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Abstract

In this thesis we discuss certain properties of Boolean functions that are necessary for re-

sistance against algebraic and fast algebraic attacks. A Boolean function f(x1, . . . , xn) on

n variables may be described as a multivariate polynomial over GF (2) and it is well known

that its algebraic degree d should not be low if it has to be used as a primitive in a well

designed cryptosystem. Recently, it has been noted that a necessary condition in resisting

algebraic attack is as follows: the function f should not have a relation fg = h, where g, h

are nonzero n-variable Boolean functions of low degrees. This condition boils down to the

situation that the function f should not have relations like fh1 = 0 or (1 + f)h2 = 0, where

h1, h2 are nonzero n-variable Boolean functions of low degrees. The function h1 (respectively

h2) is called the annihilator of f (respectively 1 + f). The notation AIn(f) is used to denote

the minimum degree of the annihilators of f or 1 + f . This is well known as “Algebraic

Immunity” of the function f in literature. There are evidences that algebraic immunity is

not a sufficient condition to resist against all kinds of algebraic attacks, but clearly it is one

of the most important necessary conditions. The term “Annihilator Immunity” may be a

more appropriate notation than “Algebraic Immunity”, but following the frequent use of

the term “Algebraic Immunity” in currently available research materials, we use the term

Algebraic Immunity in this thesis. It is known that AIn(f) ≤ dn
2
e.

Good nonlinearity is one of the most important properties of Boolean functions to be used

in a cryptosystem. We present a fundamental relationship between the algebraic immunity

and the nonlinearity of a Boolean function. We first relate the weight of a function with

its algebraic immunity and then extend the result to show that if nl(f) <
∑d

i=0

(
n
i

)
, then

AIn(f) ≤ d + 1. That is, if AIn(f) > d + 1 then nl(f) ≥
∑d

i=0

(
n
i

)
. Thus while choosing a

function with good algebraic immunity, the nonlinearity of the function is lower bounded.

The main idea (in proving these results) is based on solutions to a set of homogeneous

linear equations. Using similar approach, given a Boolean function, we have also studied

the number of linearly independent annihilators at the lowest possible degree. Further we

have studied some existing constructions of cryptographically significant Boolean functions

in terms of their algebraic immunity.

As there was no known construction of Boolean function with maximum possible algebraic

immunity, next we concentrate on that problem. So far, the attempt in designing Boolean

functions with required algebraic immunity was only ad-hoc, i.e., the functions were designed

keeping in mind the other cryptographic criteria, and then it has been checked whether

the function can provide good algebraic immunity too. For the first time, we present a

construction method to generate Boolean functions on n variables with highest possible
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algebraic immunity dn
2
e. The construction is recursive in nature, i.e., a function on higher

number variables is built using proper functions on lower number of variables.

Further we tried to concentrate on the basic theory that how a function with maximum

possible algebraic immunity can be constructed. We considered three n-variable functions

f, f1, f2. The functions f1, f2 are such that they have no annihilator having degree less than

dn
2
e. Then one can construct a function f with the maximum possible algebraic immunity

dn
2
e where supp(f) ⊇ supp(f2) and supp(1 + f) ⊇ supp(f1). We applied this strategy to get

functions with maximum possible algebraic immunity and specifically concentrated on the

symmetric Boolean functions with such property. The algebraic degree and nonlinearity of

these symmetric functions (and related non symmetric functions) are studied in detail.

It has been revealed that Boolean functions with maximum possible algebraic immunity

may be weak against fast algebraic attacks. It may very well happen that given a Boolean

function f with AIn(f) = dn
2
e, one can get functions g, h with deg(h) = dn

2
e where deg(g)

is very low. The low degree of g makes the function f vulnerable against certain kinds of

fast algebraic attacks. This motivates us to analyse the functions f (with maximum possible

algebraic immunity) and to check the degree of g under such a scenario. We study different

functions (produced by our constructions, and also other functions) to check this property

and identify when the situation is encouraging and when it is not.

Given a Boolean function f on n-variables, a set of homogeneous linear equations can

be formed, by solving which one can decide whether there exist annihilators at degree d or

not. We analyse how the number of homogeneous linear equations can be reduced and show

that the reduction can be significant if one can find an affine transformation over f(x) to

get h(x) = f(Bx + b) such that |{x | h(x) = 1, wt(x) ≤ d}| is maximized. We present an

efficient heuristic towards this. Our study also shows for what kind of Boolean functions the

asymptotic reduction is possible by this strategy and when the reduction is not asymptotic

but constant. Our method helps in theoretically understanding the structure of the set of

homogeneous linear equations used to find the annihilators.
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Chapter 1

Introduction

The literature of cryptography has a very long and curious history. A cryptographic scheme

is considered to be secure if an attacker, who has access to the algorithmic principle of

the scheme but has no knowledge about the key, is not able to attack the scheme. This

cryptographic principle was first introduced by Kerckhoffs [103] in 1883. Then another

influential paper [83] on cryptanalysis came in 1920 by William F. Friedman. By the end

of world war II, the work of Shannon [159] was of great influence in the scientific study

of cryptography. From the fourth quarter of twentieth century, the revolution of digital

computers and network communication forced the military and commercial sectors to protect

their information stored or transmitted in digital form. Apart from these sectors, common

people have also started to depend on computers and network communication; naturally

these applications also need proper security too. Due to these reasons, cryptography has

become an important subject to explore. The most striking development of cryptography

started with the key paper [71] by Diffie and Hellman. The reader may refer to the books [125,

167] for a more elaborate documentation.

Cryptology includes designing of cryptosystem and their analysis interms of security,

complexities, performance, compatibility etc. The later one, known as cryptanalysis, mainly

deals with finding weaknesses in the cryptosystems. The fundamental idea of cryptography is

that any two (or more) communicating parties want to make sure that any eavesdropper can

not read and/or change the information they are exchanging. Depending on the application

areas, cryptography is divided into several parts. The most popular areas are as follows:

1. encryption and decryption for secret communication of message,

2. signature and message authentication code (MAC) to authenticate data,
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3. key agreement protocol to agree on a secret key by a group of people.

This thesis falls in the area of item 1. For other two areas and further information

see [125, 167]. Encryption and decryption are used for secret transmission of message from

one end to another such that in the middle any unwanted person cannot understand the

meaning of the message. The plaintext message M that the sender wants to transmit is

considered as a sequence of characters from a set of fixed characters called alphabet. M is

encrypted to produce another sequence of characters from the set alphabet and the encrypted

sequence is called the cipher C. In practice, we use the binary digits (bits) 0, 1 as the

alphabet. The encryption function Eke operates on M to produce C and the decryption

function Dkd operates on C to recover original plaintext M . Both the encryption function

Eke and the decryption function Dkd are parameterized by the keys ke and kd respectively,

which are chosen from a very large set of possible keys called the keyspace. The sender

encrypts the plaintext by computing C = Eke(M) and sends C to the receiver. The functions

are properly designed so that the receiver recovers the original text by computing Dkd(C) =

Dkd(Eke(M)) = M .

The two major divisions in encryption/decryption strategies are as follows:

1. Secret key cryptosystems (also called symmetric key cryptosystems).

2. Public key cryptosystems (also called asymmetric key cryptosystems).

Our work is in the area of secret key cryptosystems. See [86, 125, 167] for detailed

references on public key cryptosystems.

The conventional strategy, where the decryption key kd is either the same as the encryp-

tion key ke or easily derivable from ke is called symmetric key cryptosystem. From now on

we consider both ke and kd as the same single key k. These cryptosystems are also called

secret key cryptosystems since both the sender and the receiver agree on a single key which

is kept secret. There are two classes of design paradigms for the functions Ek(M) and Dk(C):

block ciphers and stream ciphers.

First we briefly explain the block ciphers. A block cipher breaks up a plaintext M into

successive blocks M1,M2, . . . of elements from alphabet. Each block is encrypted using a

key k (same for all blocks) from the keyspace K. That is, the plaintext M is encrypted

as C1 = Ek(M1), C2 = Ek(M2), . . .. Then, at the receiver end, the plaintext M is recovered

as Dk(C1),Dk(C2), . . .. The block cipher literature is extremely rich and one may refer

to [167, 125] for more details. The most well known block cipher at this time is the Advanced
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Encryption Standard (AES), also known as Rijndael [132]. This is the successor of another

well known cipher, DES [133]. AES was adopted by NIST in 2001 after a 5-year long

standardisation process. One may also refer to some other popular block ciphers such as

FEAL [160], IDEA [108], RC6 [143], SERPENT [9], TWOFISH [153] etc. Most of them use

substitution boxes (in short it is called S-boxes) as the nonlinear part of the design. See [125]

for more details on design and study of block ciphers. Mathematically, any S-box can be

viewed as a multi-output Boolean function, i.e., a function S : IFn2 7→ IFm2 . So, an S-box can

be treated as an ordered set of m many n variable Boolean functions.

Let us now concentrate on stream ciphers. Some recent popular stream ciphers are

SNOW [76], SCREAM [92], TURING [145], MUGI [172], HBB [149], RABBIT [15], HE-

LIX [81] etc. Some more recently proposed stream ciphers are available for the ECrypt

stream cipher project [169]. The basic structure of this system is as follows. A secret se-

quence of bits (of length equal to the message length) is bitwise XOR-ed (addition modulo

2) with the message sequence and the resulting sequence (the cipher) is sent to the receiver.

The receiver deciphers it by bitwise XOR-ing the cipher bits with the same secret sequence.

The security of stream cipher depends on the unpredictability of the bits of this secret se-

quence. A sequence is unpredictable if it is random. In information theoretic sense, a random

sequence provides unconditional security if the secret sequence, once used for encryption, is

never used again. This is known as one time pad (see [167, page 50, first edition]). The

main advantage of stream cipher is that if a fast random bit generator is available, then

both enciphering and deciphering are very fast as we need only the XOR operation during

encryption and decryption.

In practice, one can generate a pseudorandom sequence using some algorithm and a small

secret key is used to initialize the algorithm. A part of the sequence is used to encipher the

message. At the other end same secret key and the same algorithm are used to regenerate

the correct part of the secret sequence to decipher. So, the problem in stream cipher design

is to construct a good pseudorandom generator. One may refer to [105, 14, 88] for design of

pseudorandom generators to be used in stream cipher systems.

Linear Feedback Shift Registers (LFSRs) [88] are one of the most used primitives in

pseudorandom generators. The sequences generated from several LFSRs are combined by

nonlinear combiners, generally nonlinear Boolean functions, to introduce the nonlinearity

(see [147]). The standard model of pseudorandom generator [60, 73, 161, 162] combines

the outputs of several independent LFSR sequences using a nonlinear Boolean function to

produce the keystream.

Before accepting a cryptosystem for encryption, one must study the underlying algorithm
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to analyse the security. Following the Kerckhoff’s principle [103], designer must accept that

attacker knows the algorithm of the system, i.e., during the cryptanalysis the adversary

has complete knowledge of the encryption algorithm used, along with the parameters of the

system; only the secret key remains unknown. Let us now give a brief introduction on four

general cryptanalytic attacks.

1. Ciphertext Only Attacks : The adversary has only the ciphertext of several messages,

all of which have been encrypted using same algorithm. From this the adversary has to

recover the message as much as possible or, better to extract the secret key (or keys)

used.

2. Known Plaintext Attack : The adversary possesses several message texts along with the

corresponding ciphertexts. This is a more advantageous assumption to the cryptanalyst

than the previous case.

3. Chosen Plaintext Attack : This is a variation of the previous attack where the adversary

is allowed to choose the set of message texts. This is more powerful than the previous

case in the sense that one that one may yield further information by cleverly choosing

some selected plaintext strings. It can be either passive (prior decision is taken which

strings to be selected) or adaptive (decision is taken during encryption looking at the

results of the previously chosen strings).

4. Chosen Ciphertext Attack : This is an another variation of known plain text attack.

The adversary can choose some ciphertexts and get temporary access to decrypt it to

have corresponding plaintexts. Like the previous attack the attacker may earn more

advantages by cleverly choosing some selected ciphertexts.

On the basis of these attacks both block and stream ciphers can be analysed in several ways.

Proper choice of S-boxes is an important part in block cipher design. Matsui [119]

introduced linear cryptanalysis method for block ciphers and implemented that on DES.

By this technique, the linear combination of the component functions of an S-box, used

in a block cipher, are approximated by linear functions of the input variables. To resist

linear cryptanalysis, S-boxes should have high nonlinearity. Differential cryptanalysis [10]

is a chosen-plaintext attack and involves comparing the XOR of two inputs to the XOR of

corresponding two outputs. A non uniform output distribution is the basis for a successful

differential attack. Motivated by this, Webster and Tavares [173] introduced the concept of

strict avalanche criteria (SAC). A related property called propagation characteristics (PC)
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was considered by Preneel, Leekwijck, Linden, Govaerts and Vandewalle [142]. PC and SAC

are two important cryptographic properties for S-boxes to resist differential cryptanalysis.

For details of these attacks see [167, second edition]. One may also refer to [154, 156, 157,

158, 90] for design of Boolean functions having good PC and SAC properties.

Jakobsen and Knudsen [97] identified interpolation attack on block ciphers with S-boxes

having small algebraic degree. Later Canteaut and Videau [29] provided higher order differ-

ential attack on block ciphers using S-boxes with low algebraic degree. So algebraic degree

of S-boxes should be high to resist such attacks.

In case of stream ciphers, it is important to study the properties of the underlying non-

linear functions. In last two decades several classes of attacks have been proposed on stream

ciphers in this direction. Thus, the properties of nonlinear functions have received lots of

attention in symmetric key cryptography literature. First, the function should be balanced

to satisfy the pseudorandomness of the generated sequence. Otherwise, for a large set of

randomly selected input values, the proportion of 0’s and 1’s in the output values of the

function will be away from half and the system may become vulnerable to cryptanalytic

attacks. In the stream cipher model, the linear complexity [73] of the generating keystream

must be large enough and stable. High algebraic degree is a necessary condition to provide

high linear complexity [148, 73]. The keystream bits can be guessed by approximating the

keystream generated by an affine function and this type of attack is called best affine approx-

imation (BAA) attack. A function with low nonlinearity is prone to BAA attack (see [73,

Chapter 3]). A Boolean function should have high nonlinearity to be used in stream ciphers.

To resist divide-and-conquer attack, a Boolean function used in stream cipher, should be

correlation immune of higher order [161, 162, 73]. Some more important approaches to the

cryptanalysis of LFSR based stream ciphers are available in literature, e.g., fast correla-

tion attacks [124, 42, 98, 99], backtracking attacks [87, 178, 177], time-space trade offs [12],

BDD-based attacks [107] etc. To know the details of recent works on cryptanalysis on stream

ciphers one may refer to the thesis by Maximov [121].

Recently, a new class of attacks named algebraic attacks has become very important

to cryptanalyse both block and stream cipher cryptosystems. In these kind of attacks, the

attacker attempts to find a large set of algebraic equations over the secret key and the output

key bits. Knowing some output key bits, the attacker attempts to recover the secret bits by

solving these equations. Hence, this attack falls under the known and chosen plaintext attack

and algebraic in nature rather than statistical. The efficiency of the attack depends on the

efficiency of the algorithm to generate the algebraic equations and to solve the generated

large set of multivariate equations. If the degree of the equations are low or the equations
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are of special structures, then the system of equations may be solved efficiently.

Courtois and Pieprzyk [58] have exploited the overdefined relations between input and

output bits of the block ciphers for solving the initial key bits. The algebraic attack on the

stream ciphers is also interesting (see [5, 56, 51, 123]). Two fundamental models of stream

ciphers are nonlinear combiner and nonlinear filter generator, where a nonlinear Boolean

function f takes an important role to generate the keystream. It has been found [56, 123]

that if a function f or its complement 1 + f has low degree annihilators (see Chapter 2,

Definition 10), one can construct equations of degree equal to the degree of the annihilators.

Then one may attempt to solve this system of equations to recover the secret key or to reduce

the key space. For this reason the designer should be careful that the underlying function

f or its complement 1 + f should not have low degree annihilators. Hence the property,

that both f and 1 + f have no low degree annihilators, is necessary for choosing a Boolean

function in the design of a cryptosystem. This property is called the algebraic immunity and

is defined as the minimum degree of the sets of all annihilators of f and 1+f . This property

may not resist all types of algebraic attacks (for example fast algebraic attacks [51]), but

clearly it is an important necessary condition. This thesis is devoted to study the Boolean

functions in terms of their algebraic immunity.

Studying the properties of underlying Boolean functions is an important task for design

and cryptanalysis of both stream and block cipher systems. From the recent literature,

finding a Boolean function which achieves all these desired properties appears to be a hard

task and there are some trade offs among these properties. Depending on the application

requirement one has to decide which properties are more important.

1.1 Thesis Organization

The current chapter (Chapter 1) discusses some introductory materials. In Chapter 2 we

present related background information for this thesis. There we introduce the definitions

and properties of Boolean functions which are useful to our work. Then we present an

overview on the literature on algebraic attacks, from which we derive the motivation towards

this thesis.

Chapter 3 initiates our work in the area of algebraic immunity of Boolean functions. We

relate algebraic immunity with weight and nonlinearity of Boolean functions in Section 3.1.

Then we present some results on enumeration of linearly independent annihilators in Sec-

tion 3.2. Further, in Section 3.3 we present algebraic immunity of a Boolean function in
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terms algebraic immunity of its sub functions. Finally in Section 3.4 we study the algebraic

immunity of certain classes of Boolean functions. The materials of this chapter are mainly

based on [62].

In Chapter 4 we present the first ever construction to generate Boolean functions on

any number of variables having optimal algebraic immunity. Then we study some other

cryptographic properties of the constructed functions. For this chapter the materials are

obtained from [63]. A revised version of [62, 63] appears in [36].

In Chapter 5 we present the basic theory to construct Boolean functions having optimal

algebraic immunity. Using this theory we present symmetric (and also non symmetric)

Boolean functions with optimal algebraic immunity. We study the other cryptographic

properties for the construction in certain cases. This chapter is based on [66].

In Chapter 6 we study the immunity of Boolean functions against fast algebraic attacks.

We explore the behavior of Boolean functions having optimal algebraic immunity in terms

of fast algebraic attack. In this context we study the performance of various classes of

Boolean functions. In Section 6.5 we propose some constructions to provide balanced Boolean

functions having optimal algebraic immunity with certain strength against fast algebraic

attack. For this chapter we have taken materials from [64].

