
Combinatorics and Graph Theory

NISER-AM Semester 4 of 2009

Instructor: Deepak Kumar Dalai

1. Elementary Enumeration [8, Chapter 1]

(a) Distinguishable and Indistinguishable Objects
i. How many ways are there to pick 5 apples from 6 apples ? (Ans. 1)

ii. How many ways are there to pick 5 boys from 6 boys ? (Ans. 6)
iii. How many ways are there to pick 1 boy from 6 boys ? (Selecting r objects

from n distinguishable objects automatically selects n− r objects)
iv. How many ways are there to pick 1 student from 3 boys and 2 girls? (Ans. 5)
v. How many ways are there to pick 1 fruit from 3 apples and 2 oranges? (Ans.

2)
vi. How many ways are there to pick 2 letters from 3 B’s and 2 G’s? (Ans. 3)
vii. How many ways are there to pick 2 students from 3 boys and 2 girls? (Ans.

10)
(b) Permutations and Combinations of the Objects

i. How many ways are there to pick 1 hockey player and 1 football player from
4 hockey players and 5 football players ? (Ans. 4× 5)

ii. How many ways are there to make a 2-letter word if the letters are different ?
(Ans. 26× 25)

iii. Observation.The Multiplication Principle : If one thing is done in m ways
and a second thing is done in n ways independent of how the first thing is
done, then the 2 things can be done in mn ways.

iv. Permutation, r-permutation.
v. How many ways can a pair of dice fall ? (Ans. 21 (indistingushable dice), 36

(distinguishable dice))
vi. How many ways are there to arrange the letters BABA, BANANA? (Ans.

4!/(2!2!, 6!/(1!3!2!))) Why so ?(Use different colored letters)
vii. Permutation of multisets.

viii. How many ways can we select 4 persons from 6 persons? (Ans. 15)
ix. How many ways can we select r objects from n distinguishable objects when

n ≥ r? (Ans.
(
n
r

)
)

x. r-combination, how combination and permutation differ, then find out the
expression for

(
n
r

)
. (How many ways we select a final team from the 15 selected

players for the upcoming Newzland series and how many ways we can select a
batting order for the first test ?)

xi.
(
n
r

)
=
(
n−1
r−1

)
+
(
n−1
r

)
? (Inclusion and exclusion of Rahul Dravid in the final

11)
(c) The Round Table

i. Our convention for the counting the number of seating at a round table is that
the seatings s1 and s2 are considered same iff everyone at the table has the
same right/left hand neighbor in s1 and s2 (i.e., all rotations of a seating is
considered as same seating).
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ii. How many ways can all 6 Math faculties can be seated in a round table meeting
? (Ans. 5!, fix Prof. P.C. Das then ...)

iii. Observation. The number of ways of seating n persons in a round table is
(n− 1)!

iv. How many ways can 5 couples can be seated in a row (and at a round table)
such that each couple seat together ? (Ans. 2!5 × 5!(2!5 × 4!))

v. How many ways can 5 men and 7 women can be seated in a row (and at a round
table) such that no 2 men next to each other ? (Ans. 7!×

(
8
5

)
×5!(6!×

(
7
5

)
×5!))

(d) n Choose r with Repetition

i. What can we answer now for choosing r objects from n distinguishable objects
with?
A. repetition not allowed and order matters; (Ans. nPr)
B. repetition allowed and order matters;(Ans. nr)
C. repetition not allowed and order does not matter; (Ans.

(
n
r

)
)

D. repetition allowed and order does not matter; (Ans. ?)
ii. How many sequences are there consisting of 3 0/+’s and 7 1’s ? (Ans.

