
Elementary Number Theory and Logic

NISER-AM Semester 3 of 2008

1. Construction of Real Numbers(Dedekind’s Cut) [10, Chapter 1],[8] (Date: 1,4
Aug’08)

(a) Purpose of Dedekind’s cut;

(b) Existence of non-rational numbers (e.g., for prime p,
√
p is not rational);

(c) A = {x ∈ Q : x2 < p}, B = {x ∈ Q : x2 > p} for a prime p. A and B contain no
largest and smallest number respectively;

(Hint: For every s ∈ A or B, take t = s− s2−p
s+p = sp+s

s+p and t2 − p = (p2−p)(s2−p)
(s+p)2

.
Motivation: Inspite of dense property, rational number system has certain gaps,
which leads to incompleteness.)

(d) Terminologies: Order relation, Ordered set, Bounded above/below, lub/glb;

(e) Least-upper-bound property (has Q lub property?);

(f) Theorem: LUB property of an ordered set S implies GLB property of S.

(g) Field Axioms(A1-5, M1-5, D1), Ordered field;

(h) Dedekind’s cut, Definition of R;

(i) Theorem: R is an ordered field which has lub property. Moreover, R contains Q
as subfield.;

(j) Rationals and Irrationals;

(k) Theorem: Archimedean property of R;

(l) Q is dense in R.

2. Countibility(Date: 6 Aug’08)

(a) Definitions: cardinal number, ∼ relation, finite/infinite/countable /uncountable
set;

(b) Theorem: Countable union of countable sets is countable.

(c) Example: Q is countable.

(d) The real numbers in interval [0, 1) are uncountable.

(e) If A be a countable(infinite) set. Then 2A is uncountable.

3. Fundamentals of Integers(Date: 11, 14 Aug’08)

(a) Principles of induction, the well-ordering principle and their equivalence [6];
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(b) Divisibility [6, 4];

i. Division Algorithm, Notions of divisors/multiples, GCD;
ii. Computing GCD and Euclids algorithm, Bezout’s identity;
iii. Relative prime, Extended Euclid’s algorithm and inverse finding Algorithm;
iv. LCM;

(c) Prime Numbers [6, 9];

i. The fundamental Theorem of Arithmetic [5], GCD and LCM in terms of fac-
torization;

ii. If a positive integer is not a perfect square, then
√
m is irrational. When m

1
n

is rational for positive integers m,n?
iii. Infiniteness of prime numbers;
iv. pn ≤ 22n−1

, where pn is the n-th prime.
v. π(x) ≥ blg(lg x))c + 1 (but it is very weak bound, prime number theorem

limx→∞ π(x)→ x
lnx is a stronger bound).

vi. Gaps in the series of primes (arbitrarily gaps in the series of primes);
vii. There are infinitely many primes of the form 4q + 3.

viii.
∑

p is prime
1
p diverges.

∑
p≤y

1
p > log log y − 1 for real number y ≥ 2;

ix. Eisenstein’s Criteria and some facts/examples on prime numbers;
x. 3x4 − 15x2 + 10 is irreducible (take p = 5), p-th cyclotomic polynomial i.e.,

1 + x+ . . .+ xp−1 = xp−1
x−1 , where p is prime, is irreducible (f(x) = (x+1)p−1

x is
irreducible, then substitute x by x− 1);

4. Congruences [6, 9](Date: 19, 21 Aug’08)

(a) Motivation through finite number system and definition;

(b) ≡n is an equvalence relation from N to N;

(c) Complete residue system(Zn), reduced residue system (Un);

(d) Euler’s φ function;

(e) Theorem: Let (a,m) = 1. Let r1, . . . , rn be a complete, or a reduced, residue
system modulo m. Then ar1, . . . , arn is a complete, or a reduced residue system
modulo m.

(f) Euler’s theorem: If (a,m) = 1, then aφ(m) ≡ 1 (mod m) and Fermat’s little
theorem.

(g) Theorem: Let (m,m′) = 1. If a runs through a complete residue system (mod
m) and a′ runs through a complete residue system (mod m′), then am′+ am runs
through a complete residue system (mod mm′) [3].

(h) Theorem: Let (m,m′) = 1. If a runs through a reduced residue system (mod
m) and a′ runs through a reduced residue system (mod m′), then am′ + am runs
through a reduced residue system (mod mm′) [3].

(i) If (m,m′) = 1 then φ(mm′) = φ(m)φ(m′) [3].

(j)
∑
d|m

φ(d) = m [3].
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(k) φ(n) = n
∏
p|n

(1− 1
p

) [3].

(l) Wilson’s lemma: If p is a prime, then (p− 1)! ≡ −1 (mod p).

(m) For n ≥ 1, if a ≡n b and c ≡n d then a+ c ≡n b+ d, ac ≡n bd.

(n) Let P be a polynomial over integers and n ≥ 1. If a ≡n b then P (a) ≡n P (b).

(o) ax ≡ ay (mod m) iff x ≡ y (mod m
(a,m)).