To implement algebraic attack, finding low degree annihilators is essential. To find an-

nihilators, generally one needs to solve a set of homogeneous linear equations. In Chapter 7

we present a strategy to reduce the size of the system of homogeneous linear equations that

in turn reduces time complexity to find the annihilators. Moreover, we use a heuristic to

find an affine transformation which reduces the size of the system of equations further. For

this chapter the materials are taken from [65].

We conclude this thesis in Chapter 8 with a summary of our work and related open

problems.

1.2 Prerequisites

It is assumed that the reader is familiar with undergraduate level combinatorics, abstract

algebra, linear algebra and concept of Boolean functions. The reader is referred to [96,

144, 110, 129] for basic materials in linear algebra, combinatorics, finite fields and Boolean

circuits respectively. It is also required to have the basic knowledge on cryptography [167]

and related combinatorial properties of the Boolean functions [90, 113].
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Chapter 2

Background

We start this chapter with relevant definitions of Boolean functions that are important in

cryptography. Since we study some properties of Boolean functions and sequence of bits,

our base field is the binary field, i.e., Galois field of two elements denoted by IF2 = GF (2) =

{0, 1}. We refer the elements of IF2 as bits. The field operations are addition (+), i.e.,

logical XOR of two bits and multiplication (∗), i.e. logical AND (∧) of two bits (abusing the

notation we generally use ab for a∗b for a, b ∈ IF2). One may refer [110] for detailed materials

on finite fields. We need to consider an n-dimensional vector space (IFn2 ,+, ·) over the field

IF2, where + and · are usual vector addition and scalar multiplication. In short, we can say

IFn2 is the set of all n-tuples from IF2. Abusing the notation we use the same symbol + for

vector addition, field addition and usual arithmetic addition. We define the inner product of

two vectors u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ IFn2 as 〈u, v〉 = u1v1 +u2v2 + . . .+unvn.

The complement of a bit b is the additive inverse of b, i.e., 1 + b and denoted as b. The

complement of a vector v is the bitwise complement of each bit and denoted as v. A string of

bits s = s1s2 . . . sl, si ∈ IF2 of length l can be viewed as an l-dimensional vector (s1, s2, . . . , sl).

Thus, we can apply the notations and definitions defined for vectors on string of bits as well.

Definition 1 The (Hamming) distance between two vectors u, v ∈ IFn2 is the number of

components where they are bitwise different. This is denoted as d(u, v). The (Hamming)

weight of a vector u is the number of nonzero components in the vector denoted as wt(v).

Note that d(u, v) = wt(u + v) for u, v ∈ IFn2 . The elements of IFn2 possesses a natural

total ordering (<l) known as the lexicographic ordering. For u = (u1, u2, . . . , un), v =

(v1, v2, . . . , vn) ∈ IFn2 , u <l v if there is a k, 1 ≤ k ≤ n such that un = vn, un−1 =

vn−1, . . . , uk+1 = vk+1; uk < vk, i.e., uk = 0 and vk = 1. So, one can order the vectors of
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x1 x2 x3 x4 f

0 0 0 0 0

1 0 0 0 1

0 1 0 0 0

1 1 0 0 0

0 0 1 0 1

1 0 1 0 0

0 1 1 0 0

1 1 1 0 1

0 0 0 1 1

1 0 0 1 1

0 1 0 1 0

1 1 0 1 1

0 0 1 1 0

1 0 1 1 1

0 1 1 1 0

1 1 1 1 1

Table 2.1: Truth table representation

IFn2 as α0 = (0, 0, . . . , 0), α1 = (1, 0, . . . , 0), . . . , α2n−1 = (1, 1, . . . , 1) such that α0 <l α1 <l

. . . <l α2n−1. We have bijective map from IFn2 to Z2n , the ring of integers modulo 2n as

v = (v1, v2, . . . , vn) ∈ IFn2 maps to the integer v1 · 20 + v2 · 21 + . . . + vn · 2n−1. With this

correspondence, the natural ordering of integers coincides with the earlier ordering <l of

vectors. For easy computation and understanding, sometimes we write the integers to mean

the corresponding vectors.

2.1 Boolean Functions

An IF2 valued (i.e., the range set) function f on IFn2 (i.e., the domain set), i.e., f : IFn2 7→ IF2 is

called an n-variable Boolean function. The set of all n-variable Boolean functions is denoted

as Bn. Unless stated otherwise, by a function, we shall mean a Boolean function. One

may refer to [90, 113] for relevant works in the area of cryptographically significant Boolean

functions.
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2.1.1 Representation of Boolean Functions

Though there are many ways to represent a Boolean function [121], we will mainly concen-

trate on two ways that are frequently used to represent cryptographically significant Boolean

functions. One way is to represent the Boolean function by a binary string called the truth

table (TT) and the other way is to represent it as a multivariate polynomial known as the

algebraic normal form (ANF).

Truth Table Representation

Very often we represent a Boolean function by the output column of its truth value according

to the natural order (<l) of input vectors from vector space IFn2 . See Table 2.1 for an example

of the truth table of a 4-variable function. Since the truth values are placed according to

a total ordering of the input vectors, we can represent uniquely all the truth values by a

binary string (Tf ) of length 2n as following:

Tf = f(α0) f(α1) . . . f(α2n−1),

where αi, 0 ≤ i ≤ 2n−1 are vectors from IFn2 with ordering<l. The truth table representation

of the function in Table 2.1 is 0100100111010101.

Since the truth table of an n-variable Boolean function can be viewed as a vector of

dimension 2n, the set Bn forms a vector space IF2n

2 of dimension 2n over IF2. There are 22n

many distinct n-variable Boolean functions. So, we can use the same definitions for weight

of a function f and distance between two functions f, g as explained for vectors of IFn2 in

Definition 1.

Definition 2 The support of a Boolean function f ∈ Bn is defined as supp(f) = {v ∈
IFn2 | f(v) = 1}.

So, the weight of a function f ∈ Bn is wt(f) = |supp(f)|.

Definition 3 A function f ∈ Bn is said to be balanced if its output column in the truth

table contains equal number of 0’s and 1’s (i.e. wt(f) = 2n−1).

It is easy to see that there are
(

2n

2n−1

)
many balanced functions in the set of all n-variable

Boolean functions. Note that the combining function in any cryptographic system need to

be balanced.
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ANF Representation

Another way of representing an n-variable Boolean function is in the polynomial form over

the field IF2 with n many indeterminates x1, x2, . . . , xn. Hence, it can be uniquely (up to per-

mutation of indeterminates and monomials) represented in the ring IF2[x1, x2, . . . , xn]/〈x2
1 −

x1, x
2
2 − x2, . . . , x

2
n − xn〉 as follows:

f(x1, x2 . . . , xn) = a0 +
n∑
i=0

aixi +
∑

1≤i<j≤n

ai,jxixj + · · ·+∑
1≤i1≤···≤in−1≤n

ai1,...,in−1xi1 . . . xin−1 + a1,...,nx1 . . . xn, (2.1)

where a0, a1, . . . , a1,...,n ∈ IF2 are called the coefficients of the respective monomials. Equa-

tion 2.1 can be written in another way as

f(x1, x2, . . . , xn) =
∑

(v1,v2,...,vn)∈IFn2

Af (v1, v2, . . . , vn)x
v1
1 x

v2
2 . . . xvnn (2.2)

where Af (v1, v2, . . . , vn) is again a Boolean function. This representation is called the alge-

braic normal form (ANF) of f .

Definition 4 The algebraic degree or, simply the degree of the function f is defined as

deg(f) = max{wt(v) | Af (v) = 1, v ∈ IFn2}.

The maximum algebraic degree achievable for an n-variable Boolean function is n. The

degree of an n-variable Boolean function is n iff it is of odd weight. The maximum algebraic

degree of an even weight n-variable function is at most n− 1.

Definition 5 A Boolean function f is affine if there exists no term of degree greater that 1 in

its ANF, i.e., Af (v) = 0 for wt(v) > 1 and the set of all n-variable affine functions is denoted

as An. Any affine function can be written as lu,b(x) = 〈u, x〉+b, where u = (a1, . . . , an) ∈ IFn2
and b = a0 ∈ IF2. An affine function with constant term equal to zero (i.e., a0 = 0) is called

a linear function and the set of all n-variable linear functions is denoted as Ln.

From a truth table of an n-variable Boolean function f , the ANF can be computed as

f(x1, x2, . . . , xn) =
∑

(v1,...,vn)∈supp(f)

(x1 + v1 + 1)(x2 + v2 + 1) . . . (xn + vn + 1).
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In other way, one can draw the truth table Tf from ANF of f as

Tf = f(α0) f(α1) . . . f(α2n−1),

where the α0, α1, . . . , α2n−1 ∈ IFn2 ordered in natural ordering (<l).

Example 1 ANF of Boolean function presented in Table 2.1 is x1 +x3 +x4 +x1x2 +x2x3 +

x1x2x3 + x2x3x4 and the degree of the Boolean function is 3.

Product of two Boolean functions f, g ∈ Bn is denoted as f ∗ g (for simplicity sometimes

we denote as fg instead of f ∗ g). The truth table representation of fg is the point wise

multiplication (logical AND) of the truth table string of f and g and ANF representation is

the polynomial multiplication of f and g.

2.1.2 Walsh Transformation

Walsh transform is one of the most important tools to analyse a Boolean function. The

Walsh transform of an n-variable Boolean function f is an integer valued function Wf :

IFn2 7→ [−2n, 2n] defined as (see [112, page 414])

Wf (u) =
∑
x∈IFn2

(−1)f(u)+〈u,x〉. (2.3)

The term Wf (u) is called the Walsh coefficient of f at the point u. The set of all the Walsh

coefficients is referred as the Walsh spectrum of f . The conservation law for the spectral

values of f is known as Parseval’s Theorem (see [73]), which says that sum of the square of

Walsh coefficients is constant, i.e.,
∑

u∈Fn2
W 2
f (u) = 22n.

Example 2 The Walsh spectra of Boolean function presented in Table 2.1 is presented in

the following table.

u 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Wf (u) 0 8 −4 −4 0 0 −4 4 4 −4 0 0 4 4 0 8

Table 2.2: Walsh transform of the function in Table 2.1
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2.1.3 Nonlinearity

Definition 6 The nonlinearity nl(f) of an n-variable Boolean function is defined as

nl(f) = min
l∈An

d(f, l).

Nonlinearity can be expressed in terms of Walsh spectra of f as

nl(f) = 2n−1 − 1

2
max
u∈IFn2

|Wf (u)|.

From cryptographic and coding theoretic studies, nonlinearity is a very important combi-

natorial property of Boolean functions. A function with low nonlinearity is prone to Best

Affine Approximation (BAA) [73, Chapter 3] attack. It is a known plaintext attack and the

attack needs the knowledge of the combining function. Best Affine Approximation means

approximating the combining function by an affine function. Thus for cryptographic appli-

cations we need functions with high nonlinearity so that they can not be well approximated

using the affine ones. Apart from its importance in cryptography, highly nonlinear Boolean

functions are important combinatorial objects by themselves and have very close relationship

with coding theory [112].

An n-variable (n even) function f achieves maximum nonlinearity iff Wf (u) = ±2
n
2 , for

all u ∈ IFn2 (using the Parseval’s equality) and the nonlinearity is 2n−1 − 2
n
2
−1. Functions

achieving this value of nonlinearity are called bent functions and they exist only when n

is even [146]. The bent functions are unbalanced and for n ≥ 4 the algebraic degree of a

bent function is at most n
2
. This class of functions are important in both cryptography and

coding theory. For more details on bent functions, one may refer to [146, 112, 73, 31, 39].

The maximum possible nonlinearity for balanced functions on even number of variables is

still open.

When n is odd, the maximum nonlinearity achievable by an n-variable Boolean function

is not known (see [8, 139] for important results in this area). However, functions achieving

a nonlinearity of 2n−1 − 2
n−1

2 can be easily constructed [27] by concatenating two bent

functions. It has been proved [8, 131, 95] that nonlinearity of n (odd) variable function is

at most 2n−1 − 2
n−1

2 for n ≤ 7. On the other hand, Patterson and Wiedemann [139, 140]

provided construction of functions with nonlinearity strictly greater than 2n−1 − 2
n−1

2 for

odd n ≥ 15. Very recently, Kavut, Maitra and Yücel found functions of 9 variables with

nonlinearity 241 and using these one can construct Boolean function with nonlinearity greater

than 2n−1 − 2
n−1

2 for odd n ≥ 9 [102].
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2.1.4 Correlation Immunity and Resiliency

Definition 7 An n-variable function f is called correlation immune of order t (t-CI) if

Wf (ω) = 0 for all ω with 1 ≤ wt(ω) ≤ t [161, 175]. A balanced t-CI function is called

t-resilient.

Note that a function is balanced if and only ifWf (0) = 0. Thus, a function f is t-resilient iff its

Walsh transform satisfies Wf (ω) = 0, for 0 ≤ wt(ω) ≤ t. For t-CI (respectively, t-resilient)

functions, the algebraic degree d is bounded by d ≤ n− t (respectively, d ≤ n− t− 1) [161].

Example 3 The Boolean function presented in Example 1 is not 1-CI as Wf (0001) = 8 (see

Table 2.2), but it is balanced.

An important attack called divide-and-conquer attack was proposed by Siegenthaler [162].

If the underlying function is not correlation immune (resilient) of certain order, then one

can implement divide-and-conquer attack on the nonlinear combiner model. One may refer

to [24, 155, 40, 127, 82, 115, 150] for detailed study and construction of correlation immune

and resilient functions. Following the notation as in [150, 151, 165], we use (n,m, d, σ) to

denote an n-variable, m-resilient function with degree d and nonlinearity σ. Further, by

[n,m, d, σ] we denote unbalanced n-variable, mth order correlation immune function with

degree d and nonlinearity σ.

2.1.5 Symmetric and Rotation Symmetric Boolean Functions

We have already discussed in first chapter that a variety of criteria for choosing Boolean

functions with cryptographic applications have been identified. It is very difficult (may not

be possible also) to construct or find out a Boolean function which satisfies the optimality

of all the properties. The trade-offs among these criteria have received a lot of attention

in Boolean function literature for a long time (see [114] and references in this paper). It is

difficult to search an appropriate functions from the whole set of Boolean functions as the

search space is huge. Thus a natural idea is to decrease the search space by considering

certain sub classes. Here we mention two such sub classes of functions.

Definition 8 A Boolean function is called symmetric if it outputs the same value for all the

inputs of same weight.
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Thus it is clear that one can represent an n-variable symmetric Boolean function f(x1, . . . , xn)

in a reduced form by n+ 1 bits string ref such that

ref (i) = f(x1, x2, . . . , xn) when wt(x1, x2, . . . , xn) = i.

It is also clear that in the algebraic normal form, a symmetric Boolean function will either

contain all the terms of the same degree monomial or none of them. Thus we can represent

the algebraic normal form in a reduced form by n + 1 bits string raf such that raf (i) = 1,

when all the i degree monomials are present and raf (i) = 0, when all the i degree monomials

are absent.

Thus for an n-variable symmetric Boolean function f , both ref , raf can be seen as map-

pings from {0, 1, . . . , n} to IF2. One can follow [30, 152, 89] for details of symmetric functions.

Now we define a larger sub class of Boolean functions.

Definition 9 A Boolean function f ∈ Bn is called rotation symmetric (RSBF) if for each

input (x1, . . . , xn) ∈ IFn2 , f(ρkn(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ k ≤ n where ρkn acts as

k-cyclic rotation on an n-bit vector, i.e., ρkn(x1, x2, . . . , xn) = (x1+k, x2+k, . . . , xn, x1, . . . , xk).

That is, the rotation symmetric Boolean functions are invariant under cyclic rotation of

inputs. The set of RSBFs are interesting to look into as the space is much smaller (≈ 2
2n

n )

than the total space of Boolean functions (22n). Recently the class of rotation symmetric

Boolean functions (RSBFs) has received a lot of attention as the class contains functions

with very good cryptographic properties [44, 61, 82, 94, 102, 122, 120, 141, 164, 165, 67].

The combinatorial analysis of such functions is also very interesting as they possess certain

nice structures.

2.2 Algebraic Attack

Now we will briefly discuss a few specific algebraic attacks available in recent literature

and following that we will explain the motivation of this thesis. The study in this area

is mainly towards cryptanalysis of the symmetric key ciphers. However, algebraic attack is

implementable over public key ciphers too. Several public key cryptosystems can be described

by multivariate quadratic (MQ) equations, such as the cryptosystems of the hidden field

equations (HFE) family [138]. Some works on algebraic attacks to recover the secret key of

HFE have been presented in [104, 49, 79]. As RSA falls in Patarin’s hidden field equations

(HFE) [137], it may also be possible to analyse RSA in this direction. Symmetric key ciphers
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have received more attention in terms of algebraic attack and next we will present a brief

overview of algebraic attacks on both block and stream ciphers.

The basic principle of algebraic attacks comes from Shannon’s work: “they consist in

expressing the whole cryptosystem as a large system of multivariate algebraic equations

which can be solved to recover the secret key” [159, page number 704]. Each algebraic

equations can be viewed as a polynomial over the bits of the secret keys and equated to zero.

In this kind of attack, the attacker finds a large set of multivariate equations over secret keys.

Then the attempt is to solve this large set of multivariate equations to get the secret key or

to reduce the search space. Primarily, this attack is known plaintext attack (some cases it

is chosen plaintext attack) and algebraic in nature rather than statistical. The efficiency of

this attack depends on the efficiency of the algorithm to generate and solve a large set of

multivariate equations.

The algebraic attacks are implemented in two main steps :

1. Generating a large set of multivariate polynomial equations over secret keys.

2. Solving the system of generated equations to get the actual secret key or to reduce the

search space for the key.

We discuss these two issues separately.

2.2.1 Generating the Multivariate Equations

The strategies of finding the algebraic equations depend on the internal structure of the

cryptosystem. So, for different ciphers, attacker may follow different strategies to find re-

lations. Here we discuss generating equations for block ciphers and stream ciphers in two

different sub sections.

Block Ciphers

The security of block ciphers relies on the fact that the classical way of cryptanalysis, like

linear and differential attacks which are probabilistic, becomes harder (complexity increases

exponentially) as the number of rounds increases. Generally, the block ciphers (like DES,

Rijndael, Serpent) use S-boxes in the design. For any S-box, one can generate a set of

linearly independent multivariate equations between input and output bits. Multivariate
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equations are said to be linearly independent if they are linearly independent when every

distinct monomial is considered as a new variable.