10!/(3!7!))
iii. How many non-negative solutions are there to the equation

x1 + x2 + x3 + x4 = 7?

iv. How many ways put 7 indistinguishable balls into 4 boxes in a row (distin-
guishable)?

v. How many ways one can choose, with repetition allowed, 7 objects from 4
distinguishable objects ?

vi. How many sequences are there consisting of n − 1 0/+’s and r 1’s ? (Ans.
(n− 1 + r)!/((n− 1)!r!))

vii. How many non-negative solutions are there to the equation

x1 + . . .+ xn = r?

viii. How many ways put r indistinguishable balls into n boxes in a row (distin-
guishable)?

ix. How many ways one can choose, with repetition allowed, r objects from n
distinguishable objects ?

x. Observation. With repetition allowed, the number of ways to choose r ob-
jects from n distinguishable objects is

(
n+r−1

r

)
.

xi. Picking with replacement (picking 5 cards from a deck with replcement) or
Picking with repetition (picking 10 icecream cones from 5 flavors).

(e) Some More

i. Counting the number of strings of length n over english alphabets (with some
restrictions like putting first letter A or B).

ii. Counting the number of polyndromes of length n over english alphabet. (Ans.
26dn/2e)

iii. Counting the number of functions from a finite set A to finite set B (one-one
functions, bijective functions, onto functions ?). (Ans. |B|P|A|, |A|!, ?)

iv. How many possibilities are there for 8 non-attacking rooks (distingushible, or
1 red, 2 black, 2 white, 3 blue ) on an 8×8 chessboard, where a rook can attack
by vertically and horizontally ? [3, Page 68] (Ans. 8!(8!×8!, 8!×8!/(1!2!2!3!)))

v. How many rectangles and squares are there in n×n chessboard ? (Ans
(
n+1

2

)
×(

n+1
2

)
, 12 + 22 + . . .+ n2)
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vi. A classroom has 2 rows of 8 seats each. There are 14 students, 5 of whom
always sit in the front row and 4 of whom always sit in the back row. In how
many ways can the students be seated ?

2. Pigeonhole (Dirichilet) Principle

(a) In a group of 367 people, two people must have same birth day.

(b) There are two person in Bhubaneswar and Cuttack having same number of hairs
in their body. (Population: 9 millions and # hairs per person ≤ 7 millions)

(c) If one collects 10 points from an equilateral triangle of sides having length 1 unit,
then there must be 2 points having distance atmost 1

3 unit.

(d) Pigeonhole principle.

(e) Let acquaintance relation is symmetric (i.e., A knows B iff B knows A). In a group
of 50(n > 1) people, two people must have same number of acquaintances [6].

(f) One of 101(n+1) numbers from the set {1, 2, . . . , 200(2n)} is divisible by another?
(Hint: write each number as 2sa, where a is odd)

(g) A Chessmaster has 77 days to prepare for a tournament. He wants to play at
least one game per day, but not more than 132 games in total. There must be a
sequence of successive days on which he plays 21 games [6].

(h) ( Erdos̈ and Szekeres) Given a sequence of n2+1(pq+1) distinct integers, either
there is an increasing subsequence of n+1(p+1) terms or a decreasing subsequence
of n+ 1(q + 1) terms [6, 9].

(i) Ramsey number/theory.

3. Principle of Inclusion and Exlusion (PIE)

(a) In a class of NISER 1st semester, the students failed only in Mathematics and
Physics subjects. If the total number of students failed is 7, number of studens
failed in Mathematics is 5 and number of students failed in Physics is 3, then how
many students failed in both Physics and Mathematics ?

(b) Principle of Inclusion and Exclusion (Using set and using the property satisfied by
elements of sets [9]).

(c) How many 4-letter words begin or end with a vowel? ((without)using PIE)

(d) How many integers between 1 and 1000 are (i) not divisible by either 2 or 5 (ii)
not divisible by 2, 5 or 11 ?

(e) Proving Euler’s φ function [9, Page 410].

(f) Derangements [8, Page 32];
The Hatcheck Problem: How many ways can a hatcheck girl hand back the n
hats of n gentlemen, 1 to each gentleman, with no man getting his own hat ?

