Elementary Number Theory and Logic
NISER-AM Semester 3 of 2008

1. Construction of Real Numbers(Dedekind’s Cut) [10, Chapter 1],[8] (Date: 1,4
Aug’08)

(a) Purpose of Dedekind’s cut;
(b) Existence of non-rational numbers (e.g., for prime p, /p is not rational);

(c) A={xcQ:22<p},B={xrcQ:2%> p} for aprimep. Aand B contain no
largest and smallest number respectively;

2_ 2_
(Hint: For every s € A or B, take t = s — 532;5 = % and t? — p = %~

Motivation: Inspite of dense property, rational number system has certain gaps,
which leads to incompleteness.)

(d) Terminologies: Order relation, Ordered set, Bounded above/below, lub/glb;
(e) Least-upper-bound property (has Q lub property?);

(f) Theorem: LUB property of an ordered set S implies GLB property of S.
(g) Field Axioms(A1-5, M1-5, D1), Ordered field,;

(h) Dedekind’s cut, Definition of R;

(i) Theorem: R is an ordered field which has lub property. Moreover, R contains Q
as subfield.;

(j) Rationals and Irrationals;
(k) Theorem: Archimedean property of R;

(1) Q is dense in R.
2. Countibility (Date: 6 Aug’08)
(a) Definitions: cardinal number, ~ relation, finite/infinite/countable /uncountable
set;
(b) Theorem: Countable union of countable sets is countable.
c) Example: Q is countable.

)
(c)
(d) The real numbers in interval [0,1) are uncountable.
(e)

e) If A be a countable(infinite) set. Then 24 is uncountable.
3. Fundamentals of Integers(Date: 11, 14 Aug’08)

(a) Principles of induction, the well-ordering principle and their equivalence [6];



(b)

(c)

Divisibility [6, 4];
i. Division Algorithm, Notions of divisors/multiples, GCD;
ii. Computing GCD and Euclids algorithm, Bezout’s identity;
iii. Relative prime, Extended Euclid’s algorithm and inverse finding Algorithm;
iv. LCM;
Prime Numbers [6, 9];
i. The fundamental Theorem of Arithmetic [5], GCD and LCM in terms of fac-
torization;

ii. If a positive integer is not a perfect square, then /m is irrational. When mn
is rational for positive integers m,n?

iii. Infiniteness of prime numbers;
iv. p, < 227", where py, is the n-th prime.
v. m(x) > |lg(lgz))] + 1 (but it is very weak bound, prime number theorem

. Lo
limg oo 7(7) — = is a stronger bound).

vi. Gaps in the series of primes (arbitrarily gaps in the series of primes);
vii. There are infinitely many primes of the form 4q + 3.
Viii. Zp is prime % diverges. > ., % > loglogy — 1 for real number y > 2;
ix. Eisenstein’s Criteria and some facts/examples on prime numbers;
x. 3z% — 1522 + 10 is irreducible (take p = 5), p-th cyclotomic polynomial i.e.,
l4z+4...+aP ! = 33;:11, where p is prime, is irreducible (f(x) = % is
irreducible, then substitute x by x — 1);

4. Congruences [6, 9](Date: 19, 21 Aug’08)

(h)

(i)
()

Motivation through finite number system and definition;
=,, is an equvalence relation from N to N;
Complete residue system(Z, ), reduced residue system (U,);

Euler’s ¢ function;

Theorem: Let (a,m) = 1. Let ri,...,m, be a complete, or a reduced, residue
system modulo m. Then ary,...,ar, is a complete, or a reduced residue system
modulo m.

Euler’s theorem: If (a,m) = 1, then a®™ = 1 (mod m) and Fermat’s little
theorem.

Theorem: Let (m,m’) = 1. If a runs through a complete residue system (mod
m) and o’ runs through a complete residue system (mod m’), then am’ + am runs
through a complete residue system (mod mm’) [3].

Theorem: Let (m,m’) = 1. If a runs through a reduced residue system (mod
m) and a' runs through a reduced residue system (mod m'), then am’ + am runs
through a reduced residue system (mod mm’) [3].