In [80], Ferguson et. al. showed the complete AES can be represented by an equation

with 250 terms, which is too large to solve. Let us now consider the S-boxes of the form

s : IFn2 7→ IFn2 which are multi output Boolean functions with high algebraic degree. That

means we do not have low degree equations like yi = pi(x1, x2, . . . , xn) for 1 ≤ i ≤ n where

(y1, y2, . . . , yn) = s(x1, x2, . . . , xn). However it does not guarantee that there is no low degree

equation of the form P (x1, . . . , xn, y1, . . . , yn) = 0. The weak internal algebraic structure of

the S-boxes may provide low degree algebraic equations which can be exploited for algebraic

attacks.

In [58], Courtois and Pieprzyk attempted to analyse the block ciphers Rijndael and

Serpent in terms of algebraic attacks and they could express the S-boxes of Serpent and

Rijndael using algebraic equations of low degree d, e.g., d ≤ 2. The authors found that there

are at least 21 many quadratic equations for the 4-bit S-boxes used in Serpent. For the 8-bit

S-box in Rijndael, the paper [58] reported 39 many quadratic equations with probability 1

and total 137 many monomials were present in the equations.

In [130], Murphy and Robshaw studied the algebraic structure of BES (a modified version

of AES). From this they could identify that AES encryption can be described by a sparse

system of multivariate quadratic equations over GF (28).

In [11], Biryukov and Cannière have constructed a systems of equations (linear and

quadratic) over GF (2) and GF (28) for the 128-bit key block ciphers Khazad, Misty1,

Kasumi, Camellia, Rijndael and Serpent and computed some properties that might

influence the complexity of solving them to recover the key. In [11, Table 3] of the paper,

they compare the complexities of the ciphers over GF (2) in terms of number of equations and

monomials. Then in Table 4, they compare the complexities of Camellia-128, Rijndael-

128 over GF (28).

Power functions are frequently used in constructing the S-boxes in block ciphers. We refer

a power function asX 7→ Xα over finite fieldGF (2n). These functions are classified according

the value of α and some of them are used for designing the ciphers. For example, in AES,

the inverse function X 7→ X−1 = X2n−2 is used. In [54], the authors could generalize the

count of quadratic equations in [58] for the n-bit S-box in Rijndael; the count is 5n−1 many

quadratic equations. Further, in [54] some error from the paper [41] in the count of quadratic

equations for Gold exponents [85] (which is a mapping X 7→ X2k+1 with gcd(k, n) = 1)

is identified. In [54, Table 2], the number of bi-affine and quadratic equations for n =
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2, 3, 4, 5, 7, 8, 9, 15, 16, 17 with k = 1, 2, 3, 4 is tabulated. The authors of [54] also studied

1. the Dobbertin exponents [75] of the form X 7→ X24k+23k+22k+2k−1 with n = 5k,

2. Niho exponents [74] of the form X 7→ X2k+2k/2−1 with n = 2k + 1 and k even or,

X 7→ X2k+2(3k+1)/2−1 with n = 2k + 1 and k odd,

3. Welch exponents [75] of the form X 7→ X2k+3 with n = 2k + 1 and

4. Kasami exponents [101] of the form X 7→ X22k−2k+1 with gcd(n, k) = 1 and 1 ≤ k ≤
n/2.

In [134], the authors study the algebraic structures of the component functions (note that

each component function of an S-box is a Boolean function) of power functions like inverse,

Kasami and Niho functions.

Stream Ciphers

Stream ciphers are potentially vulnerable to algebraic attacks and recently good amount of

research effort has been put into this area. In this section we outline the existing literature

on how to generate the algebraic equations of low degree. The two basic models of LFSR

based stream cipher for generating keystream are nonlinear combiner and nonlinear filter

generator. Nonlinear combination generator uses a number of LFSRs and their outputs are

fed to a nonlinear function to generate the keystream. In this case the number of variables

of the nonlinear function is equal to the number of LFSRs. For nonlinear filter generator,

the output is computed by a nonlinear function taking the values from some taps of a single

LFSR. We discuss the strategies to generate equations in unified way for both the models.

Suppose the model uses k-bit state LFSRs and each time the state is modified by a

linear update function L. Let the initial state be S0 = (s0, s1, . . . , sk−1). At the t-th clock

the output of the keystream will be zt = f(St), t ≥ 0, where f is the nonlinear function;

St = Lt(S0) denotes the state when the linear function L is operated t times on the state S0.

The problem is to recover the initial state S0 = (s0, s1, . . . , sk−1). Here one can exploit the

known plaintext attack where some (say l many) plaintext bits and corresponding cipher text

bits are known and XORing them the keystream bits are found. Knowing some keystream

bits (say, zk1 , zk2 , . . . , zkl) one can generate a system of equations of degree equal to deg(f)
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as follows:

f(Lk1(S0)) = zk1 ,

f(Lk2(S0)) = zk2 , (2.4)
...

...
...

f(Lkl(S0)) = zkl .

The complexity to solve this system of equations increases if the degree of the nonlinear

function f is high (in general, the high degree function is used to generate keystream sequence

with good linear complexity). So, generating equations in this way may not be efficient for

algebraic attack. One may like to generate low degree equations using some weaknesses in

the internal structure of nonlinear functions. Towards this we refer [56, 123], where the

authors used low degree multiples and annihilators of the nonlinear function to generate

the low degree equations. In [56], the low degree multiples of the nonlinear function f are

exploited for algebraic attack as follows. At the time t, the output bit zt gives the equation

f(Lt(S0)) = f(St) = zt. The main idea consists of multiplying f(St) (that is usually of high

degree) with a well chosen function g(St), such that the degree of fg is substantially reduced.

If zt = 0 then we get the equation f(St)g(St) = h(St), i.e., ztg(S
t) = h(St) which implies

h(St) = 0. So, we get equations of low degree if degree of h is low. Using this technique

the authors identified how to reduce the complexity of the attack. Further in [123], authors

extended this idea to generate equations using annihilators. Here we define some terms in

this context.

Definition 10 Given f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of f if

f(x)g(x) = 0 for all x ∈ IFn2 . We also define the following sets:

1. AN(f) = {g ∈ Bn | g nonzero, fg = 0}, i.e., set of all annihilators of f .

2. AN≤d(f) = {g ∈ Bn | g nonzero, deg(g) ≤ d, fg = 0}, i.e., set of all annihilators of

degree ≤ d of f .

3. ANd(f) = {g ∈ Bn | g nonzero, deg(g) = d, fg = 0}, i.e., set of all d degree annihi-

lators of f .

Now consider the following two scenarios to generate equations for the Boolean function f

which is usually of high degree.
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1. Assume that there exists a function g of low degree such that the function h = fg is

of low degree and h is nonzero.

2. Assume there exists a nonzero function g of low degree such that fg = 0, i.e., existence

of low degree annihilator g of f .

Without loss of generality, in scenario 1 above, one may consider that deg(g) ≤ deg(h). This

is because, if deg(g) > deg(h), then fh = ffg = fg = h, so one can use h in place of g. In

this context, the result from [56] on the bounds of the degree of g and h is as follows.

Theorem 1 [56] For any f ∈ Bn, there is a nonzero g ∈ Bn of degree at most dn
2
e such

that fg is of degree at most dn
2
e.

Now we consider the scenario 1. Here fg = h, g 6= 0. Now, f(g + h) = fg + fh =

h + h = 0. So, if g 6= h, we have g + h ∈ AN(f) which comes under scenario 2. Then

(1 + f)h = h+ fh = h+ h = 0. So, h ∈ AN(1 + f). So, we can redefine the above scenarios

as following:

A. Assume there exists a function g of low degree such that fg = 0, i.e., we consider the

existence of a low degree annihilator g of f .

B. Assume there exists a function h of low degree such that (1+f)h = 0, i.e., we consider

the existence of a low degree annihilator h of 1 + f .

Corollary 1 [123] For any f ∈ Bn, there exists a nonzero g ∈ Bn of degree at most dn
2
e

such that fg = 0 or (1 + f)g = 0.

In [123] these two scenarios are exploited to generate equations of low degree. Suppose one

finds n1 (respectively n2) many linearly independent annihilators gi, 1 ≤ i ≤ n1 (respectively

hi, 1 ≤ i ≤ n2) of n variable function f (respectively 1+ f) having degree less than or equal

to d. For the attack, it is assumed that the linear feedback connections are known. Further

we assume that some of the output keystream bits are known. So the output bit zt at the

time t generates an equation f(Lt(S0)) = zt. If the bit zt is 1, one may consider scenario

A, i.e., fgi = 0 to get the equation f(Lt(S0))gi(L
t(S0)) = ztgi(L

t(S0)), i.e., gi(L
t(S0)) = 0

for 1 ≤ i ≤ n1. So, one can get n1 many equations for each known bit zt = 1. Similarly

if the bit zt is 0, one may consider scenario B, i.e., (1 + f)h = 0 to get the equation

(1 + f(Lt(S0)))h(Lt(S0)) = zth(L
t(S0)), i.e., h(Lt(S0)) = 0 for 1 ≤ i ≤ n2. So, one can
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get n2 many equations for each known bit zt = 0. If one knows l0 and l1 many output bits

which are 0’s and 1’s respectively, then l0n2 + l1n1 many equations (all may not be linearly

independent) of degree less than or equal to d can be generated.

In general, the efficiency of solving the system of multivariate equations depends on the

degree of the equations. That is, a system of multivariate equations of lower degree can be

solved more efficiently than a system of higher degree. So, if a function f or its complement

1 + f has low degree annihilators then one can generate low degree equations. Towards this

argument we define algebraic immunity of a Boolean function.

Definition 11 [123] Given f ∈ Bn, its algebraic immunity is defined as the minimum

degree of all nonzero annihilators of f or 1 + f , and it is denoted by AIn(f). That is

AIn(f) = min{deg(g) ∈ Bn | g 6= 0, g ∈ AN(f) ∪ AN(1 + f)}.

At this point we like to discuss whether the term “algebraic immunity” of a Boolean

function is appropriate. Recently there are many works in the area of algebraic attacks and

some of the initial and important papers are [58, 56, 123]. It is now clear that a Boolean

function or its complement, used in a cryptosystem, should not have low degree annihilators.

However, the algebraic normal form (ANF) of the annihilators are also important. It may

very well happen that an annihilator with higher degree may have a few terms and on the

other hand an annihilator with lower degree may have many more terms in the ANF and in

certain cases, it may be better to use the high degree annihilator with fewer terms than the

low degree annihilator with more terms for the algebraic attack. Thus increase in the degree

of annihilator (of the Boolean function) may not be the only measure in terms of resistance

of a cryptosystem (that uses the Boolean function) against algebraic attack. Moreover,

recently observed fast algebraic attacks [51, 3, 53, 20] are also very effective for cryptanalysis

(see Section 2.2.3). In fast algebraic attacks one may not need low degree annihilators to

implement the attack. Based on the existing research so far, it is difficult to formalize or

quantify the measure of resistance of a Boolean function used in a cryptosystem against

algebraic or fast algebraic attacks. It clearly depends on how the Boolean function is used

in the construction of cryptosystem and how the algebraic attack is designed against the

complete scheme.

On the other hand, if one just concentrates on a Boolean function, then it is meaningful

to consider the annihilators of f, 1+f to study its resistance against algebraic attack and one

would always like to get a Boolean function f , such that both f and 1 + f do not have any

annihilator with degree less than dn
2
e. Further, if one considers the algebraic degree of an

n-variable Boolean function, then it may very well happen that the function f(x1, x2, . . . , xn)
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is of very good algebraic degree, but if one conditions one variable, say f(x1 = 0, x2, . . . , xn),

the degree falls drastically. However, this is not true in terms of algebraic immunity. It can

be checked that if f has algebraic immunity t, then after conditioning any k variables, the

algebraic immunity of the sub function on n− k variables will be ≥ t− k. This is clearly a

stronger property than the algebraic degree of a Boolean function. Based on these arguments

and as the term has already been appeared in many papers [16, 17, 18, 123, 33], one may be

tempted to use the term “algebraic immunity”.

In one of our papers [66] we use the term “annihilator immunity” instead of “algebraic

immunity” as this clearly quantifies the measure how good a Boolean function is in terms of

not having low degree annihilators. However, in the current literature (except [66]) algebraic

immunity is well accepted to define this property. Hence, in this thesis we use the term

“algebraic immunity” (AI) itself.

2.2.2 Solving the System of Multivariate Equations

Since a cipher can be described by algebraic multivariate equations, one may attack the cipher

if the system of equations can be solved using feasible resources. For example, in [58] it has

been pointed out that one can recover an AES-128 key with a high probability from one AES-

128 plaintext-ciphertext pair if one can solve certain systems with 1600 variables and 8000

quadratic equations over IF2, and it has been pointed out in [130] that one can achieve the

same goal if one can solve certain systems with 3986 variables and 3840 (sparse) quadratic

equations as well as 1408 linear equations over IF28 . Solving the system of multivariate

algebraic equations is an important area in the field of computational algebraic geometry

and commutative algebra. This problem is NP-complete [84] even if all the equations are

quadratic and base field is IF2 [49, Section 3]. As both time and space complexities of

solving the system are important in cryptanalysis, we refer to some existing techniques to

solve the system of multivariate equations in cryptographic aspect. We will briefly discuss

these algorithms, e.g., linearization, XL, XSL, Gröbner bases algorithms like Buchberger

algorithms, F4 and F5. One may refer [25] for more details.

Problem 1 Let the base field is GF (q) = IFq and e1, e2, . . . , em are m multivariate poly-

nomials with n variables over the field IFq with Xq
i = Xi for 1 ≤ i ≤ n, i.e., ej ∈

IFq[X1, X2, . . . , Xn]/〈Xq
1 = X1, . . . , X

q
n = Xn〉 for 1 ≤ j ≤ m. The problem is to find

the solution(s) (x1, x2, . . . , xn) ∈ IFnq such that ei(x1, x2, . . . , xn) = 0 for 1 ≤ i ≤ m.

In our discussions we always consider q = 2 unless specified otherwise.
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Linearization

The method of linearization is the simplest and most popular technique for solving the

system of multivariate polynomial equations. In this technique, each monomial is considered

as an independent indeterminate and hence the total system can be rewritten as a system of

linear equations with a large number of indeterminates (in fact, the number of new variables

is equal to the number of monomials involved in the older system of multivariate polynomial

equations). Formally, each polynomial ei can be viewed as ei =
∑

α∈IFn2
ciαX

α where ciα ∈ IF2

and Xα = xα1
1 x

α2
2 . . . xαnn for α = (α1, α2, . . . , αn). In this case each Xα is considered as a

new variable if there is a nonzero ciα for 1 ≤ i ≤ m. If the degree of equations are less than or

equal to d then total number of new variables M ≤
i=d∑
i=1

(
n

i

)
(excluding the constant term).

Then the new system of linear equations can be solved in O(Mω) time, ω being the

exponent depending on the technique used. Using the well known Gaussian elimination

technique we have ω = 3; Strassen’s algorithm [168] takes ω = log2 7 ≈ 2.807 and also

the one by Coppersmith and Winogard in [48] takes ω = 2.376. If the matrix is very sparse

(number of nonzero entries are very few) then the complexity may be reduced to O(M2) [174].

In order to apply the linearization method, the number of linearly independent equations

in the system needs to be approximately the same as the number of indeterminates of the

system. When this is not the case, a number of techniques have been proposed that attempt

to generate enough number of linearly independent equations. Now we discuss some of them.

Relinearization

In linearization method we may not always get a unique solution of a system of multivariate

equations. There may be more than one solutions and some of them may be conflicting

to each other as we consider a monomial as a separate variable. In Crypto 99, Kipnis and

Shamir [104] introduced a new method (extending the linearization method) for solving

overdefined system of quadratic polynomial equations, called relinearization. The general

idea of this method is to use linearization technique to solve m equations in the n(n+ 1)/2

variables (i.e., number of 2 or less degree monomials on n variables). If the above discussed

problem occurs then one can create some more equations exploiting the commutativity of

the multiplication of xi’s. For example, xaxbxcxd can be parenthesized in 3 different ways

as follows: (xaxb)(xcxd) = (xaxc)(xbxd) = (xaxd)(xbxc), i.e., writing in the form of new

variables to get 2 more linearly independent equations yabycd = yacybd, yabycd = yadybc where
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yab = xaxb etc. So, by this way one can generate larger number of quadratic equations.

Then this system can be solved by linearization or recursive relinearization. Though the

relinearization technique can solve many systems of equations which could not be solved

by linearization, its exact complexity and success rate are still not well understood. In

[104, Appendix A], a toy example is given for better understanding of the method. Further,

in [55] Courtois et. al. analysed some theoretical and practical aspects of this relinearization

technique.

Extended Linearization and its Variants

In Eurocrypt 2000 [55], Courtois et. al. showed that many of the equations generated by

relinearization are actually linearly dependent, and hence relinearization is less efficient than

one could expect. Then the authors [55] proposed an improved algorithm called XL (stands

for eXteneded Linearization or, multiplication(X) and Linearization) which is considered to

be simpler and more powerful than relinearization. In [55], the authors study the randomly

chosen quadratic equations over a finite field. The basic idea of this technique is to generate,

from each polynomial equation, a large number of higher degree variants by multiplying it

with all the possible monomials of some bounded degree, and then to linearize the expanded

system.

Let e1, e2, . . . , em be the equations in n variables and D be the parameter of the algorithm

such that a system of linear equations of dimension
D∑
i=0

(
n

D

)
can be solved with in the

feasible resources. This algorithm generates some more equations Xαej for 1 ≤ j ≤ m and

α ∈ IFn2 such that deg(Xαej) ≤ D. Initially using linearization technique one can generate

the system of linear equations and then solve the system (by Gaussian elimination) such

that one variable terms (say, x1) are eliminated towards the end. It is expected that one can

land to at least one univariate equation (i.e., powers of x1). This univariate equation can

be efficiently solved over the finite fields (e.g., using Berlekamp’s algorithm [125, Chapter

3.11]). One can then simplify the system by substituting the value (of x1) and the process

gets repeated for the other indeterminates. The algorithm is as follows:

Algorithm 1 [55] (The XL Algorithm) Execute the following steps.

1. Multiply: Generate all the products Xαei with wt(α) ≤ D − 2.

2. Linearize: Consider each monomial in xi of degree ≤ D as a new variable and perform

Gaussian elimination on the equations obtained in step 1. The ordering on the mono-
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mials must be such that all the terms containing one variable (say x1) are eliminated

last.

3. Solve: Assume that step 2 yields at least one univariate equation in the power of x1.

Solve this equation over finite fields.

4. Repeat: Simplify the equations and repeat the process to find the values of the other

variables.

