center spin system
seems to be a potential candidate

Ea

H=DS3+E(S?2—S?) +gupB-S—S-A-1

See poster by Vishvendra Singh Poonia
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THANK YOU!
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