4. Counting Through Recurrence Relation [9, 8]

(a) Simple/compound interest, Story of Chess inventor, Fibonacci Sequence;

(b) A recurrence relation for a sequence {ai}, i ≥ 0 or 1 that defines an in terms of
a0, a1, . . . , an−1 and n > k for some particular integer k, with the terms a0, . . . , ak
called initial/boundary condition.

(c) How many regions do n straight lines (non-parallel and no 3 lines intersect at the
same point) divide the plane ? (Ans. an = an−1 + (n+ 1), a1 = 2)

(d) Counting the number of decimal strings of length n+1 which contain even number
of 0s. (Ans: Cn+1 = 9Cn + (10n − Cn) = 8Cn + 10n, C1 = 9)
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(e) Counting the number of binary strings of length n which do not contain any con-
secutive 0s. (Ans: Cn = Cn−1 + Cn−2, C1 = 2, C2 = 3)

(f) Tower of Hanoi/Brahma.

(g) Counting number of de-arrangements of n objects. (Ans: Dn = (n − 1)(Dn−1 +
Dn−2))

(h) Counting the number of different partitions of n+1-element set (i.e., Bell numbers).
(Ans: Bn+1 =

∑n
k=0

(
n
k

)
Bn−k =

∑n
k=0

(
n
k

)
Bk)

5. Putting r balls into n boxes [9, Page 51], [8, Page 35]

(a) Distinguishable and In-distinguishable objects.

(b) Number of ways can r-distinguishable balls be put into n-distinguishable boxes.
(e.g., Count the number of functions from A to B) (Ans: nr)

(c) Item 5b with condition that no box is empty (e.g., count the number of onto
functions from A to B) (Ans:

∑n
k=0(−1)k

(
n
r

)
(n− k)r)

(d) Number of ways can r-distinguishable balls be put into n-indistinguishable boxes

with no box is empty. (This number is denoted by
{
r
n

}
or S(r, n) and is called as

Stirling number of the second kind. Number of ways to partition a set of r things

into n non-empty subsets. Br =
∑r

i=1

{
r
i

}
) (Ans: 1

n!

∑n
k=0(−1)k

(
n
r

)
(n− k)r or,{

r
n

}
=
{
r − 1
n− 1

}
+ n

{
r − 1
n

}
, 1 < n < r,

{
r
1

}
=
{
r
r

}
= 1)

(e) Number of ways can r-distinguishable balls be put into n-indistinguishable boxes.(Number

of ways to partition a set of r things into at most subsets.) (Ans.
∑n

i=1

{
r
i

}
)

(f) Number of ways can r-indistinguishable balls be put into n-distinguishable boxes.
(Ans:

(
n+r−1

r

)
Item 1(d)viii)

(g) Item 5f with condition that no box is empty (Ans:
(
r−1
r−n
)

=
(
r−1
n−1

)
Item 1(d)viii)

(h) Number of ways can r-indistinguishable balls be put into n-indistinguishable boxes
with no box is empty. (Partitioning an integer r > 0 into n parts) (Ans: Π(r, n) =
Π(r − 1, n− 1) + Π(r − n, n),Π(r, n) > 0 if n > r, Π(r, r) = Π(r, 1) = 1)

(i) Number of ways can r-indistinguishable balls be put into n-indistinguishable boxes.
(Partitioning an integer r > 0 into atmost n parts) (Ans: Π(r + n, n))

6. Generating Function [9, 8]

(a) Power Series: a power series is an infinite series of the form
∑∞

i=0 akx
k. Radius of

Convergence.

(b) Taylor series expansion: Suppose f(x) is a function having darivatives of all orders
for all x in an interval containing 0.