In [55], an improved variant of XL called FXL is proposed. It consists of guessing the

values of a few variables and then applying XL. It seems that, for a system of multivariate

quadratic (MQ) equations over a small field, the FXL might be subexponential. Later in [57],

Courtois and Patarin proposed two more variants of XL called XL′ and XL2 by modifying

the last step of the XL algorithm. In XL′, at the last step, one needs to search at least r many

equations with only r many variables (in XL we need to obtain at least one equation in only

one variable). It is expected that such a system will have one solution and it can be solved by

exhaustive search over the finite field. Then substituting these r values, compute for other

variables using Gaussian reduction. In XL2, the idea is to obtain at least one equation with

a restricted set of variables, and from these equations to obtain new equations that were not

in the original system. These equations will be added with the original system to form a new

set of equations and this process will be iterated. By this way one may generate some more

missing equations. Using this variants some more systems can be solved which XL can not.

However in spite of computer simulations, it is not clear what is the exact time complexity

of XL and its variants.

Though XL is simple, it is not clear for which n (the number of variables) and m (the

number of equations) it terminates successfully and what is its asymptotic complexity. Par-

ticularly, this method is used to solve system of quadratic equations. So, this method and

its variants are very popular for cryptanalysis of block ciphers and public key cryptosys-

tems. In [55, 58, 57], the authors analysed for random quadratic equations and in [58],

the authors implemented the method to cryptanalyse Rijndael, though it was not efficient.

In [128, 176, 70], the complexity of XL have been studied. Diem has studied [70] the com-

plexity of XL algorithm using Hilbert theory and a conjecture in commutative algebra and

further presented some critical remarks regarding the complexity of the XL algorithm [55].

It seems that for a random system of quadratic equations over IF2 that has a solution, XL

method has very high chance to work (but for some special systems it always fails [128]). It

sometimes fails because of the missing equations.
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Courtois and Pieprzyk [58] have tried to analyse the Rijndael using XL algorithm. How-

ever, they found that for 256 bit cipher the complexity is about 2330 using the best Gaussian

reduction exponent [48]. Clearly this is inefficient. They proposed an improved version of the

XL algorithm which takes advantage of the sparsity and specific structure of the equations.

Here, they suggest to multiply the equations by carefully selected monomials instead of mul-

tiplying all monomials of degree less than or equal to D−2. So, this process is named as XSL

which stands for “eXtended Sparse Linearization” or “multiply(X) by Selected monomials

and Linearize”. To improve XSL one may use techniques used in FXL, XL′ and XL2 [55, 57].

Following the present literature it is evident that there are number of issues to be settled

related to success and implementation of XL and its variants.

Gröbner Bases Algorithms

We now briefly discuss how to solve a system of multivariate equations by using the Gröbner

bases for the ideal generated by the multivariate polynomials. One chooses the Gröbner

bases which are in very simple form and then these are used to obtain the solution of the

system. One may refer [59] for detailed study on this topic. More improved and recent

algorithms related to this area are F4 [77] and F5 [78].

The Problem 1 is studied in abstract algebra in the following way. Let I ⊆ IFq[X1, . . . , Xn]

be the ideal generated by the polynomials e1, . . . , em. It is denoted by I = 〈e1, . . . , em〉. The

set of solutions

V (e1, . . . , em) = {(x1, . . . , xn) ∈ IFnq | ei(x1, . . . , xn) = 0 for all 1 ≤ i ≤ m},

is known as affine variety defined by e1, . . . , em. So, the problem is the same as asking for the

points in the affine variety V (e1, . . . , em). This problem can be solved using Gröbner bases of

the ideal I. Here we discuss briefly on Gröbner bases of an ideal. Let � be a total monomial

order on the set of monomials Xα, where α ∈ IFnq . As the terms of each polynomial can

be uniquely ordered with respect to �, the notion of leading coefficients (LC(f)), leading

monomial (LM(f)) and leading terms (LT (f)) are well defined.

Let I ⊆ IFq[X1, . . . , Xn] be an ideal and LT (I) = {LT (f) | f ∈ I}. A finite subset

G = {g1, . . . , gs} of I is said to be a Gröbner basis if 〈LT (g1), . . . , LT (gs)〉 = 〈LT (I)〉. It

can be shown that every nontrivial ideal has a Gröbner basis fixing a monomial order �. It

may not unique, but it is possible to get uniquely reduced Gröbner basis (see [59, Definition

5, Chapter2]). As the structure of the polynomials in Gröbner bases are very simple, it is

easy to exploit G for finding V (G). Since V (G) = V (I) = V (e1, . . . , em), finding V (G) is

enough. So, the remaining task is to generate the Gröbner bases.
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The Buchberger’s algorithm [23] is the classical algorithm for computing the Gröbner

bases. It uses the generalized Euclidean division algorithm to find out the remainder poly-

nomial by dividing a polynomial by a set of polynomials. More precisely, given a mono-

mial order, one can get the division algorithm division(f, f1, . . . , fl) = (h1, . . . , hl, r), where

f = f1h1 + . . . + flhl + r and no LM(fi) divides any of the monomials of r. If the set

{f1, . . . , fl} is a Gröbner basis of an ideal, then r is unique. The Gröbner basis of an ideal

generated by e1, . . . , em can be computed by the following Buchberger algorithm (see [59] for

details).

Algorithm 2

Input: E = (e1, . . . , em)

Output: a Gröbner basis G = (g1, . . . , gs) for I = 〈e1, . . . , em〉.

Initialize: G = E;

Repeat

G′ = G;

For each pair {p, q}, p 6= q in G′ Do

Combine each p, q by canceling the leading terms to get S(p, q) (the S-polynomial);

Compute the remainders of S(p, q) by G;

Augment the nonzero remainders with G;

Until G = G′;

It can be shown that the algorithm terminates and computes a Gröbner basis of the ideal

〈e1, . . . , em〉. The complexity of this algorithm is closely related to the total degree of the

intermediate polynomials that are generated during the execution of the algorithm. In the

worst case, it is known to run in doubly exponential time. For details one may refer to [59].

Regarding implementation, there are number of modifications that can be made to improve

the performance of the algorithm. The F4 [77] and F5 (optimized version of F4) [78] are

well known improved versions of the Buchberger algorithm. The idea comes by viewing the

Euclidean division algorithm in terms of matrix reduction algorithm. The implementation

theory of F4 is available in [77, 166] and the software is available at [171].
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2.2.3 Fast Algebraic Attack

The idea of algebraic attack discussed so far may be successful if we have enough number of

low degree equations and known keystream bits. Hence, the search for systems of low degree

equations is a desirable goal in algebraic attacks. A clever idea is presented by Courtois in

Crypto 2003 [51] to reduce the degree of equations in a precomputation step which is the

heart of fast algebraic attack. Before solving the system of equations, all the higher degree

monomials independent of the keystream bits are eliminated. The author used the equations

of the form h(Kt, zt, zt+1, . . . , zt+r) = 0, where Kt is the input variable in terms of the states

of the LFSRs at the t-th time and zi is the i-th keystream bit that gives

h(Kt, zt, zt+1, · · · , zt+r) = u(Kt) + v(Kt, zt, . . . , zt+r) = 0, (2.5)

where u is of degree d in the bits of Kt, v is of degree e < d in the bits Kt and only v depends

on the keystream. After substitution of keystream bits zt, . . . , zt+r in Equation 2.5, we have

equations like u(Kt) = v(Kt), where degree of u and v are d and e respectively. Suppose

the number of terms in u and v are D ≈
∑d

i=0

(
n
i

)
and E ≈

∑e
i=0

(
n
i

)
respectively. So the

total number of monomials of system is order of D as D is much larger than E. When

one wants to solve the equations the complexity will be O(Dω) ≈ O(nd) where ω is the

coefficient for solving system of equations. If one can eliminate the monomials of u then at

the solving stage the time complexity will be of order O(Eω) ≈ O(ne) which is smaller than

the earlier one. To eliminate all the monomials of u, Courtios [51] proposed an algorithm

using the Berlekamp-Massey algorithm [118, 125] where one can find a linear combination

among the equations such that all the terms in u will be canceled out. The complexity for

this precomputation phase requires O(D2) time using normal Berlekamp-Massey algorithm,

while an asymptotically fast implementation has a complexity of C · D(logD) for a large

constant C. Unlikely the simple algebraic attack, one needs to know consecutive keystream

bits to implement the first algebraic attack. So, fast algebraic attack is a chosen plain text

attack.

The applicability of this algorithm was an open question as the proof of the algorithm

was not provided in [51]. Later in FSE 2004 [3], the correctness of the algorithm was

proved under the assumption that the period of LFSRs involved are co-prime. During

the generation of equations one needs to substitute the key bits in the equations. The

complexity for substituting the key bits was not calculated exactly in [51]. However, the

simple substitution would require a complexity of O(DE2) which may dominate the overall

complexity (see [93, Table 1]). Later in Crypto 2004, Hawkes and Rose [93] used Fast Fourier

Transformation (FFT) [47] technique to reduce the time complexity at the substitution step
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to O(ED log2D), which is smaller than the earlier method.

Moreover, in [93] the authors provide a more efficient algorithm for the precomputation

step. The method requires order of D(logD)2 operations compared to the previously pro-

posed strategy [51] that takes order of C · D(logD) for a large C or D2. More detailed

comparisons are available in [93, Table 2 and Table 3].

The strategy used for algebraic attack [56] can be used to implement the fast algebraic

attack on memoryless generators like filter and combiner generator [20]. In [20] (e, d)-relation

of a Boolean function f ∈ Bn is defined. If there exist g, h ∈ Bn having degree e and d

respectively, such that fg = h then f has an (e, d)-relation. In equation finding step one can

exploit the relation f(x)g(x) = h(x) for all x ∈ IFn2 as

zig(Ki) = h(Ki), (2.6)

where zi = f(Ki) is the i-th bit of keystream and Ki is the state of the LFSR at i-th clock.

If zi = 0 then the equation will be h(Ki) = 0 and if zi = 1 then the equation will be

h(Ki) = g(Ki). Thus, knowing some zi one can generate equations of degree max{e, d}.
In this case we need d > e, otherwise the equations will be the ones available from in the

case of algebraic attack [56, 123]. Hence to describe the fast algebraic attack the (e, d)-

relation will be interesting if e < d. In this system of equations the number of monomials is

approximately D =
∑d

i=0

(
n
i

)
. Hence to solve this system of equations one requires O(Dω)

complexity. Following the precomputation step in [51, 93], one can find a linear combination

of the Equations 2.6 for D + 1 consecutive bits such that
∑D

i=0 αih(Kr+i) = 0 for any r and

αi ∈ IF2. Now the Equations 2.6 can be reduced by eliminating the monomials of h as

D∑
i=0

αizr+ig(Kr+i) = 0. (2.7)

For different values of r one can generate different equations of degree e. For example,

varying r from 0 to E one can have E many equations of degree e. Hence for this step one

needs D+E many consecutive keystream bits and O(D(logD)2) time complexity [93]. Then

in the keystream substitution step one may follow the FFT technique described in [93] with

complexity O(ED logD). Since we have equations with E many monomials, one can solve

the equations with complexity O(Eω) using linearization technique. In [53] this kind of fast

algebraic attack is used to cryptanalysis SFINKS [19].
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2.2.4 Algebraic Attacks on some Stream Ciphers

Let us now briefly outline the algebraic attacks on a few specific stream ciphers.

Attack on Toyocrypt

Toyocrypt [126] was a submission to the Japanese government Cryptrec call for cryptographic

primitives. It uses a 128-bit LFSR and a Boolean function of the form:

f(s0, . . . , s127) = s127 +
62∑
i=0

sisαi + s10s23s32s42

+s1s2s9s12s18s20s23s25s26s28s33s38s41s42s51s53s59 +
62∏
i=0

si, (2.8)

where {α0, · · · , α62} is a permutation of the set {63, · · · , 125}. This system is quite vulner-

able to low degree approximation attack as the function in Equation 2.8 contain only two

higher degree monomials (one of degree 63 and another one is of degree 17). A probabilistic

algebraic attack with probability 1−2−17 and complexity 292 CPU clocks has been presented

in [50].

Then in Eurocrypt 2003, Courtois and Meier [56] could find out low degree multipliers

of f which gives low degree annihilators of f and 1 + f . They found that the monomials of

degree 4, 17 and 63 (in fact, these are the higher degree monomials in f) contain the factor

s23s42. So, f ∗ (1+ s23) and f ∗ (1+ s42) result two cubic polynomials. Using these two cubic

equations, one may need 217.4 keystream bits (need not be consecutive) to implement the

algebraic attack by solving the equations by linearization technique. For that one needs 249

CPU clocks, 16 GB memory and only 20 KB of (non-consecutive) keystream bits.

Attack on LILI-128

In designing of LILI-128 [163], a highly nonlinear 10-variable Boolean function of degree

6 has been used following [150]. Since the used function is of 10 variables, it must have

annihilators of degree less than or equal to 5 (see Theorem 1 and Corollary 1). Thus, one

can get equations of degree 5 or less which can be exploited to attack the cipher. There are

14 many 4 degree annihilators of f and 1 + f that makes the attack faster. For this attack

one needs 257 CPU clocks, 762 GB memory and 257 consecutive stream keystream bits. The

details of this attack is available in [56].
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Attack on SFINKS

SFINKS is a newly proposed stream cipher by Braeken et. al. [19] that has been submitted

to ECRYPT call in April 2005. It uses a 256 state LFSR described by the formula

st+256 = st+212 + st+194 + st+192 + st+187 + st+163 + st+151 + st+125 +

st+115 + st+107 + st+85 + st+66 + st+64 + st+52 + st+48 + st+14 + st.

A highly nonlinear 17 variable Boolean function of degree 15 is used as the output filtering

function. The 17 variables are selected from the states of the LFSR as follows:

(x16
t , . . . , x

0
t )

def

= (st+212, st+244, st+227, st+193, st+161, st+134, st+105, st+98, st+74, st+58,

st+44, st+21, st+19, st+9, st+6, st+1, st).

In [53] Courtois has studied different kinds of algebraic attacks on SFINKS and presented

the vulnerability of this cipher. It is shown that the fast algebraic attack is most efficient

than other algebraic attacks discussed in [53].

Attack on E0 keystream generator

E0 keystream generator is a part of the the Bluetooth encryption system, used for wireless

communication (see, Bluetooth SIG (2001) [13]). The algebraic attacks on E0 were analysed

in [5] and later Armknecht studied implementation of fast algebraic attack [3] which is 8

times faster than the algebraic attack discussed in [5]. This attack can be made faster using

the latest improvement on fast algebraic attack in [93].

One may also refer to the papers [52, 1, 2] in this direction.

2.3 Motivation

The above discussed attacks on Toyocrypt, LILI-128, SFINKS and E0 clearly identify that

the attacks are performed exploiting certain kinds of weaknesses in the structure of the un-

derlying Boolean functions. Thus there is a need to carefully study some new cryptographic

properties (apart from the existing known cryptographic properties) for any Boolean function

when used as a cryptographic primitive.

One should note that the function f or its complement should not have low degree anni-

hilators. That means the Boolean function should have high algebraic immunity. Otherwise
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the attacker, knowing some portion of the keystream, can generate low degree equations

(see Subsection 2.2.1) which can be solved efficiently to recover the initial key. Further one

should note that only having good algebraic degree may not suffice. Given a Boolean func-

tion f , having the maximum possible algebraic immunity, should not be used if there exists

a low degree function g such that fg = h, where the degree of h is the same as the value of

maximum algebraic immunity. This is from the view point of fast algebraic attacks.

It may be noted that there are different scenarios when an algebraic attack can be

mounted [56, 51]. The properties of the Boolean functions that we consider in this thesis

are some necessary conditions to resist certain cases of algebraic and fast algebraic attacks.

The actual attacks may also exploit certain other weaknesses in the design rather than only

concentrating on the Boolean function. Further some more theory of cryptanalysis may be

identified that may force to consider further properties of the Boolean functions to be used

in a cryptosystem.

We are motivated by the properties of Boolean functions those are highlighted as nec-

essary conditions to resist certain kinds of algebraic and fast algebraic attacks in recent

literature. These properties of the Boolean functions have not been studied yet in a dis-

ciplined manner and construction of such functions are explained in details in this thesis.

The relationship of these newly found properties with the existing ones of Boolean functions

are also studied here. We think the contribution of this thesis will help the cryptosystem

designers to choose the functions with more care. From theoretical viewpoint, the Boolean

functions are always very elegant and challenging combinatorial objects to study. Our results

have also direct implications in development of this subject.
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Chapter 3

Study on Algebraic Immunity of

Boolean functions

A very well studied model of stream cipher is the nonlinear combiner model, where the

outputs of several LFSRs are combined using a nonlinear Boolean function to produce the

keystream. This model has undergone a lot of cryptanalysis and to resist those attacks,

different design criteria have been proposed for both the LFSRs and the combining Boolean

function. The main criteria on the combining function are balancedness, high algebraic

degree, high nonlinearity and correlation immunity. Another model is the filter generator,

in which the content of some of the flip-flops in a single LFSR constitute the input to a

nonlinear Boolean function which produces the keystream. The main criteria on the filtering

function are balancedness, high algebraic degree and high nonlinearity. There are large

number of important papers in this direction and one may refer to [28, 100, 151, 32] and the

references in these papers for more details. Apart from these two models there are number

of proposed stream ciphers where Boolean functions are considered as main components and

their security depend on the strength of the underlying Boolean functions. Therefore it is

necessary to study Boolean functions in terms of their cryptographic properties.

It is known that a Boolean function should be of high algebraic degree to be crypto-

graphically secure [73]. Further, it has been identified recently, that it should not have a

low degree multiple [56]. We have already discussed in Subsection 2.2 that given a Boolean

function f on n-variables, different kinds of scenarios related to low degree multiples of f

have been studied in [56, 123]. It is shown in [56] that given any n-variable Boolean function

f , it is always possible to get a Boolean function g with degree at most dn
2
e such that fg is

of degree at most dn
2
e. Thus while choosing a Boolean function f , the cryptosystem designer
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should be careful that it should not happen that degree of fg falls much below dn
2
e.

The core of the analysis is to find out minimum (or low) degree annihilators of f and

1 + f , i.e., to find out minimum (or low) degree functions g1, g2 such that fg1 = 0 and

(1 + f)g2 = 0 (see section 2.2.1). To mount algebraic attack, one needs only the low degree

linearly independent annihilators [56, 123] of f and 1+ f . At this point, we recapitulate two

important issues related to algebraic attack [56, 123].