(p) Theorem : Let a, b andm > 0 be given integers and put g = (a,m). The congruence
ax ≡ b (mod m) has a solution iff g | b. If x is a solution then x+ m

g t is a solution.

(q) Corollary: If (a, n) = 1, then ax ≡ b (mod n) has single solution modulo n.

(r) Theorem(Lagrange): The congruence anxn+. . .+a1x+a0 ≡ 0 (mod p), (an, p) = 1
has at most n solutions [3].

(s) Chinese reminder theorem

(t) x ≡ y (mod mi) for 1 ≤ i ≤ r iff x ≡ y (mod [m1, . . . ,mr]).

(u) Let n1, . . . , nk be +ve integers, and let a1, . . . , ak be any integers. Then the simul-
taneous congruences

x ≡ a1( mod n1), . . . , x ≡ ak( mod nk)

have a solution iff gcd(ni, nj) | (ai − aj).

5. Quadratic Residues and Reciprocity [2, 3]

(a) Definition, motivation(1. prime of the form 4k + 1 as sum of two squares, 2. +ve
integer as sum of four squares, 3. Polynomial time probabilistic algorithm to check
primality.)

(b) There are exactly p−1
2 many quadratic residues and equally many quadratic non-

residues in modulo p [3].

(c) Euler’s Criterion: If p is an odd prime and a is an integer. Then a
p−1
2 ≡ 1 (mod p);

(d) Legendre symbol;

(e) Corollary: if p is an odd prime,

i. then a
p−1
2 ≡

(
a
p

)
(mod p);

ii.
p−1∑
a=1

(
a

p

)
= 0;

(f) Results: For odd prime p,

i. if m1 ≡ m2 (mod p) then
(
m1
p

)
=
(
m2
p

)
;

ii.
(

1
p

)
= 1;

iii.
(
a2

p

)
= 1;

iv.
(
m
p

)(
n
p

)
=
(
mn
p

)
;

v.
(
ab2

p

)
=
(
a
p

)
;
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vi. Examples: Compute
(−46

17

)
,
(

20
31

)
;

(g) If p is an odd prime, (
−1
p

)
=
{

1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4)

(h) There are infinitely many primes of the form 4k + 1.

(i) Gauss’s lemma (with example p = 7, a = 3);

(j)
(

2
p

)
= (−1)

p2−1
8 ;

(k) Theorem: If p is an odd prime and a an odd integer, with (a, p) = 1, then
(
a
p

)
=

(−1)
P(p−1)/2

k=1 b ka
p
c;

(l) Quadratic reciprocity law;

(m)
(
p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 for odd prime q 6= p(when does

(
p
q

)
,
(
q
p

)
differ ?);

(n)
(
p
q

)(
q
p

)
=
{

1 if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)
−1 if p ≡ q ≡ 3 (mod 4)(

p
q

)
=


(
q
p

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−
(
q
p

)
if p ≡ q ≡ 3 (mod 4)

(o) Compute
(
a
p

)
, (a, p) = 1 (hint: a = ±2k0pk11 . . . pkr

r ),
(

17
29

)
;

(p) Definition: Jacobi symbol [1];

(q) Results: For odd integers P and Q,

i. if m1 ≡ m2 (mod P ) then
(
m1
P

)
=
(
m2
P

)
;

ii.
(
m
P

) (
n
P

)
=
(
mn
P

)
;

iii.
(
m
P

) (
m
Q

)
=
(
m
PQ

)
;

iv.
(
a2n
P

)
=
(
n
P

)
whenever (a, P ) = 1;

v.
(−1
P

)
= (−1)

P−1
2 ;

vi.
(

2
P

)
= (−1)

P2−1
8 ;

vii.
(
P
Q

)(
Q
P

)
= (−1)

P−1
2

Q−1
2 ;

(r) If x2 ≡ n (mod P ) has a solution then
(
n
P

)
= 1, but the converse is not true.

(s) Theorem: If p is an odd prime and (a, p) = 1, then the congruence x2 ≡ a (mod pn), n ≥
1 has a solution iff

(
a
p

)
= 1;

(t) Example: Find the the solution of x2 ≡ 23 (mod 72), if any;

(u) Theorem: Let a be an odd integer. Then

i. x2 ≡ a (mod 2) always has a solution;
ii. x2 ≡ a (mod 4) has a solution iff a ≡ 1 (mod 4);
iii. x2 ≡ a (mod 2n), n > 2 has a solution iff a ≡ 1 (mod 8);
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(v) Corollary: Let n = 2k0pk11 . . . pkr
r be the prime factorization of n > 1 and (a, n) = 1.

Then x2 ≡ a (mod n) is solvable iff

i.
(
a
pi

)
= 1 for i = 1, 2, . . . , r;

ii. a ≡ 1 (mod 4) if 4 | n, but 8 - n;
iii. a ≡ 1 (mod 8) if 8 | n;

6. Continuing...
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