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·

(c) Some useful expansions

i.
1

1− x
=
∞∑
i=0

xi, for |x| < 1;

ii. ex =
∞∑
i=0

1
i!
xi, for |x| <∞;
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iii. sinx =
∞∑
i=0

(−1)k
1

(2i+ 1)!
x2i+1, for |x| <∞;

iv. log(1 + x) =
∞∑
i=1

(−1)k+1 1
i
xi, for |x| < 1.

(d) Generating Function: The generating function for the sequence (ak), k ≥ 0 is
defined to be

G(x) =
∞∑
k=0

akx
k = a0 + a1x

1 + a2x
2 + . . .

(e) Some Examples: Find the generating function of

i. ak =
(
n
k

)
;

ii. ak = 1
(k+2)! ;

(f) Some Examples: Find the sequence of the generating function

i. f(x) = x2

1−x ;
ii. f(x) = cosx;
iii. f(x) = 1

(1+x)2
.

(g) Operating on generating functions: Let A(x), B(x) and C(x) be the generating
functions for the sequences (ak), (bk) and (ck) respectively. If

i. A(x) = B(x) + C(x), then ak = bk + ck;
ii. A(x) = B(x)C(x), then ak =

∑k
i=0 bick−i. The sequence (ak) is called convo-

lution of the two sequences (bk) and (ck).
iii. Find the sequence of f(x) = 1

(1+x)2
;

iv. Find the sequence of f(x) = 1+x+x2+x3

1−x .

(h) Examples:

i. How many ways are there to distribute 10 balls to 3 persons ?
ii. How many ways are there to distribute 10 balls to 3 persons such that each

person can get at least 2 balls [and at most 5 balls]?
iii. How many ways are there to select 25 balls from unlimited supplies of red,

white and blue balls such that at least 3 red balls and at most 5 white balls
are selected ?

iv. How many ways one can make 2 dollars using pannies, nickels and dimes ?
v. How many non-negative/positive solutions are there of x1 + 7x2 + 3x3 = 100 ?

(i) Exponential generating function [9]

i. Exponential generating function for the sequence (ak), k ≥ 0 is defined to be

H(x) =
∞∑
k=0

akx
k = a0

x0

0!
+ a1

x1

1!
+ a2

x2

2!
+ . . .

ii. H(x) for the sequence (ak = 1);
iii. H(x) for the sequence (ak = αk);
iv. How many words of length at most 5 are there using there letters say, a, b and

c (of atmost one a, at most one b and atmost 3 cs).
How many multi-subsets of size at most 5 are there using there letters say, a, b
and c (of atmost one a, at most one b and atmost 3 cs).

v. Number of distingushable permutations of length k using p types of objects
with upto ni objects from ith object.

vi. Number of ways to put n distinguishable balls into k distinguishable cells.
Compare with the result we found earlier. [9, page 325].
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7. Solving Reccurence Relations [9, 3]

(a) Linear homogeneous reccurence relation:

i. Linear homogeneous reccurence relation: an = c1an−1 + c2an−2 + . . .+ cpan−p,
n ≥ p, where c1, . . . , cp are constants and cp 6= 0.

ii. In general, we the initial conditions are disregarded, a recurrence relation has
many solutions.

iii. Theorem [3, 9]: If q is root of the polynomial

xp − c1xp−1 − c2xp−2 − · · · − cp = 0

iff an = qn is a solution of the linear homogeneous recurrence relation

an − c1an−1 − c2an−2 − . . .− cpan−p = 0, n ≥ p, cp 6= 0

iv. xp − c1xp−1 − c2xp−2 − · · · − cp = 0 is called the characteristic equation of the
recurrence relation an = c1an−1 +c2an−2 + . . .+cpan−p, n ≥ p, where c1, . . . , cp
are constants and cp 6= 0.

v. Theorem [3, 9]: If the characteristic polynomial equation has p distinct roots
q1, q2, . . . , qp, for each initial condition there exist constants λ1, λ2, . . . , λp such
that λ1q1 + λ2q2 + . . .+ λpqp is the solution.