1. Take f, g, h ∈ Bn. Assume that there exists a nonzero function g of low degree such

that fg = h, where h is a nonzero function of low degree and without loss of generality,

deg(g) ≤ deg(h). This is because, if deg(g) > deg(h), then fh = ffg = fg = h, so

one can use h in place of g.

2. Assume there exists a nonzero function g of low degree such that fg = 0. This g is

called the annihilator of f .

We will now update the notion to consider the multiples of both f and 1 + f .

1. Take f, g, h ∈ Bn. Assume that there exists a nonzero function g such that fg = h or

(1+f)g = h, where h is a nonzero function of low degree and without loss of generality,

deg(g) ≤ deg(h). Among all such h’s we denote, the lowest degree h (may be more

than one and then we take any one of them) by ldgmn(f).

2. Assume there exists a nonzero function g such that fg = 0 or (1+ f)g = 0. Among all

such g’s we denote the lowest degree g (may be more than one and then we take any

one of them) by ldgan(f).

For nonzero g and h, fg = h if and only if (1 + f)h = 0 and f(g + h) = 0, i.e., h is an

annihilator of 1 + f and g + h is an annihilator of f and for nonzero g, fg = 0 if and only if

(1 + f)g = g. As without loss of generality deg(g) ≤ deg(h) it can be told that for f ∈ Bn,
deg(ldgmn(f)) = deg(ldgan(f)). Keeping this in mind and returning to the definition of

algebraic (annihilator) immunity AI (Definition 11 in Chapter 2) one may note the following.

The algebraic (annihilator) immunity of an n-variable Boolean function f is denoted by

AIn(f) which is basically deg(ldgmn(f)) or deg(ldgan(f)). That is the lowest degree of the

degree of the functions in AN(f) ∪ AN(1 + f).

Lemma 1 [56, 123] Let f ∈ Bn. Then AIn(f) ≤ dn
2
e.

36



It is known that there are highly nonlinear Boolean functions of low degree, as example

there exist quadratic bent functions (e.g., symmetric bent functions are quadratic), which are

of degree 2 and maximum possible nonlinearity 2n−1− 2
n
2
−1, when n is even. Such functions

f , as they are by themselves of low algebraic degree, will have low values of AIn(f). On the

other hand, we may have Boolean functions of low nonlinearity with high algebraic degree.

Interestingly, this is not the case in terms of AI. In this chapter we show that if a function

is of low nonlinearity, then it must have a low value of AIn(f). This implies that if one

chooses a function with good value of AIn(f), that will automatically provide a nonlinearity

which is not very low. However it does not assure that the nonlinearity is very high. That

is the algebraic immunity property takes care of three fundamental properties of a Boolean

function, algebraic degree, weight and nonlinearity, but it does this partially in the case

of nonlinearity. Further one may note that this property stays unchanged with respect to

affine transformation unlike correlation immunity or propagation characteristics. That is,

the algebraic immunities of f(x) and f(Ax + b) are same where f ∈ Bn, A is a nonsingular

n× n matrix and b ∈ IFn2 . Here we relate the AI to the Walsh spectra of a Boolean function.

The number of lowest degree linearly independent annihilators are important to generate

low degree equations which are exploited to implement algebraic attack. In this context, we

also present enumeration results on number of such annihilators.

It is known that a Boolean function must be resilient, should have high nonlinearity and

algebraic degree to be used in the nonlinear combiner model of stream cipher. We study

such functions for their AI. We present experimental results on highly nonlinear resilient

functions which are rotation symmetric [82, 164, 165, 94, 122]. The experiments have been

done using [123, Algorithm 1] on functions of 7, 8 and 9 variables and their complements. The

results found are encouraging, which shows that there are highly nonlinear resilient functions

which are also optimal in terms of their AI. Further we study different construction methods

of resilient functions. We note that the Siegenthaler’s construction [161] is not good in

terms of AI. On the other hand we show that the construction presented in [136] (basically

a construction similar to the Tarannikov’s construction [170]) is encouraging in terms of

AI. We have also experimentally studied some functions which are of Maiorana-McFarland

type [150], i.e., which can be seen as concatenation of affine functions.

Every n-variable Boolean function can be written as concatenation of two n− 1 variable

sub functions (i.e., functions generated by fixing one variable as 0 and 1). There are lots of

popular constructions to get n-variable functions by concatenating n− 1 variable functions.

We have studied the AI of a Boolean function in terms of AI of its two sub functions. Then

we study how the AI of a Boolean function changes when one add an affine function with it.
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3.1 Relationship between AI and Nonlinearity

Let consider g ∈ AN(f) where f ∈ Bn, n > 0. As f ∗ g = 0, we have g(x) = 0 for x ∈ IFn2
satisfying f(x) = 1. On this context, from [123] we have following result on the relationship

among the supports of a Boolean function and its annihilators.

Proposition 1 [123] Let f ∈ Bn and g ∈ AN(f). Then supp(f) ⊆ {x | g(x) = 0}, i.e.,

supp(f) ⊆ supp(1 + g).

Towards proving the results relating AI and the nonlinearity of a Boolean function, we

first present the following result where we relate the algebraic degree with the weight of the

function.

Theorem 2 Let f ∈ Bn and AIn(f) > d. Then

d∑
i=0

(
n

i

)
≤ wt(f) ≤

n−(d+1)∑
i=0

(
n

i

)
.

Proof : Consider that f has an annihilator g of degree d. Let the ANF of g is

a0 +
n∑
i=1

aixi +
∑

1≤i<j≤n

ai,jxixj + . . .+
∑

1≤i1≤...≤id≤n

ai1,...,idxi1 . . . xid ,

where a’s are from IF2. Note that f(x) = 1 implies g(x) = 0, since g ∈ AN(f). So, we will

be able to get linear equations from g(x) = 0 on the a’s in ANF of g when f(x) = 1. That

is, we will get wt(f) many homogeneous linear equations on the a’s.

Solving the system of homogeneous linear equations, we can find out annihilators g of

degree ≤ d on nontrivial solutions. In case of a trivial solution we will get all the a’s equal

to zero, i.e., g(x) = 0, which is not acceptable as we are interested in non zero g(x).

Here, we have
∑d

i=0

(
n
i

)
number of variables (the a’s for the monomials up to degree d)

and wt(f) many number of equations. If the number of variables is greater than the number

of equations then we will get nontrivial solutions. Thus f has no annihilator g of degree

d implies the number of equations is greater than or equal to the number of variables. So,

there must be at least
∑d

i=0

(
n
i

)
number of equations, i.e., wt(f) ≥

∑d
i=0

(
n
i

)
. Similarly, when

considering 1 + f , we get wt(1 + f) ≥
∑d

i=0

(
n
i

)
. This gives, wt(f) ≤ 2n −

∑d
i=0

(
n
i

)
, i.e.,

wt(f) ≤
∑n−(d+1)

i=0

(
n
i

)
.
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Theorem 2 also gives an alternative proof of AIn(f) ≤ dn
2
e which was given in [123]. The

inequality in Theorem 2 will not be satisfied if d > n− (d+ 1) ⇒ d > n−1
2
⇒ d ≥ dn

2
e. That

is, for any f the inequality in Theorem 2 will not be satisfied if AIn(f) > d ≥ dn
2
e.

However, the reverse direction of Theorem 2 is not always true. For example, the affine

functions are balanced, i.e., its weight is 2n−1, but clearly they have linear annihilators.

Based on Theorem 2, the following result gives a bound on wt(f), where f and 1 + f do

not have annihilators of degree less than dn
2
e.

Corollary 2 AIn(f) = dn
2
e implies

1. f is balanced when n is odd

2.
∑n

2
−1

i=0

(
n
i

)
≤ wt(f) ≤

∑n
2
i=0

(
n
i

)
when n is even.

Proof : The wt(f) will satisfy Theorem 2 for d = dn
2
e − 1. That is

dn
2
e−1∑
i=0

(
n

i

)
≤ wt(f) ≤

n−dn
2
e∑

i=0

(
n

i

)
⇒
dn

2
e−1∑
i=0

(
n

i

)
≤ wt(f) ≤

bn
2
c∑

i=0

(
n

i

)
.

When n is odd, bn
2
c = dn

2
e − 1 and hence wt(f) =

bn
2
c∑

i=0

(
n

i

)
= 2n−1. For n even, bn

2
c = dn

2
e

and the result follows.

Hence, any odd variable unbalanced Boolean function can not have optimal AI.

Proposition 2 Suppose f ∈ B2k for k ≥ 0 such that f and 1 + f have no annihilator of

degree less than k and k + 1 respectively. Then

1. wt(f) = 22k−1 −
(
2k−1
k

)
.

2. AI2k(f) = k.

Proof : Since f and 1 + f have no annihilator of degree less than k and k + 1 respectively,

following the proof of the Theorem 2, we have wt(f) ≥
k−1∑
i=0

(
n

i

)
and wt(1 + f) ≥

k∑
i=0

(
n

i

)
.

As sup(f)∪ sup(1 + f) = IF2k
2 and |IF2k

2 | = 22k, wt(f) =
k−1∑
i=0

(
n

i

)
and wt(1 + f) =

k∑
i=0

(
n

i

)
.
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These weight constraints imply that f and 1 + f have annihilators of degree k and k + 1

respectively. Hence, AI2k(f) = k and wt(f) = 22k−1 −
(
2k−1
k

)
.

Now we connect AI with nonlinearity.

Theorem 3 If nl(f) <
d∑
i=0

(
n

i

)
, then AIn(f) ≤ d+ 1.

Proof : Let α ∈ IFn2 such that |Wf (α)| is maximum, i.e., nl(f) = min
α∈IFn2

{wt(f + α · x),wt(1 +

f +α ·x)}. We use the contrapositive result of Theorem 2. If d is the least integer such that

min
α∈IFn2

{wt(f +α · x),wt(1 + f +α · x)} <
d∑
i=0

(
n

i

)
then AIn(f +α · x) ≤ d. Now following the

Proposition 4 (see later) we have AIn(f) ≤ d+1 as α ·x is an affine function on the variables.

From the above theorem we directly get the following result.

Corollary 3 If AIn(f) > d+ 1 then nl(f) ≥
d∑
i=0

(
n

i

)
, i.e., nl(f) ≥

AIn(f)−2∑
i=0

(
n

i

)
.

In the proof we exploited the Walsh spectrum value only at zero vector (i.e., the weight of

function f). Motivated by our idea, later Lobanov [111] studied the vector (say v) where the

absolute value of Walsh spectrum is maximum and then the weight of the function f + 〈v, x〉
to present the strict lower bound on the nonlinearity of f . The result is as follows:

Theorem 4 [111] Let f ∈ Bn and AIn(f) = k. Then nl(f) ≥ 2n−1 −
n−k∑
i=k−1

(
n− 1

i

)
=

2
k−2∑
i=0

(
n− 1

i

)
.

This bound improves upon the corresponding bound of Theorem 3 and is strict. We will

present examples of Boolean functions having optimal AI in Chapters 4 and 5 which attain

this lower bound. In the following theorem, it has been further generalized by Carlet in [35]

to a bound on higher order nonlinearity. On this context, we define for r > 0, the r-th order

nonlinearity of an n variable Boolean function f as the minimum distance of f from all the

functions of algebraic degree at most r, i.e., nlr(f) = min
{h | deg(h)≤r}

d(f, h). Here 1st order

nonlinearity (for r = 1) is the nonlinearity, we defined in Definition 6.
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Theorem 5 [35] Let f ∈ Bn and r be a positive integer. The nonlinearity of order r satisfies

nlr(f) ≥ 2

AIn(f)−r−1∑
i=0

(
n− r

i

)
.

The interesting situation is when deg(f) > d + 1. Because, when deg(f) ≤ d + 1, then

irrespective of the nonlinearity of f , AIn(f) ≤ d+ 1, since f ∗ (1 + f) = 0. As there are low

degree functions with very high nonlinearity (as example quadratic bent function), it is clear

that there are functions f with high nonlinearity and low AIn(f) (basically 1 + f). Then

Theorem 3 and the result of [111] give a new reason why one should not use functions f

with low nonlinearity, since in that case AIn(f) would be low. A function with AIn(f) = dn
2
e,

by itself, takes care of good nonlinearity and algebraic degree. However, they do not assure

that if f has high algebraic immunity (for instance an optimum one AIn(f) = dn
2
e) then its

nonlinearity will be very high. Indeed, the result of [111] implies then that f has nonlinearity

at least 2
∑dn

2
e−2

i=0

(
n−1
i

)
, that is, 2n−1 −

(
n−1
n−1

2

)
if n is odd and 2n−1 −

(
n−1
n
2
−1

)
−

(
n−1
n
2

)
if n is

even.

3.2 Count of Annihilators

In the proof of Theorem 2, we get wt(f) many homogeneous linear equations using the

a’s. Let us denote the coefficient matrix of this system of equations by M . Then M has

wt(f) many rows and
∑d

i=0

(
n
i

)
many columns. The rank (say, r) of the matrix M , r ≤

min{wt(f),
∑d

i=0

(
n
i

)
}.

1. If r =
∑d

i=0

(
n
i

)
, then there is no annihilator of degree ≤ d.

2. If r <
∑d

i=0

(
n
i

)
, then there are annihilators of degree ≤ d. There will be

∑d
i=0

(
n
i

)
− r

many linearly independent annihilators having degree ≤ d.

For any Boolean function f , the number of annihilators and linearly independent annihilators

are 2wt(1+f)−1 and wt(1+f) respectively. It is clear [123] that a larger number of low degree

linearly independent annihilators helps better in one as cryptanalyser can generate larger

number of low degree equations. Thus when considering a Boolean function one should

check the number of independent annihilators at the lowest possible degree. Towards this

we present some enumeration results on lowest degree annihilators.
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Definition 12 Given f ∈ Bn, by #LDAn(f), we denote the number of independent anni-

hilators of f at AIn(f) i.e., #LDAn(f) = |ANAIn(f)(f)| .

Theorem 6

1. Take f ∈ Bn, with AIn(f) = d+ 1 < dn
2
e. Then #LDAn(f) ≤

(
n
d+1

)
.

2. Take balanced f ∈ Bn, n even with AIn(f) = n
2
. Then #LDAn(f) ≥

(nn
2
)

2
.

3. Take a balanced function f ∈ Bn, n odd such that AIn(f) = dn
2
e. Then #LDAn(f) =( n

dn
2
e
)
.

Proof : The proof of item 1 is as follows. It is given that there is no annihilator up to degree

d. If one considers an annihilator of degree d, then the only solution would become the trivial

zero function. The rank of the coefficient matrix M is equal to number of variables, i.e.,

equal to
∑d

i=0

(
n
i

)
. Now the function f has annihilator at degree d + 1. The corresponding

coefficient matrix (say M ′) is obtained from M by adding
(
n
d+1

)
columns. Thus the rank

of M ′ will be greater or equal to the rank of M , i.e.,
∑d

i=0

(
n
i

)
. Number of independent

solutions will be less than or equal to
∑d+1

i=0

(
n
i

)
−

∑d
i=0

(
n
i

)
=

(
n
d+1

)
.

Now we prove item 2. Here wt(f) = 2n−1. The function f has annihilator at degree
n
2
. In this case the corresponding coefficient matrix (say M) will have 2n−1 many rows

and
∑n

2
i=0

(
n
i

)
= 2n−1 +

(nn
2
)

2
many columns. Thus rank of M will be ≤ 2n−1. Number of

independent solutions will be greater than or equal to (2n−1 +
(nn

2
)

2
)− 2n−1 =

(nn
2
)

2
.

Here we present the proof of item 3. Here wt(f) = 2n−1. It is given that there is no non

zero annihilator up to degree bn
2
c. If one considers an annihilator of degree ≤ bn

2
c, then the

only solution would become the trivial zero function. In this case the number of variables

(the a’s) is
∑bn

2
c

i=0

(
n
i

)
= 2n−1. So the coefficient matrix M is a 2n−1 × 2n−1 square matrix.

As it has no nontrivial solution, its rank r = 2n−1. The function f has annihilator at degree

dn
2
e. In this case the corresponding coefficient matrix (say M ′) will have 2n−1 many rows

and 2n−1 +
( n

dn
2
e
)

many columns. Thus rank of M ′ will be equal to that of M , i.e., 2n−1.

The number of independent solutions equals to (2n−1 +
( n

dn
2
e
)
)− 2n−1, i.e.,

( n

dn
2
e
)
.

In the next section, we will study the algebraic immunity of Boolean functions in terms

of algebraic immunity of its sub functions.
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3.3 AI of a Boolean Function in terms of the AI of its

Sub functions

In the following proposition we present the AI of a Boolean function in terms of the AI of its

sub functions after fixing one variable. For notational purpose, given f ∈ Bn, we denote the

set LDGAn(f) as the set of lowest degree f1’s (f1 ∈ Bn) such that f ∗f1 = 0 or (1+f)∗f1 = 0,

i.e., LDGAn(f) = ANAIn(f)(f) ∪ ANAIn(f)(1 + f).

Proposition 3 Let f, g ∈ Bn on variables x1, x2, · · · , xn with AIn(f) = d1 and AIn(g) = d2.

Let h = (1 + xn+1)f + xn+1g ∈ Bn+1. Then

1. if d1 6= d2 then AIn+1(h) = min{d1, d2}+ 1.

2. Given d1 = d2 = d, d ≤ AIn+1(h) ≤ d + 1. Further, AIn+1(h) = d iff there exists

f1, g1 ∈ Bn of algebraic degree d such that {f ∗ f1 = 0, g ∗ g1 = 0} or {(1 + f) ∗ f1 =

0, (1 + g) ∗ g1 = 0} and deg(f1 + g1) ≤ d− 1.

Proof : Let f1 ∈ LDGAn(f) and g1 ∈ LDGAn(g). Thus, either f ∗ f1 = 0 which gives

(1+xn+1) ∗ f1 ∗h = 0 or (1+ f) ∗ f1 = 0 which gives (1+xn+1) ∗ f1 ∗ (1+h) = 0. Also either

g ∗ g1 = 0 implies xn+1 ∗ g1 ∗ h = 0 or (1 + g) ∗ g1 = 0 implies xn+1 ∗ g1 ∗ (1 + h) = 0. Thus,

AIn+1(h) ≤ min{AIn(f),AIn(g)}+ 1. (3.1)

Let p = (1+xn+1)p1 +xn+1p2 ∈ LDGAn+1(h) where at least one of the p1 and p2 is nonzero.

Let us first consider the case with h ∗ p = 0 which implies (1 + xn+1)f ∗ p1 + xn+1g ∗ p2 = 0.