If (m,m’) =1 then ¢(mm') = ¢p(m)p(m’) [3].
>_old) =m [3].
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(k) ¢(n) =n]](1- o) 3].
(1) Wilson’s lemma: If p is a prime, then (p — 1)! = —1 (mod p).

(m) Forn>1,ifa =, band c=, d then a + c=, b+ d, ac =, bd.

ax = ay (mod m) iff x = y (mod (am—m))

)

)

(n) Let P be a polynomial over integers and n > 1. If a =,, b then P(a) =,, P(b).

(0)

(p) Theorem : Let a,band m > 0 be given integers and put g = (a, m). The congruence
az = b (mod m) has a solution iff g [ b. If x is a solution then x + “¢ is a solution.

o

Corollary: If (a,n) =1, then axz = b (mod n) has single solution modulo n.
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Theorem(Lagrange): The congruence a,z"+...4+ajz+ag = 0 (mod p), (a,,p) =1
has at most n solutions [3].

—
n

) Chinese reminder theorem
(t) z =y (mod m;) for 1 <i <riff x =y (mod [my,...,m]).

(u) Let ny,...,n; be +ve integers, and let ay,...,a; be any integers. Then the simul-
taneous congruences

x =a1( mod ny),...,z = ap( mod ng)
have a solution iff ged(n;,n;) | (a; — a;).

5. Quadratic Residues and Reciprocity [2, 3]

(a) Definition, motivation(1l. prime of the form 4k + 1 as sum of two squares, 2. +ve
integer as sum of four squares, 3. Polynomial time probabilistic algorithm to check
primality.)

(b) There are exactly % many quadratic residues and equally many quadratic non-
residues in modulo p [3].

(c¢) Euler’s Criterion: If p is an odd prime and a is an integer. Then 7 =1 (mod p);

(d) Legendre symbol;

(e) Corollary: if p is an odd prime,

i, then a"z = (%) (mod p);
. /a
11. Z <p> - 07

a=1

(f) Results: For odd prime p,
i. if m; = mgy (mod p) then (—1> = (m>7

p p
i, (l> — 1.
p

iii.

(
iv. (
(



vi. Examples: Compute (_1—7) , (3—(1));

() ={ 5hzs ey

(h) There are infinitely many primes of the form 4k + 1.

(g) If p is an odd prime,

(i) Gauss’s lemma (with example p = 7,a = 3);

0 (2) = (0"

(k) Theorem: If p is an odd prime and a an odd integer, with (a,p) = 1, then (%) =
=L

(=1
(1) Quadratic re(31pr0(:1ty law;

(m) (%) (%) = (—1)p 2" for odd prime g # p(when does (g) (g) differ ?);
(n) (Q 1 ifp=1 (mod 4) or ¢ =1 (mod 4)
1 if p=¢ =3 (mod 4)

o\ %) if p=1 (mod 4) or ¢ =1 (mod 4)
(a) B (%) if p=gq=3 (mod 4)

(0) Compute (g) ,(a,p) =1 (hint: a = £2kopit . plr), (1T);
(p) Definition: Jacobi symbol [1];
(q) Results: For odd integers P and @,
i. if mi; = my (mod P) then (%) = (%2);
i. (3) (5) = ();
iii. (2

iv. (‘127”) = (%) whenever (a,P) =1

_ P-1
v ()= (0
. P21
vii (3)=(-1)"% ;
i (§) (8) = 0=
(r) If 2 = n (mod P) has a solution then (%) =1, but the converse is not true.

(s) Theorem: If pis an odd prime and (a, p) = 1, then the congruence 2 =

1 has a solution iff (%) =1;

(t) Example: Find the the solution of 22 = 23 (mod 72), if any;

(u) Theorem: Let a be an odd integer. Then

i 22 =

a (mod 2) always has a solution;
ii. ° = a (mod 4) has a solution iff a =1 (mod 4);
a

(mod 2"),n > 2 has a solution iff a =1 (mod 8);

=a (mod p"),n

>



(v) Corollary: Let n = 25oph | pkr be the prime factorization of n > 1 and (a,n) = 1.
Then 22 = a (mod n) is solvable iff

i (pl) —lfori=1,2,...,r
ii. a=1 (mod 4) if 4 | n, but 8t n;
iii. a =1 (mod 8) if 8 | n;

6. Continuing...
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