vi. Solve hn = 2hn−1 + hn−2 − 2hn−3, n ≤ 3 subject to the initial value h0 =
1, h1 = 2, h2 = 0.

vii. Compute Fk, the kth Fibonnaci number;
viii. Compute number of ways a string containing ‘∗′ (laghu), ‘−′ (guru) and ‘ ′

(space) such that no string contains two consecutive ‘ ′s (spaces).
ix. Let q1, . . . , qt be the distinct roots of the of the characteristic equation xp −

c1x
p−1 − c2xp−2 − · · · − cp = 0 with multiplicity s1, . . . , st, then the solutions

of the corresponding reccurence solution is

t∑
i=1

(λi,1 + nλi,2 + . . .+ nsi−1λi,si)q
n
i

x. Solve the reccurence an = 6an−1 − 9an−2 with a0 = 1, a1 = 2.
xi. Solve the reccurence an = −an−1 + 3an−2 + 5an−3 + 2an−4 with a0 = 1, a1 =

0, a2 = 1, a3 = 2.

(b) Using Generating Functions

i. Solve an+1 = 2an with a0 = 1
2

ii. Legitmate codewords: How many codewords of length k from the alphabet
{0, 1, 2, 3} having an even number of 0’s are there ? (ak+1 = ak + 4k, a1 = 3)

iii. Solve Derangement Problem;
iv. Simultaneous Equations for generating functions [9, Section 6.1.4, 6.3.3]

8. The Polya Theory of Counting [9]

(a) Group action [8];

(b) Permutation group;

(c) Equivalence class by the action of permutation group;

(d) Orbit, invariant under a permutation(inv(π)), stabilizer(st(a));

(e) Lemma: Suppose that G is a group of permutations on a set A and a is in A. Then
|st(a)|.|C(a)| = |G|.
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(f) Burnside’s lemma: Let G be a group of permuatations of a set A and let S be the
equivalence relation on A induced by G. Then the number of equivalence classes
in S is given by 1

|G|

∑
π∈G

inv(π).

(g) Equivalent coloring problem;

(h) Cycle decomposition of permutation;

(i) A special case of Polya’s theorem: Suppose that G is a permutation group of the
set A and C(A,R) is the set of colorings of elements of A using colors in R, a set
of m elements. Then the number of didtinct colorings in C(A,R) is given by

1
|G|

[mcyc(π1) +mcyc(π2) + . . .+mcyc(πk)]

where G = {π1, . . . , πk}.
(j) Number of colorings of 2×2 square by 2 colors which are equivalent under rotation

by multiples of 900.

(k) Number of necklaces of 4 beads by 3 colors which are equivalent under rotations
and flips.

(l) Number of rotation symmetric Boolean functions on n variables.

(m) Number of dihedral group invariant Boolean functions on n variables.

(n) Polya’s theorem

i. Cycle index of a permutation group;
ii. The inventory of colorings(weight of colors, colorings, inventory of a set of

colorings);
iii. If colorings f and g are equivalent, they have the same weight;
iv. Examples of inventory of colorings;
v. Polya’s Theorem: Suppose that G is a group of permutations on a set D and

C(D,R) is the collection of all colorings of D using colors in R. If w is a weight
assignment on R, the pattern inventory of colorings in C(D,R) is given by

PG(
∑
r∈R

w(r),
∑
r∈R

[w(r)]2, . . . ,
∑
r∈R

[w(r)]k)

where PG(x1, x2, . . . , xk) is the cycle index.
vi. Lemma: Suppose that D is divided up into disjoint sets D1, D2, . . . , Dp. Let

C be the subset of C(D,R) that consists of all colorings f with the property
that if a, b ∈ Di, some i, then f(a) = f(b). Then the inventory of the set C is
given by

[w(1)|D1|+w(2)|D1|+ . . .+w(m)|D1|]× [w(1)|D2|+w(2)|D2|+ . . .+w(m)|D2|]×

. . .× [w(1)|Dp| + w(2)|Dp| + . . .+ w(m)|Dp|].