So f ∗ p1 = 0 and g ∗ p2 = 0. Similarly for the case with (1 + h) ∗ p = 0, i.e., (1 + xn+1) ∗
(1 + f) ∗ p1 + xn+1(1 + g) ∗ p2 = 0, we have (1 + f) ∗ p1 = 0 and (1 + g) ∗ p2 = 0. Now there

could be three cases in both the scenarios.

(a) p1 is zero, but p2 is non zero. So deg(p2) ≥ d2 which gives deg(p) ≥ d2 + 1.

(b) p2 is zero, but p1 is non zero. So deg(p1) ≥ d1 which gives deg(p) ≥ d1 + 1.

(c) Both p1, p2 are non zero. So deg(p1) ≥ d1 and deg(p2) ≥ d2, which gives deg(p) ≥
max{d1, d2}+ 1, when d1 6= d2.

So, from these three scenarios, for d1 6= d2 we get,

AIn+1(h) ≥ min{AIn(f),AIn(g)}+ 1. (3.2)
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Equation 3.1, 3.2 give the proof of item 1.

Now we prove item 2. Consider p = (1 + xn+1)f1 + xn+1g1 ∈ LDGAn+1(h). So, deg(p) ≥
deg(f1) = d1. It could happen that all highest degree terms of xn+1f1 + xn+1g1 in p get

canceled and the over all degree is decreased by one. So, d ≤ AIn+1(h) ≤ d+ 1.

Let AIn+1(h) = d. Then the highest degree terms of f1 and g1 must be same which gives

deg(f1 + g1) ≤ d − 1. Now we prove the other side. Let there exist f1, g1 ∈ Bn of degree d

such that deg(f1 + g1) ≤ d− 1 and one of the following holds

f ∗ f1 = 0, g ∗ g1 = 0, (3.3)

(1 + f) ∗ f1 = 0, (1 + g) ∗ g1 = 0. (3.4)

Construct p = (1 + xn+1)f1 + xn+1g1. Thus h ∗ p = 0 (when Equation 3.3 is considered) or

(1 + h) ∗ p = 0 (when Equation 3.4 is considered). So, AIn+1(h) = d.

As a result, if AI of one of the sub functions (fixing one variable) is bad, then the AI of

the function will be bad. The next corollary is a direct consequence of Proposition 3 and of

the upper bound dn
2
e on the algebraic immunity of n-variable functions.

Corollary 4 Let h = (1 + xn+1)f + xn+1g ∈ Bn+1 where n is even and AIn+1(h) = n
2

+ 1

(i.e., has maximum possible value). Then AIn(f) = AIn(g) = n
2

(i.e., is maximum) and there

do not exist f1, g1 ∈ Bn of degree n
2

such that “f ∗ f1 = 0 and g ∗ g1 = 0” or “(1 + f) ∗ f1 = 0

and (1 + g) ∗ g1 = 0” and such that all n
2

degree monomials of f1 and g1 are same.

In the following corollary we observe that two functions on an odd number of variables

with optimum algebraic immunity always have some relationship.

Corollary 5 Let f, g ∈ Bn where n is odd and AIn(f) = AIn(g) = n+1
2

(the maximum possible

value). Then there must exist f1, g1 ∈ Bn of degree n+1
2

such that “f ∗ f1 = 0 and g ∗ g1 = 0”

or “(1 + f) ∗ f1 = 0 and (1 + g) ∗ g1 = 0” and such that all n+1
2

degree monomials of f1 and

g1 are same.

Proof : Let h = (1 + xn+1)f + xn+1g ∈ Bn+1. According to Proposition 3, AIn+1(h) equals
n+1

2
since it cannot be greater than n+1

2
. Again according to Item 2 of Proposition 3 we have

the proof.

Corollary 6 Let f ∈ Bn, AIn(f) = d and h = xn+1 + f ∈ Bn+1.
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1. Then d ≤ AIn+1(h) ≤ d+ 1.

2. AIn(h) = d iff there exist f1, f2 ∈ LDGAn(f) such that f ∗ f1 = 0, (1 + f) ∗ f2 = 0 and

deg(f1 + f2) ≤ d− 1.

Proof : Since xn+1 + f = (1 + xn+1)f + xn+1(1 + f), this follows from Proposition 3.

In the same line we present one more technical result.

Proposition 4 Let f(x1, . . . , xn) ∈ Bn and AIn(f) = d. Let l be a affine function with any

of the following properties: (i) l is a function on x1, . . . , xn, (ii) l is a function on variables

other than x1, . . . , xn, (iii) l is a function on x1, . . . , xn and some other variables. Let l + f

be a function on m variables. Then d − 1 ≤ AIm(l + f) ≤ d + 1 for cases (i) and (iii) and

d ≤ AIm(l + f) ≤ d+ 1 for case (ii).

Proof : Let g ∈ LDGAn(f), which implies f ∗g = 0 or (1+f)∗g = 0 and deg(g) = d. So for

any affine function l, we have (l+f)∗((1+ l)∗g) = 0 if f ∗g = 0 or (l+f+1)∗((1+ l)∗g) = 0

if (1 + f) ∗ g = 0. Hence, AIm(f + l) ≤ d+ 1. So, the upper bound for all cases is proved.

Now we consider case (i), where l is an affine function on the variables x1, . . . , xn. Let

there be an l ∈ An such that AIn(f + l) < d − 1. Then AIn(f) = AIn((f + l) + l) ≤
AIn(f + l) + 1 < d, which contradicts that AIn(f) = d. Thus, AIm(l + f) ≥ d− 1.

The lower bound of case (ii) follows from repeated application of Corollary 6.

Now we prove lower bound of case (iii). Let l = l1 + l2, where l1 is an affine function on

some or all of the variables x1, . . . , xn and l2 is an affine function on some other variables.

So, following case (i), we have AIn(f + l1) ≥ d − 1. Then following case (ii), AIm(f + l) =

AIm((f + l1) + l2) ≥ AIm(f + l1) = d− 1.

3.3.1 Functions with Low Degree sub functions

In this sub section we discuss why a Boolean function with low degree sub function is not good

in terms of algebraic immunity. This result is a generalization of the result presented in [123],

where the authors have shown that certain kind of Maiorana-McFarland constructions are

not good in terms of algebraic immunity.

Proposition 5 Let f ∈ Bn. Let g ∈ Bn−r be a sub function of f(x1, . . . , xn) after fixing

r many distinct inputs xi1 , . . . , xir ∈ {x1, . . . , xn}. If the algebraic degree of g is d, then

AIn(f) ≤ d+ r.
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Proof : Let xi1 , . . . , xir are fixed at the values ai1 , . . . , air ∈ IF2. Thus g is a function on

the variables {x1, . . . , xn} \ {xi1 , . . . , xir}. It can be checked that (1 + ai1 + xi1) . . . (1 + air +

xir)(1+g) is an annihilator of f . The algebraic degree of (1+ai1 +xi1) . . . (1+air +xir)(1+g)

is d+ r. Thus the result.

The Maiorana-McFarland construction can be seen as concatenation of affine functions

on n− r variables to construct an n-variable functions. Clearly we have affine sub functions

of the constructed function in this case and hence deg(g) = 1 following the notation of

Proposition 5. Thus there will be annihilators of degree 1 + r. Note that if r is small, then

one can get annihilators at low degree [123, Theorem 2, Example 1]. This situation for

Maiorana-McFarland construction is only a sub case of our proposition. Our result works

on any function, it need not be of Maiorana-McFarland type only. We present an example

below.

Example 4 Let us consider a 20-variable function, with a sub function of degree 2 on 17-

variables, i.e., we fix 3 inputs. In that case the 20-variable function will have an annihilator

at degree 2 + 3 = 5.

It should be noted that the converse of Proposition 5 is not always true. That is, a

function having low degree annihilator does not imply it always has some low degree sub

function by fixing a few variables. As example, one may refer to the 5-variable function

f = x1 + x2 + x2x4 + x3x4 + (x2 + x3 + x1x4 + x2x4 + x3x4)x5. This function has algebraic

immunity 2 and the only annihilator of degree 2 is 1+x1 +x2 +x1x4 +x3x4 +(x2 +x3 +x4)x5.

If one verifies all possible sub functions of f after fixing 1 and 2 variables, it is not possible

to get sub functions of degree 1 and 0 respectively.

It will be interesting to extend our idea on the Boolean functions that can be seen as

concatenation of indicators of flats [34].

In the next section, we will study certain constructions of cryptographically significant

Boolean functions in terms of algebraic immunity.

3.4 Studying Existing Functions for Their AI

It has been in [123, 68] that any randomly chosen balanced function on large number of

variables will have good algebraic immunity with very high probability. This result is in a

similar direction that most of the Boolean functions are of high algebraic degree or of high
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nonlinearity in general. That is if one chooses a Boolean function randomly, the probability

that these properties will be good is high. However, when considering a specific construction

technique, the number of functions constructed by that method is much lower than the total

space of Boolean functions and generally such statistical analysis does not work.

3.4.1 Experimental Results on Rotation Symmetric Boolean

Functions

Let us consider that we want to find (n,m, d, x) functions (n-variable, m-resilient, degree

d and nonlinearity x) with best possible parameters along with the best possible algebraic

immunity. In this direction we first refer to a small subset of Boolean functions, the rotation

symmetric Boolean functions (RSBFs)(See Section 2.1.5 of Chapter 2 for definition). We

present experimental results related to the algebraic immunity of the RSBFs which are

available in [164, 165, 94, 122].

Experiment 1: First we test the algebraic immunity for (7, 2, 4, 56) RSBFs. It is given

in [164] that there are 36 such functions with f(0) = 0. Out of them, 24 functions contain

linear terms. For these functions, AIn(f) = 3, which is 1 less than highest value dn
2
e = 4.

Out of them 12 functions have #LDAn(f) = 3 and the rest 12 have #LDAn(f) = 4.

The algebraic immunity of the other 12 functions, where the linear terms are not there,

AIn(f) = 4, which is the highest possible value. According to Theorem 6(item 3) (we have

also checked by experiment), for these functions #LDAn(f) =
( 7

d7
2
e
)

= 35.

Experiment 2: Here we examine the (8, 1, 6, 116) RSBFs with f(0) = 0 which are 10272

in number [165]. Out of them, 6976 numbers attains highest algebraic immunity, i.e., 4 and

we find that for these functions #LDAn(f) = 35. From Theorem 6(item 2), in this case the

value should be ≥
( 8

8
2
)

2
= 35. Thus we find an example, where the bound is tight. For the

rest 10272 − 6976 = 3296 functions, the algebraic immunity is 3. Out of them 1536 many

functions f have only one annihilator at degree 3 (but no degree 3 annihilator for 1+f), 1504

many functions f have no annihilator at degree 3 (but one degree 3 annihilator for 1 + f)

and 256 many functions f have one annihilator at degree 3 (also one degree 3 annihilator

for 1 + f). According to Theorem 6(item 1), #LDAn(f) ≤
(
8
3

)
= 56. So for these functions,

the bound is not sharp.

Experiment 3: In the above two experiments, we examined the functions which are bal-

anced. Now we consider the [9, 3, 5, 240] RSBFs which are not balanced. We consider the

functions with f(0) = 0, and these are 8406 in number [94, 122]. According to Corol-
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lary 2(item 1), the algebraic immunity of these functions will be strictly less than 5. Here

after experiment we get the algebraic immunity of all 8406 functions as 4. From Theo-

rem 6(item 1), #LDA9(f) ≤
(
9
4

)
= 126. In Table 3.4.1, we present the number of functions

satisfying a particular #LDA9(f) and #LDA9(1 + f).

#LDA9(f) 16 17 18 19 20 21

#LDA9(1 + f) 0 1 2 3 4 5

#f 5658 1758 774 180 12 24

Studying the resilient functions on 7 and 8 variables and unbalanced correlation immune

functions on 9-variables for this rotation symmetric class of Boolean functions, it is evi-

dent that there exists functions which are good in terms of algebraic immunity. It will be

interesting to study such functions on higher number of variables.

3.4.2 Analysis of Some Construction Methods

In this section we study some popular constructions in terms of algebraic immunity.

Siegenthaler Construction

In [161] Siegenthaler proposed a construction of resilient functions. Take an initial (n,m, d, σ)

function f(x1, . . . , xn). The function F (x1, . . . , xn+k) = xn+k+ . . .+xn+1 +f(x1, . . . , xn) will

be an (n+k,m+k, d, 2kσ) one. From Proposition 4, we get AIn(f) ≤ AIn+k(F ) ≤ AIn(f)+1.

Thus this construction is not good in terms of algebraic immunity.

Modified Tarannikov Construction in [136]

In [170], Tarannikov has proposed an important construction of resilient functions and based

on that a similar kind of construction has been proposed in [136]. We will refer the construc-

tion in [136] here and study the algebraic immunity of such functions. Let us first present

the construction.

An (n,m, d,−) function f is called to be in desired form if it is of the form f = (1 +

xn)f1 +xnf2, where f1, f2 are (n− 1,m, d− 1,−) functions. Let f be an (n,m, d, σ) function

in desired form, where f1, f2 are both (n− 1,m, d− 1,−) functions. Let

F = xn+2 + xn+1 + f and
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G = (1 + xn+2 + xn+1)f1 + (xn+2 + xn+1)f2 + xn+2 + xn.

In the language of [170], the function G above is said to depend quasilinearly on the pair of

variables (xn+2, xn+1). We construct a function H in n+ 3 variables in the following way,

H = (1 + xn+3)F + xn+3G.

Then the function H constructed from f is an (n + 3,m + 2, d + 1, 2n+1 + 4σ) function in

the desired form. Thus, this construction can be applied iteratively.

Construction 1 Let us describe this construction with some index to present the iterative

effect. Let H0 be the initial function of n variables and H i be the constructed function after

i-th iteration. Denote H i′ as the function generated from H i by replacing the variable xn+3i

by (xn+3i+2 + xn+3i+1). Let F i+1 = xn+3i+2 + xn+3i+1 +H i and Gi+1 = xn+3i+2 + xn+3i +H i′.

Then the constructed function at i+ 1-th step, H i+1 = (1 + xn+3i+3)F
i+1 + xn+3i+3G

i+1.

Now we present a technical result.

Proposition 6 For i > 0, H i = (1 + Yi)H
0 + YiH

0′ + Zi where deg(Yi) = i and deg(Zi) =

i+ 1.

Proof : The base case is as follows.

H1 = (1 + xn+3)F
1 + xn+3G

1

= (1 + xn+3)H
0 + xn+3H

0′ + (1 + xn+3)(xn+2 + xn+1) + xn+3(xn+2 + xn)

= (1 + Y1)H
0 + Y1H

0′ + Z1,

where Y1 is a 1-degree polynomial and Z1 is a 2-degree polynomial.

Let us assume that this is true for some k ≥ 1, i.e., Hk = (1+Yk)H
0 +YkH

0′+Zk, where

Yk is a k-degree polynomial and Zk is k + 1-degree polynomial. Now,

Hk+1 = (1 + xn+3k+3)(xn+3k+2 + xn+3k+1 +Hk)

+xn+3k+3(xn+3k+2 + xn+3k +Hk ′)

= (1 + xn+3k+3)H
k + xn+3k+3H

k ′

+(1 + xn+3k+3)(xn+3k+2 + xn+3k+1) + xn+3k+3(xn+3k+2 + xn+3k)

= (1 + xn+3k+3)((1 + Yk)H
0 + YkH

0′ + Zk)

+xn+3k+3((1 + Yk
′)H0 + Yk

′H0′ + Zk
′)

+(1 + xn+3k+3)(xn+3k+2 + xn+3k+1) + xn+3k+3(xn+3k+2 + xn+3k),
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where Yk
′ and Zk

′ are generated by replacing the variable xn+3k by (xn+3k+2 + xn+3k+1) in

Yk and Zk respectively. Thus,

Hk+1 = (1 + Yk + Ykxn+3k+3 + Yk
′xn+3k+3)H

0

+(Yk + Ykxn+3k+3 + Yk
′xn+3k+3)H

0′ + (1 + xn+3k+3)Zk + xn+3k+3Zk
′

+(1 + xn+3k+3)(xn+3k+2 + xn+3k+1) + xn+3k+3(xn+3k+2 + xn+3k).

This implies, Hk+1 = (1 + Yk+1)H
0 + Yk+1H

0′ + Zk+1, where Yk+1 and Zk+1 are k + 1 and

k + 2 degree polynomials respectively.

Now we present the lower and upper bound on algebraic immunity of H i in terms of the

algebraic immunity of H0.

Theorem 7 AIn(H0) ≤ AIn+3i(Hi) ≤ AIn(H0) + i+ 2.

Proof : To show AIn(H0) ≤ AIn+3i(Hi), it is enough to show AIn+3(H
1) ≥ AIn(H

0). We

have H1 = (1 + xn+3) ∗ F 1 + xn+3 ∗ G1 where F 1 = xn+2 + xn+1 + H0 and G1 = xn+2 +

xn + H0′. Let AIn(H
0) = d. So, AIn(H

0′) = d. Following Proposition 4[case (ii)] we have

AIn+2(F
1) ≥ d, and following Proposition 4[case (iii)] we have AIn+2(G

1) ≥ d − 1. Then

following Proposition 3, we have AIn(H
1) ≥ d.

Now we prove the upper bound. Following Proposition 6, we getH i = (1+Yi)H
0+YiH

0′+

Zi, where Yi and Zi are degree i and degree i + 1 polynomials respectively. Let algebraic

immunity of H0 be d. Let there be a polynomial g0 having degree d such that H0 ∗ g0 = 0 or

(1 +H0) ∗ g0 = 0. Let H0 = p+ q ∗ xn where p, q are functions on n− 1 variables, free from

the variable xn. So, (1+Yi)H
0 +YiH

0′ = (1+Yi)∗ (p+ q ∗xn)+Yi ∗ (p+ q ∗ (xn+1 +xn+2)) =

Yi ∗ q ∗ (xn + xn+1 + xn+2) + p+ q ∗ xn = Yi ∗ q ∗ (xn + xn+1 + xn+2) +H0.

Construct a function U = g0 ∗ (1+Zi)∗ (1+xn+xn+1 +xn+2) of degree at most d+ i+2.

Now, if H0 ∗ g0 = 0 then H i ∗ U = ((1 + Yi)H
0 + YiH

0′ + Zi) ∗ U = (Yi ∗ q ∗ (xn + xn+1 +

xn+2) +H0 +Zi) ∗ g0 ∗ (1 +Zi) ∗ (1 + xn + xn+1 + xn+2) = 0. Similarly for (1 +H0) ∗ g0 = 0,

it can be shown that (1 +H i) ∗ U = 0.

During each iteration, the algebraic immunity increases at most by 2. This is because,

H i+1 = (1 + xn+3i+3)(H
i + xn+3i+2 + xn+3i+1) + xn+3i+3(H

i′ + xn+3i+2 + xn+3i). If g, h ∈ Bn
and deg(g), deg(h) ≤ d such that H i ∗ g = h then H i+1 ∗ (1+xn+3i+3)∗ g = (1+xn+3i+3)(h+

g ∗ (xn+3i+2 + xn+3i+1)), which shows algebraic immunity can not increase by more than two

during each iteration. On the other hand, if we go for i many iterations, then the maximum

increase in algebraic immunity is i+ 2.
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Later in [18], the authors have proved that the algebraic immunity of the n-variable

functions constructed by Construction 1 attain Ω(
√
n) algebraic immunity. Theoretically,

this [18] presents a sharper result than our result in terms of analysing Tarannikov’s con-

struction [170, 136].

Example 5 Let us start with an initial (5, 1, 3, 12) function H0 = x5(x1x4 + x3x4 + x2x4 +

x2 + x3) + x1x4 + x3x4 + x2 + x1. We found the algebraic immunity of H0, H1, H2, H3 are

2, 4, 4, 5 respectively. The function H1 is an (8, 3, 4, 112) function with AI8(H
1) = 4. This

function is optimized considering order of resiliency, nonlinearity, algebraic degree and alge-

braic immunity together. The function H2 is an (11, 5, 5, 992) function. Since the algebraic

degree of this function is 5, we cannot have AI11(H
2) as high as d11

2
e = 6, we can get the

value 5 at maximum. We checked that the value is actually AI11(H
2) = 4. The function H3

is a (14, 7, 6, 213 − 28) function. Since the algebraic degree of this function is 6, we cannot

have AI14(H
3) as high as 14

2
= 7, we can get the value 6 at maximum. We checked that the

value is actually AI14(H
3) = 5.

The Maiorana-McFarland Construction

The original Maiorana-McFarland class of bent function is as follows (see e.g. [27]). Consider

n-variable Boolean functions on (x, y), where x, y ∈ IF
n
2
2 of the form f(x, y) = x · π(y) + g(y)

where π is a permutation on IF
n
2
2 and g is any Boolean function on n

2
variables. The function

f can be seen as concatenation of 2
n
2 distinct (up to complementation) affine function on n

2

variables.

Similar kind of concatenation technique has also been used for construction of resilient

functions [24] (see also [155, 150]). One idea in this direction is to concatenate k-variable

affine functions (repetition may be allowed) non degenerate on at least m + 1 variables to

generate an m-resilient function f on n-variables. For such a function f , it is easy to find

an annihilator g of degree n − k + 1 as described in [123]. In fact, it is shown in [38] that,

unless a heavy condition is satisfied (which is very improbable unless k is almost equal to

n), it is easy to find an annihilator of degree n−k. It has been commented in [123, Example

1 and the following paragraph] that k is generally greater than n
2

(this seems true for the

Maiorana-McFarland type of functions presented in [135, 32]; but this has not been checked

for some large classes of Maiorana-McFarland type of functions described in [150, 34]) and

hence it is possible to get an annihilator g of degree less than n
2
. However, it should be

noted that in construction of resilient functions, there are lot of techniques [150] that use

concatenation of k-variable affine functions where k < n
2
. In such a case, the annihilators
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described in [123, Theorem 2] will be of degree greater than n
2

and will not be of practical

use as there are other annihilators of degree ≤ n
2

which are not of the form given in [123,

Theorem 2].

As example, the function H0 in Example 5 above can be seen as concatenation of 3-

variable affine functions x1 + x2, x2 + x3, x1 + x3, x1 + x2 + x3 non degenerate on at least two

variables. In a similar fashion, the functions H1, H2, H3 can also be seen as concatenation

of only these four linear functions on 3-variables. Thus, it is clear that the assumption in

the paper [123] that k > n
2

is not a valid assumption for n ≥ 8 in this example.

We will show that even in such a case, Proposition 5 can provide further insight. In the

next sub subsection we will show that a well known construction of resilient function [150,

Theorem 10(b)] on n-variables (n odd) can never achieve the algebraic immunity dn
2
e. At

the best, it can only achieve the value bn
2
c.

(9, 1, 7, 240) Functions Constructed in [150]

We also like to present some interesting observations on (9, 1, 7, 240) functions constructed

in [150, Theorem 10(b)]. These functions can be seen as concatenation of affine functions on

3-variables, non degenerate on at least one variable. To explain this construction we briefly

present some notations from [150].

Take a bit b and a bit string s = s0 . . . sn−1. Then the string b AND s = s′0 . . . s
′
n−1, where

s′i = b AND si. Take two bit strings x = x0 . . . xn−1 and y = y0 . . . ym−1. The Kronecker

product x ⊗ y = (x0 AND y) . . . (xn−1 AND y), which is a string of length nm. The direct

sum of two bit strings x, y is x$y = (x⊗ yc) + (xc ⊗ y), where xc, yc are bitwise complement

of x, y respectively. As an example presented in [150], if f = 01, and g = 0110, then

f$g = 01101001. Now we present the construction for (2p + 1, 1, 2p − 1, 22p − 2p) function

as presented in [150] for p ≥ 4.

Construction 2 [150, Theorem 10(b)] Let λ1, λ2, λ3, λ4 be the 3-variable linear functions

non degenerate on two variables (i.e., the functions x1 +x2, x2 +x3, x1 +x3, x1 +x2 +x3) and

µ1, µ2, µ3 be the 3-variable linear functions non degenerate on 1 variable (i.e., the functions

x1, x2, x3). Let gi be the concatenation of the 3-variable function µi and its complement µci ,

for 1 ≤ i ≤ 3. That is gi’s are basically 4-variable functions. Let h1, h2 be bent functions on

2p− 4 variables, and h3, h4, h5 be bent functions of 2p− 6 variables and h6, h7 be two strings

of lengths 22p−6 + 1 and 22p−6 − 1 which are prepared by properly adding and removing 1 bit

from the truth table of (2p− 6)-variable bent functions respectively. Let f be a concatenation
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of the following sequence of functions. h1$λ1, h2$λ2, h3$g1, h4$g2, h5$g3, h6$λ3, h7$λ4. This

is a (2p+ 1, 1, 2p− 1, 22p − 2p) function.

Proposition 7 The (2p+1)-variable function presented in Construction 2 has a sub function

of degree at most p− 1 when x2p+1 = 0.

Proof : Consider the sub function when x2p+1 = 0. The sub function (call it g) in concate-

nation form is h1$λ1, h2$λ2. Since h1, h2 are bent functions on 2p−4 variables, they can have

algebraic degree at most p− 2. Further λ1, λ2 are 3-variable linear functions. The algebraic

normal form of g is (1+x2p)(h1+λ1)+x2p(h2+λ2). So the degree of g is ≤ 1+(p−2) = p−1.

Theorem 8 For a function f ∈ Bn (n odd) generated out of Construction 2, AIn(f) ≤ bn
2
c.

Proof : Here n = 2p+ 1. We take g ∈ Bn−1, i.e., r = 1 according to Proposition 5. Further

from Proposition 7, deg(g) ≤ p− 1 = n−1
2
− 1. Thus, AIn(f) ≤ n−1

2
− 1 + 1 = bn

2
c.

Thus using our technique we can show that for odd n the construction proposed in [150,

Theorem 10(b)] can not achieve the maximum possible algebraic immunity dn
2
e. The maxi-

mum value it can achieve is ≤ bn
2
c. This can be seen only by Proposition 5 which generalizes

the result of [123, Theorem 2, Example 1]. Here we give an example towards this. The

function is constructed by Construction 2 for p = 4 and the functions constructed are as

follows.

Example 6 For p = 4, we choose the functions:

1. h1 = 0000010100110110, h2 = 0000010100110110, h3 = 0001, h4 = 0001, h5 = 0001, h6

= 00010, h7 = 001. In this case, one gets a (9, 1, 7, 240) function f1 with AI9(f1) = 3.

2. If one changes h2 = 0000010100110110 by h2 = 0000010100111001, then we get a

(9, 1, 7, 240) function f2 with AI9(f2) = 4.

The question raised is why the algebraic immunity of these two functions are different?

The reason is in the first case the functions h1, h2 are same with the ANF x1x3 +x2x4. Thus

the sub function g (i.e., h1$λ1, h2$λ2) is a degree 2 function. So the maximum algebraic

immunity, according to Proposition 5 can be 2+1 = 3. That is the value achieved in Item 1.

In the second case, h1 is different from h2 and the algebraic degree of g (i.e., h1$λ1, h2$λ2)
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becomes 3 and it achieves the value 3 + 1 = 4. Thus Proposition 5 helps in answering this

question. It is important to note that this technique can be employed to study the upper

bound of algebraic immunity for various constructions by analysing their sub functions and

in particular, directly for the constructions proposed in [150, 32].

Based on the above discussion we like to make the following comments.

(1) There are Maiorana-McFarland type of constructions (concatenation of affine func-

tions) where the concatenation of affine functions on small number of variables is exploited.

In such a case, the annihilators presented in [123] will be not of much use. Thus in line of

comments presented in [91], we too argue here that there is no reason to consider that the

Maiorana-McFarland type constructions are inherently weak in terms of algebraic immunity.

(2) In Example 6, we note that changing the order of affine functions can change the

algebraic immunity without any change in order of resiliency, nonlinearity and algebraic

degree. The change in last four bits in h2 implies that the concatenation of λ2, 1+λ2, 1+λ2, λ2

will be replaced by 1 + λ2, λ2, λ2, 1 + λ2. This increases the algebraic immunity from 3 to 4.

It will be of great interest to study the functions presented in [150, 151, 32].

3.5 Conclusion

In this chapter the algebraic immunity of a Boolean function is studied. We first identi-

fied a fundamental relationship between the Walsh spectrum and algebraic immunity of a

Boolean function, leading to a lower bound on the nonlinearity. We followed with certain

enumeration results of independent annihilators, which have some interest from cryptana-

lytic viewpoint. We then studied algebraic immunity of a Boolean functions in terms of the

algebraic immunity of its sub functions. Further we also point out that functions having low

degree sub functions are not good in terms of algebraic immunity and study some well known

existing constructions from this approach. We have also studied some existing constructions

in terms of their algebraic immunity, both theoretically and experimentally; this knowledge

is necessary for practical design of cryptographic functions.
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Chapter 4

First Construction of Boolean

Functions having Optimal AI

Recent literature shows that algebraic attacks have gained a lot of attention in cryptanalysing

stream and block cipher systems. So far very little attempt has been made to provide

construction of Boolean functions primarily to resist certain kinds of algebraic attacks. In

Chapter 3, Section 3.4, some existing construction methods have been analysed, that can

provide Boolean functions with some other cryptographic properties, to see how good they

are in terms of algebraic immunity. Algebraic immunity of certain constructions have also

been studied in [16, 17, 18, 33].

So far there was no existing construction method that can achieve maximum possible

algebraic immunity. For the first time, we provided a construction method where the alge-

braic immunity is the main concern. We showed that given a Boolean function on n − 2d

variables having algebraic immunity 1 or more, one can always construct a Boolean function

on n variables with algebraic immunity at least d+1. The construction is iterative in nature

(a function with two more variables is constructed in each step) and we need to apply it d

times to get an n-variable function from an (n− 2d)-variable initial function. The construc-

tion preserves the order of resiliency of the initial function and increases the nonlinearity by

more than 22d times in d-steps (as it can be seen as a direct sum of a function with good

nonlinearity and resiliency with another function with good algebraic immunity). Using our

construction one can generate n-variable Boolean functions with highest possible algebraic

immunity dn
2
e.
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In [38], it has been explained that one can achieve n-variable Boolean functions hav-

ing algebraic immunity bn
2
c by random search. However, the maximum bound of algebraic

immunity is dn
2
e. Thus for even number of variables, random search provides Boolean func-

tions having optimum algebraic immunity. However, optimal algebraic immunity can not

be achieved for Boolean functions on odd number of variables by random search. We also

like to point out that these theoretical developments in constructing Boolean functions with

optimum algebraic immunity shed new light in further investigations in this area, which can

not be supplemented by availability of Boolean functions with good algebraic immunity by

random search.

4.1 Construction to Get Optimal AI

In this section we present a construction to get Boolean function φ2k of 2k variables with

algebraic immunity k. The construction is iterative in nature and it starts from an initial

function φ0 = 0. In each step, 2 variables are added and algebraic immunity gets increased

by 1. Let us now formalize the construction.

Construction 3 Denote by φ2k ∈ B2k the function defined by the recursion:

φ2k+2 = φ2k||φ2k||φ2k||φ1
2k, (4.1)

where || denotes the concatenation of the truth tables. In terms of algebraic normal form,

φ2k+2 = φ2k + x2k+1x2k+2(φ2k + φ1
2k), and where φ1

2k is defined itself by a doubly indexed

recursion

φi2j = φi−1
2j−2||φi2j−2||φi2j−2||φi+1

2j−2, (4.2)

i.e., in terms of ANF, φi2j = φi−1
2j−2 + (x2j−1 + x2j)(φ

i−1
2j−2 + φi2j−2) + x2j−1x2j(φ

i−1
2j−2 + φi+1

2j−2)

for j > 0, i > 0, with base step φ0
j = φj for j > 0, φi0 = i mod 2 for i ≥ 0.

To understand the recursion in the Construction 3, we present an example up to some

depth.

• φ1
2k = φ2k−2||φ1

2k−2||φ1
2k−2||φ2

2k−2.

• φ2
2k−2 = φ1

2k−4||φ2
2k−4||φ2

2k−4||φ3
2k−4.

• φ3
2k−4 = φ2

2k−6||φ3
2k−6||φ3

2k−6||φ4
2k−6.
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This goes on until we reach the null level for at least one of the two indices. Below we

present the construction idea as truth table concatenation.

Step 1: φ0 = 0

Step 2: φ2 = 0001

Step 3: φ4 = φ2φ2φ20110

Step 4: φ6 = φ4φ4φ4φ2011001101001

Step 5: φ8 = φ6φ6φ6φ4φ2011001101001φ20110011010010110100110010110

What we actually prove now is the minimum degree annihilators of f + φ2k are at the

degree greater than k for any nonzero function f and from this we deduce the minimum

degree annihilators of φ2k and 1 + φ2k are at the degree k and k + 1 respectively.

To prove that for a nonzero f , f + φ2k has algebraic immunity greater than k, we need

some intermediate results. In the proofs, we will use the fact that, for any F ∈ Bn and any

subset V of IFn2 , the restriction to V of an annihilator of F is an annihilator of the restriction

of F to V . For technical reasons, during our proofs, we will encounter certain situations

when the degree of a function is negative. As such functions cannot exist, we will replace

those functions by function 0.

Lemma 2 Assume that the function φ2i ∈ B2i has been generated by Construction 3 for

0 ≤ i ≤ k and f + φ2i has no annihilator of degree less than i + 1 for 0 ≤ i ≤ k and f

is a nonzero function of other variables. If, for some 0 ≤ i ≤ k and j ≥ 0, there exist

g ∈ AN(f + φj2i) and h ∈ AN(f + φj+1
2i ) such that deg(g + h) ≤ i− 1− j then g = h.

Proof : We prove the lemma by induction on i.

For the base step i = 0, deg(g+h) ≤ 0− 1− j ≤ −1 implies that such a function cannot

exist, i.e., g + h is identically 0, which gives g = h.

Now we prove the inductive step. Assume that, for i < `, the induction assumption holds

(for every j ≥ 0). We will show it for i = ` (and for every j ≥ 0). Suppose that there exist

g ∈ AN(f + φj2`) and h ∈ AN(f + φj+1
2` ) with deg(g + h) ≤ ` − 1 − j. By construction, if

j > 0 then we have

φj2` = φj−1
2(`−1)||φ

j
2(`−1)||φ

j
2(`−1)||φ

j+1
2(`−1),

φj+1
2` = φj2(`−1)||φ

j+1
2(`−1)||φ

j+1
2(`−1)||φ

j+2
2(`−1),

and if j = 0 then

φ0
2` = φ0

2(`−1)||φ0
2(`−1)||φ0

2(`−1)||φ1
2(`−1).
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Let us denote

g = v1||v2||v3||v4,

h = v5||v6||v7||v8.

Since deg(g + h) ≤ `− 1− j, from the ANF of g + h = (v1 + v5) + x2`−1(v1 + v5 + v2 +

v6) + x2`(v1 + v5 + v3 + v7) + x2`−1x2`(v1 + · · ·+ v8) we deduce the following:

• deg(v1 +v5) ≤ `−1− j = (`−1)−1− (j−1). If j > 0 then v1 ∈ AN(f +φj−1
2(`−1)), v5 ∈

AN(f +φj2(`−1)) implies that v1 = v5, according to the induction assumption. If j = 0,

then we have v1, v5 ∈ AN(f +φ2(`−1)), and therefore (v1 + v5) ∈ AN(f +φ2(`−1)), with

deg(v1 + v5) ≤ `− 1. Suppose that v1 + v5 6= 0, then we would have deg(v1 + v5) ≥ `,

since f + φ2(`−1)) has no annihilator of degree ≤ `− 1, by hypothesis; a contradiction.

Hence v1 + v5 = 0, i.e., v1 = v5.

• deg(v2 + v6) ≤ (`− 1)− 1− j and v2 ∈ AN(f + φj2(`−1)), v6 ∈ AN(f + φj+1
2(`−1)), imply

that v2 = v6, according to the induction assumption.

• deg(v3 + v7) ≤ (`− 1)− 1− j and v3 ∈ AN(f + φj2(`−1)), v7 ∈ AN(f + φj+1
2(`−1)), imply

that v3 = v7, according to the induction assumption.

• deg(v4 + v8) ≤ (` − 1) − 1 − (j + 1) and v4 ∈ AN(f + φj+1
2(`−1)), v8 ∈ AN(f + φj+2

2(`−1)),

imply that v4 = v8, according to the induction assumption.

Hence we get g = h.

Lemma 3 Assume that the function φ2i ∈ B2i has been generated by Construction 3 for

0 ≤ i ≤ k and that f + φ2i has no annihilator of degree less than i + 1 for 0 ≤ i ≤ k where

f is a nonzero function other variables. If, for some 0 ≤ i ≤ k and j ≥ 0, there exists

g ∈ AN(f + φj2i) ∩ AN(f + φj+1
2i ) such that deg(g) ≤ i+ j + 1, then g = 0.