vii. Lemma: Suppose that G∗ = {π∗1, π∗2, . . . , π∗k} is a group of permutations of
C(D,R). For each π∗ ∈ G∗, let w(π∗) be the sum of the weights of all col-
orings f in C(D,R) left invariant by π∗. Suppose that C1, C2, . . . , Ct are the
equivalence classes of colorings and w(Ci) is the common weight of all f in Ci.
Then

w(C1) + w(C2) + . . .+ w(Ct) =
1
|G∗|

[w(π∗1) + w(π∗2) + . . .+ w(π∗k)].

viii. Proof of Polya’s theorem.
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9. Systems of Distinct Representatives [1, 10]

(a) Example and Definition of SDR [1];

(b) Hall’s theorem [10];

(c) Lower bound of the number of SDRs [10];

(d) Latin square and Latin rectangle [1];

(e) Construction of Latin squares from Latin rectangles [10];

(f) Lowerbound of the count of Latin squares of order n [10];

10. Introduction to Graph Theory [2]

(a) Basic notations and definitions

i. Why graph theory ?
ii. incident of edge with vertex, adjacent, neighbours (NG(v)), loop, parallel edge;
iii. finite graph, infinite graph, null graph, simple graph;
iv. complete graph(Kn), bipartite graph(bipartition), complete bipartite graph(Km,n),

star, path(Pn), cycle(Cn), length of path/cycle, connected graph, planar graph;
v. incidence matrix, adjacency matrix, bipartite adjacency matrix;
vi. degree of vertex (d(v)), δ(G),∆(G), d(G), k-regular graph.
vii. For any graph G,

∑
v∈V d(v) is even. The number of vertices of odd degree is

even.
viii. isomorphism, testing isomorphism, self complementary, automorphism, exer-

cises 1.2.7, 1.2.9, 1.2.10, 1.2.11, 1.2.13, 1.2.16 from [2].
ix. Disjoint graph, edge-disjoint graph, union of graphs(∪), disjoint union of

graphs(+), connected component, intersection of graphs(∩), cartesian prod-
uct of graphs (�), Pn�Pm, Cn�P2, Cn�Pm.

x. Directed graph: definition, incidence function, head, tail, dominates, in-neighbours
(N−D (v), out-neighbours (N+

D (v), indegree(d−D(v)) outdegree(d+
D(v)), strict di-

graph, underlying graph of D (G(D)), associated digraph of G (D(G)), orien-
tation of G, tournament, k-diregular graph, source, sink, isomorphism between
2 digraph, incidence matrix & adjacency matrix of digraph.

(b) Subgraphs and Supergraphs

i. subgraph(⊆), supergraph(⊇), edge deletion(G \ e), vertex deletion (G − v),
F-subgrapgh.

ii. Theorem: Let G be a graph in which all vertices have degree at least two.
Then G contains a cycle.

iii. acyclic graph, contrapositive of previus theorem, Exercises 2.1.2, 2.1.3 [2].
iv. Maximal and Minimal: maximal and minimal graph, maximal path of a graph,

circumference and girth of a graph.
v. spanning subgraph G \ S, every simple graph is a spanning subgraph of a

complete graph, spanning supergraph (G + S), join of two graphs (G ∨ H),
wheel with n spokes (Wn = Cn ∨K1), spanning path and cycle.

vi. induced subgraph (G−X), G[Y ], edge induced subgraph(G[S]).
vii. weighted graph, Travelling salesman problem.
viii. Exercises: 2.2.1, 2.2.9, 2.2.10, 2.2.13 [2]

(c) Modification of graphs

i. identification of two non-adjacent vertices (G/{x, y}), contraction of an edge
(G/e);

ii. vertex splitting (# ?), subdividing edge;
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iii. Decomposition of a graph (# ?), path decomposition, cycle decomposition,
even graph;

iv. Theorem: A graph admits a cycle decomposition iff it is even.
v. exercise 2.4.5, 2.4.6, 2.4.8(b) [2]
vi. Covering of a graph, uniform covering (k-cover, 1-cover), path/cycle covering,

(d) Edge cuts and bonds

i. E[X,Y ], edge cut (∂(X)), bipartite and connected graph in terms of edge cut,
trivial cut (∂(v)), d(X).

ii. Theorem: For any graph G and any subset X of V (G), |∂(X)| =
∑

v∈X d(v)−
2e(X).

iii. bond
iv. Theorem: In a connected graph G, a nonempty edge cut ∂(X) is a bond if and

only if both G[X] and G[V X] are connected.

(e) Connected graphsi [2, 4]

i. walk (uv-walk), u connects v, segment, closed walk,trail, path, connected
graph, connection is an equivalence relation, components, distance between
u and v (dG(u, v)), arc (forward and reverse arc), cycle, k-cycle odd/even
cycle.

ii. Let G be a nonempty graph with atleast two vertices. Then G is bipartite iff
it has no odd cycles [4].

iii. Exercises 3.1.1, 3.1.2 [2]
iv. cut edge (bridge)
v. Th: An edge e of a graph G is a bridge iff e belongs to no cycle of G.
vi. Exercise 3.2.3 [2].
vii. Euler trail, konigsberg problem, Euler tour, eulerian graph

viii. A connected graph is eulerian iff it is even graph [4].
ix. Fleury’s algorithm [4]
x. Directed walk/trail/path/cycle, strongly connected digraph, equivalence class,

strong component, directed euler trail, eulerian digraph.
xi. A connected digraph is eulerian iff it is even.

(f) Tree

i. acyclic graph, tree, forest, non-isomorphic trees on 6 vertices .
ii. Prop: In a tree, any two vertices are connected by exactly one path.
iii. leaf of tree (there exists a vertex of degree atmost 1 (for nontrivial tree, it is

exactly 1)).
iv. Props: Every non trivial tree has atleast 2 leaves.
v. Th: If T is tree, then e(T ) = v(T )− 1.
vi. rooted tree, branching
vii. Exercises: 4.1.4, 4.1.3 [2]

viii. subtree, spanning tree,
ix. Prop: A graph is connected iff it has a spanning tree;
x. Th: A graph is bipartite iff it contains no odd cycle. So, either a graph is

bipartite or contains a odd cycle.
xi. Cayley’s theorem: The number of labelled trees on n-vertices is nn−2. That is

number spanning trees of a complete graph on n vertices (t(Kn)) is nn−2.

(g) Cut vertex

i. Cut vertices;

9



ii. Theorem: v is a cut vertex of a graph G iff there are two vertices u and w of
G, both different from v, such that v is on every uw-path in G [4].

iii. cut vertices of Kn, Pn.
iv. Let G be a graph with atleast 2 vertices. Then G has atleast 2 vertices which

are not cut vertices. [4]
v. Theorem: A connected graph on 3 or more verices has no cut vertices iff any

two distinct vertices are connected by two internally disjoint paths.
vi. Connectivity [4], Separation, separating vertex, nonseparable graph;
vii. Theorem: A connected graph is nonseparable iff any two of its edges lie on a

common cycle.
viii. Proposition 5.3 [2].

(h) Planar graph

i. Plane graph, planar graph; curve, closed curve, Jordan curve, arcwise-connected;
Jordan curve theorem, interior and exterior of a curve.

ii. K5,K3,3 are non-planar.
iii. Euler’s formula
iv. All planar embeddings of a connected planar graph have the same number of

edges.
v. Let G be a plane graph with n vertices, e edges, f faces and k connected

components. Then n− e+ f = k + 1;
vi. degree of a face (d(f) ≥ 3 for any interior face f);
vii. Let G be a simple planar graph with n vertices and e edges, where n ≥ 3.

Then e ≤ 3n− 6.
viii. There is a v in V (G) with d(v) ≤ 5 for a simple planar graph G.

ix. K5,K3,3 is non-planar.

(i) Vertex colouring [4, 2]

i. Colouring problem, k-colourable, chromatic number/index (χ(G));
ii. Theorem

A. χ(G) ≤ V (G);
B. If H ⊆ G then χ(H) ≤ χ(G);
C. χ(Kn) = n, χ(Cn) =?, χ(Sn) =?;
D. If Kn ⊆ G then χ(G) ≥ n;
E. If G1, . . . , Gn are components of G then χ(G) =?;
F. χ(G) = 2 iff G is bipartite; χ(G) ≥ 3 iff G has an odd cycle.

iii. χ(G) ≤ ∆(G) + 1, where ∆(G) = max{d(v) : v ∈ V (G)} is the maximum
vertex degree of G.

iv. Brooks Theorem: If ∆(G) ≥ 3 and G 6= Kn then χ(G) ≤ ∆(G).
v. Exercise 6.1 [4], coloring of petersen graph(odd cycle and ∆(G) ≥ 3).
vi. Sequential vertex coloring algorithm.

(j) Chromatic polynomial [5]

i. Pn(λ) =
∑λ

i=1 ci
(
λ
i

)
, where ci be the different ways of properly coloring G

using i colors (cn = n!).
ii. Example: fig 8.4 [5].
iii. A graph of n-vertices is a complete graph iff its chromatic polynomial is

Pn(λ) = λ(λ− 1) . . . (λ− n+ 1).
iv. Recursive construction [5, Theorem 8.6] with example [5, fig 8.5].
v. Pn(λ) is the weighted sum of Pk(λ) of Kk for k ≤ n.
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vi. Theorem [7]: Let G be a graph with n points, q edges and k components
G1, G2, . . . , Gk. Then
A. Pn(λ) has degree n;
B. The coefficient of λn is 1;
C. The coefficient of λn−1 is −q;
D. The constant term in Pn(λ) is 0;
E. Pn(λ) =

∏k
i=1 Pni(λ);

F. The smallest exponent of λ in Pn(t) with nonzero coefficient is k.
vii. An n-vertex graph is a tree iff its chromatic polynomial Pn(λ) = λ(λ− 1)n−1.

(k) Edge coloring [4]

i. Edge coloring and edge chromatic number(χ1(G));
ii. H(i, j), Kempe chain;
iii. χ1(G) ≥ ∆(G);
iv. Theorem: Let G be a nonempty bipartite graph. Then χ1(G) = ∆(G).
v. Equivalence between latin square and edge coloring of bipartite graph.
vi. Let G = Kn, the complete graph on n vertices, n ≥ 2. Then

χ1(G) =
{

∆(G) + 1( i.e., n) if n is odd
∆(G)( i.e., n− 1) if n is even.

(l) Hamiltonian graph [4]

i. Hamiltonian path, Hamiltonian cycle, Hamiltonian graph, Examples of figure
3.21 and 3.22, Maximal non-Hamiltonian graph.

ii. Theorem (Dirac): If G is a simple graph with n(≥ 3) vertices and d(v) ≥ n
2

for every vertex v of G, then G is Hamiltonian.
iii. Theorem: Let G be a simple graph with n-vertices and let u and v are non-

adjacent in G such that
d(u) + d(v) ≥ n.

Let G+ uv is Hamiltonian iff G+ uv is Hamiltonian.
iv. Theorem: A simple graph G is Hamiltonian iff its closure c(G) is Hamiltonian.
v. Corollary: Let G be a simple graph on n vertices, with n ≥ 3. If c(G) = Kn,

then G is Hamiltonian.
vi. Travelling Salesman problem, Two-optimal algorithm.
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