Proof : We prove the lemma by induction on i− j. For the base step (i.e., i− j ≤ 0), we

have from Construction 3 f + φj+1
2i = 1 + f + φj2i (this can easily be checked by induction).

Hence, g ∈ AN(f + φj2i) ∩ AN(f + φj2i + 1), and g = 0.

Now we prove the inductive step. Assume that the induction assumption holds for

i− j ≤ `, ` ≥ 0, and let us prove it for i− j = `+ 1. So let g ∈ AN(f +φj2i)∩AN(f +φj+1
2i )
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where i− j = `+ 1. If j > 0, we have

φj2i = φj−1
2(i−1)||φ

j
2(i−1)||φ

j
2(i−1)||φ

j+1
2(i−1),

φj+1
2i = φj2(i−1)||φ

j+1
2(i−1)||φ

j+1
2(i−1)||φ

j+2
2(i−1).

Let us denote

g = v1||v2||v3||v4,

where, v1 ∈ AN(f + φj−1
2(i−1)) ∩ AN(f + φj2(i−1)), v2, v3 ∈ AN(f + φj2(i−1)) ∩ AN(f + φj+1

2(i−1))

and v4 ∈ AN(f + φj+1
2(i−1)) ∩ AN(f + φj+2

2(i−1)).

1. Since deg(g) ≤ i + j + 1, we have deg(v4) ≤ i + j + 1 = (i − 1) + (j + 1) + 1. Since

(i−1)− (j+1) = i− j−2 < `, we have v4 = 0, according to the induction assumption.

So the ANF of g is v1+x2i−1(v1+v2)+x2i(v1+v3)+x2i−1x2i(v1+v2+v3). Then deg(v1+

v2), deg(v1+v3), deg(v1+v2+v3) ≤ i+j, which implies deg(v1), deg(v2), deg(v3) ≤ i+j.

2. We have then deg(v2) ≤ i+ j = (i− 1) + j + 1 and deg(v3) ≤ i+ j = (i− 1) + j + 1.

Since (i − 1) − j = i − j − 1 ≤ `, we have v2 = v3 = 0, according to the induction

assumption.

3. Since v2 = v3 = v4 = 0, the ANF of g is (1 + x2i−1 + x2i + x2i−1x2i)v1. So, deg(v1) ≤
i + j − 1 = (i − 1) + (j − 1) + 1. Here (i − 1) − (j − 1) = ` + 1. So, we can not use

the induction assumption directly. Now we break φj−1
2(i−1), φ

j
2(i−1) and v1 again into four

parts as

φj−1
2(i−1) = φj−2

2(i−2)||φ
j−1
2(i−2)||φ

j−1
2(i−2)||φ

j
2(i−2),

φj2(i−1) = φj−1
2(i−2)||φ

j
2(i−2)||φ

j
2(i−2)||φ

j+1
2(i−2),

v1 = v1,1||v1,2||v1,3||v1,4.

Using similar arguments as in Items 1 and 2, we have v1,2 = v1,3 = v1,4 = 0. So,

deg(v1,1) ≤ i + j − 3. Doing the similar process j times, we will get some function

v ∈ AN(f + φ2(i−j))∩AN(f + φ1
2(i−j)). At every step of this sub-induction, the degree

decreases by 2, and we have then deg(v) ≤ i + j + 1 − 2j = i − j + 1. Breaking

φ2(i−j), φ
1
2(i−j) and v a last time into four parts and using that v ∈ AN(f + φ2(i−j)) ∩

AN(f + φ1
2(i−j)), we have

φ2(i−j) = φ2(i−j−1)||φ2(i−j−1)||φ2(i−j−1)||φ1
2(i−j−1),

φ1
2(i−j) = φ2(i−j−1)||φ1

2(i−j−1)||φ1
2(i−j−1)||φ2

2(i−j−1),

v = v′||v′′||v′′′||v′′′′.
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Using similar arguments as in Items 1 and 2, we have v′′ = v′′′ = v′′′′ = 0. So, deg(v′) ≤
i − j − 1. And v′ ∈ AN(f + φ2(i−j−1)) implies that, if v′ 6= 0, then deg(v) ≥ i − j, a

contradiction. Hence, v′ = 0 which implies g = 0.

If j = 0, then the proof is similar to the last step in Item 3 above.

Theorem 9 Let f ′ ∈ Bl+2k = f + φ2k where f ∈ Bl is a non zero function depends on

variables {x1, x2, . . . , xl} and φ2k ∈ B2k depends on variables {xl+1, xl+2, . . . , x2k+l} for k, l ≥
0. Then f ′ has no annihilator of degree less than k + 1.

Proof : We prove it by induction on k. For k = 0, we have f ′ = f and hence there is no

annihilator of degree less than 1. In the inductive step, we assume the hypothesis true until

k and we have to prove that any nonzero function g2k+2 ∈ Bl+2k+2 such that f ′ ∗ g2k+2 = 0

has degree at least k + 2 where f ′ = f + φ2k+2. Suppose that such a function g2k+2 with

degree less than or equal to k + 1 exists. Then, fixing the variables xl+2k+1 and xl+2k+2 the

truth table of g2k+2 can be decomposed as

g2k+2 = g2k||g′2k||g′′2k||h2k,

where g2k, g
′
2k, g

′′
2k ∈ AN(f + φ2k), and h2k ∈ AN(f + φ1

2k). The algebraic normal form

of g2k+2 is then g2k+2(x1, x2, . . . , xl+2k+2) = g2k + xl+2k+1(g2k + g′2k) + xl+2k+2(g2k + g′′2k) +

xl+2k+1xl+2k+2(g2k + g′2k + g′′2k + h2k).

If deg(g2k+2) ≤ k + 1, then deg(g2k + g′2k) ≤ k and deg(g2k + g′′2k) ≤ k. Because both

functions lie in AN(f +φ2k) and according induction assumption f +φ2k has no annihilator

of degree less than k + 1, we deduce that g2k + g′2k = 0 and g2k + g′′2k = 0, which give,

g2k = g′2k = g′′2k. Therefore, g2k+2 = g2k + x2k+1x2k+2(g2k + h2k), deg(g2k) ≤ k + 1 and

deg(g2k + h2k) ≤ k − 1. According to Lemma 2, we have g2k = h2k which implies g2k ∈
AN(f +φ2k)∩AN(f +φ1

2k). According to Lemma 3, we have then g2k = h2k = 0 that gives,

g2k+2 = 0. This completes the proof.

Remark 1 If f ∈ Bl (in above Theorem 9) has no annihilator of degree less than t where

t ≥ 2, then the question is whether f + φ2k has no annihilator of degree less than t + k. In

general, the answer is no. Because in Lemma 2 we have to consider deg(g+h) ≤ i−2−j+ t

and in the base step in the proof of the lemma, i.e., for i = 0, deg(g + h) ≤ −2− j + t. So

for j = 0, deg(g + h) ≤ t− 2 where t− 2 ≥ 0. So, we can not tell that g + h = 0. So, it is

always true for the case t ≤ 1, but not for t ≥ 2.
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4.2 Cryptographic Properties of the Constructed

Function φ2k

In this section we study some important cryptographic properties like weight, nonlinearity,

resiliency etc. of φ2k.

Corollary 7

1. 1 + φ2k has no annihilator of degree less than k + 1.

2. φ2k has no annihilator of degree less than k.

3. φ2k and 1 + φ2k have annihilators of degree k and k + 1 respectively, i.e., the lowest

degree annihilators of φ2k and 1 + φ2k are at degree k and k + 1 respectively.

Proof : The proof of item 1 directly follows from Theorem 9 by taking f ∈ B0 is constant 1

function, i.e., the truth table of f contains a single 1. As f is nonzero, following Theorem 9,

1 + φ2k has no annihilator of degree less than or equal to k.

Now we prove item 2. Consider the function f ′ = x1 +φ2k, i.e., where the indeterminates

of φ2k are x2, x3, . . . , x2k+1. Following the Theorem 9 we have both f ′ and 1 + f ′ have no

annihilator of degree less than k+1. That is AI(f ′) = k+1, maximum value. Now following

the item 1 in Corollary 6 of Chapter 3 in contrapositive way we have AI(φ2k) = k, i.e.,

maximum value. So, φ2k has no annihilator of degree less than k.

Now we prove item 3. Since φ2k and 1 + φ2k have no annihilator of degree less than k

and k + 1 respectively, following the lines of the proof of the Theorem 2 of Chapter 3 we

have wt(φ2k) ≥
∑k−1

i=0

(
n
i

)
and wt(1 + φ2k) ≥

∑k
i=0

(
n
i

)
. As sup(φ2k) ∪ sup(1 + φ2k) = IF2k

2

and |IF2k
2 | = 22k, we have wt(φ2k) =

∑k−1
i=0

(
n
i

)
and wt(1 + φ2k) =

∑k
i=0

(
n
i

)
. Which implies

φ2k and 1 + φ2k have annihilators of degree k and k + 1 respectively.

Apart from φn, using this Construction 3, one can generate functions of n variable whose

algebraic immunity is the highest possible, i.e., dn
2
e. AI(f+φn) = n

2
+1, where f is an 1 or 2-

variable non constant function. Note that the algebraic immunity stays the same if a function

is subjected to affine transformation on input variables. Thus, taking any function presented

in the above discussion, one can apply affine transformation to get number of functions.

Further the nonlinearity and algebraic degree also stays same after affine transformation.

Now we will discuss some cryptographic properties of the function φ2k, k > 0 generated

using Construction 3.
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Proposition 8 Let φ2k, k > 0 be constructed using Construction 3. Then

1. wt(φ2k) =
k−1∑
i=0

(
2k

i

)
= 22k−1 −

(
2k − 1

k

)
.

2. nl(φ2k) =
k−1∑
i=0

(
2k

i

)
= 22k−1 −

(
2k − 1

k

)
.

3. AI(φ2k) = k.

Proof : In the proof for Items 1 and 3 comes from the lines of the proof of Corollary 7.

To prove Item 2, we have nl(φ2k) ≤ wt(φ2k) = 22k−1 −
(
2k−1
k

)
. Following the Theorem 4 of

Chapter 3, we have nl(x2k+1+φ2k) ≥ 22k−
(
2k
k

)
as AI(x2k+1+φ2k) = k+1. As nl(x2k+1+φ2k) =

2nl(φ2k), we get nl(φ2k) ≥ 22k−1 − 1
2

(
2k
k

)
= 22k−1 −

(
2k−1
k

)
.

The following result related to algebraic degree of φ2k is due to Carlet [36, 37].

Proposition 9 For k ≥ 1 the degree of φ2k is as follows:

1. deg(φ2k) = 2k if and only if k is a power of 2.

2. If neither k nor k + 1 is a power of 2, then deg(φ2k) = 2k − 1.

3. If k + 1 is a power of 2, then 2k − 3 ≤ deg(φ2k) ≤ 2k − 1.

Further, we will discuss some cryptographic properties of the functions fl+2k = fl + φ2k

where fl is a nonzero function depends on x1, . . . , xl and φ2k depends on xl+1, . . . , xl+2k using

Construction 3.

Corollary 8 Let fl ∈ Bl be some l-variable nonzero function and let fl+2k = fl +φ2k, be the

direct sum of fl and φ2k (i.e., the variable sets for fl and φ2k are disjoint). Then we have

the following results.

1. nl(fl+2k) = 2lnl(φ2k) + 22knl(fl)− 2nl(φ2k)nl(fl) > 4knl(fl).

2. If fl is r-resilient, then fl+2k is also r-resilient.

3. deg(fl+2k) = max{deg(fl), deg(φ2k)}.

4. wt(fl+2k) = wt(φ2k)(2
l − wt(fl)) + (22k − wt(φ2k))wt(fl).
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Proof : The proof of item 1 follows from [150, Proposition 1(d)] and the proof of item 2

follows from [150, Proposition 1(c)]. The result related to algebraic degree and weight is also

easy to see.

In particular, if fl is a non-constant 1-variable function, we get a balanced function with

optimum algebraic immunity. The function φ2k can be computed very efficiently with linear

time (see Item 3 of Section V-A in [36] and [37]). The number of elementary operations

which have to be performed for calculating the output is less than 12k.

4.3 Different Initializations on φ2k

A drawback of the function φ2k is that it is unbalanced. This happens since φ2 = x1x2 is

unbalanced. If one starts the construction with φ2 as affine function, then the function φ2k

will always be balanced as φi2j = x1 + x2 + (i + j) mod 2 for i > 0, j > 0. Now we present

some observations in this regard.

1. Take φ2 = x1 + x2.

Case 1: φi2 = x1 + x2 if i is even and φi2 = 1 + x1 + x2 if i is odd for i > 0. These are

presented in the following table.

Case 2: Also in brackets, we present the results when φi2 = x1 + x2 if i is odd and

φi2 = 1 + x1 + x2 if i is even for i > 0.

function degree nonlinearity resiliency AI
φ2 1(1) 0(0) 1(1) 1(1)

φ4 2(1) 4(0) 1(1) 2(1)

φ6 4(4) 20(4) 1(1) 3(2)

φ8 5(6) 88(28) 1(1) 4(3)

φ10 8(8) 372(148) 1(1) 5(4)

Here, for the first case, φ2k is always 1-resilient, optimal algebraic immunity is achieved

and nonlinearity is slightly lesser than what we have observed for Construction 3.

However, in the second case, φ2k has poor nonlinearity and lower AI.

2. Then we have attempted φ2 = x1 and φi2 = x1 + x2 when i is even (respectively odd)

and φi2 = 1 + x1 + x2 when i is odd (respectively even). We found algebraic immunity

is optimal but poor nonlinearity. The results are same for both the cases so we do not

write them separately in brackets.
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function degree nonlinearity resiliency AI
φ2 1 0 0 1

φ4 3 2 0 2

φ6 4 12 0 3

φ8 7 58 0 4

φ10 8 260 0 5

3. Take φ2 = x1 and φi2 = x1 + x2, i > 0. We find that the ANF of φ2k is of the form

φ2k = x1 + x2F , where F is a function on 2k − 2 many variables. So, AI will be ≤ 2,

since (1 + x1)(1 + x2) is annihilator of φ2k for any k > 1.

So it seems that just by changing the initializations in Construction 3, it may not be possible

to get dramatically better results. One may need to attempt for completely different kinds

of construction to achieve better parameters.

4.4 Conclusion

In this chapter we present a construction where one can get Boolean functions φ2k with

maximum possible algebraic immunity. This is the first construction in literature which

provides optimal AI value. We studied some other cryptographic properties of the function

φ2k. The constructed functions have high degrees but are not balanced and have insufficient

nonlinearity. However, they can be used in secondary constructions settling these drawbacks;

the construction can be used in conjunction with Boolean functions with other cryptographic

properties to have functions which are suitable for different cryptographic applications. We

have also studied the behavior of the functions in terms of algebraic immunity by changing

the initializations to get balanced functions.
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Chapter 5

Basic Theory to construct Boolean

functions of Optimal AI

Though there are increasing interest in construction of Boolean functions with good algebraic

immunity [16, 17, 18, 33], so far there is only one construction method that can achieve the

maximum possible algebraic immunity dn
2
e for an n-variable function proposed by us as

described in Chapter 4. The heart of the construction in Chapter 4 is a function φ2k on even

(2k) number of variables with maximum possible algebraic immunity k.

In this chapter we explain a generic construction idea of functions with maximum alge-

braic immunity that comes from the basic theory. By basic theory we mean Construction 4,

Lemma 4 and Lemma 5 in Section 5.1 as this presents the concrete construction idea of

Boolean functions with full algebraic immunity. We apply this basic theory to get sym-

metric functions with maximum possible algebraic immunity. For even n the weight and

nonlinearity is 2n−1 −
(
n−1
n
2

)
and the algebraic degree is (2blog2 nc).

For n even, we also provide a large class of balanced Boolean functions (not symmet-

ric) with maximum possible algebraic immunity having nonlinearity ≥ 2n−1 −
(
n
n
2

)
. Under

experimental set up, with a simple heuristic, we show that actually one can achieve much

better nonlinearity than this lower bound (in fact very close to 2n−1 −
(
n−1
n
2

)
). For odd n

our construction provides symmetric balanced functions with nonlinearity 2n−1 −
(
n−1
n−1

2

)
and

algebraic degree (2blog2 nc).

As our basic construction starts from symmetric Boolean functions. The Walsh spectra

of such functions are related to Krawtchouk Polynomials and we use these properties to get

related results.
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It is well known that the algebraic immunity (also algebraic degree and nonlinearity) of

a Boolean function is invariant under affine transformation on the input variables. Thus

one can easily apply affine transformation to get a wider class of functions (which are not

symmetric) from our construction achieving the maximum possible algebraic immunity (with

same algebraic degree and nonlinearity). It should be mentioned at this point that the non

symmetry achieved by affine transformation will not provide any additional cryptographic

strength to the functions, this is only to mention the large class of Boolean functions with

full algebraic immunity.

Our basic construction provides symmetric Boolean functions. Referring [30], we like

to add that though symmetric functions are well studied in many applications for their

concise representation, symmetric functions with good cryptographic properties are yet to

be exhibited. The other cryptographic properties (e.g., nonlinearity, correlation immunity

etc.) of the Boolean functions (whether symmetric or not) that we consider here are not very

good. Thus, in no way, we are proposing these functions for direct use in cryptosystems.

The motivation of this chapter is systematic theoretical study of Boolean functions with

maximum possible algebraic immunity.

5.1 Construction Using the Basic Theory

The idea of our construction comes from the following.

Construction 4 Let f, f1, f2 ∈ Bn with the following conditions.

1. There is no annihilator of f1, f2 having degree less than dn
2
e.

2. supp(f) ⊇ supp(f2) and supp(1 + f) ⊇ supp(f1).

Then we have the following important result.

Lemma 4 Let f ∈ Bn be a function as described in Construction 4. Then AIn(f) = dn
2
e.

Proof : As supp(1 + f) ⊇ supp(f1), AN(1 + f) ⊆ AN(f1) and as supp(f) ⊇ supp(f2),

AN(f) ⊆ AN(f2). Since there is no annihilator of f1, f2 having degree less than dn
2
e, neither

f nor 1 + f can have any annihilator of degree less than dn
2
e. Thus AIn(f) = dn

2
e.
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Now we present the other direction.

Lemma 5 Let f ∈ Bn and AIn(f) = dn
2
e. Then there exist f1, f2 ∈ Bn with supp(f1) ⊆

supp(1+ f) and supp(f2) ⊆ supp(f) such that wt(f1) = wt(f2) =

dn
2
e−1∑
i=0

(
n

i

)
and f1, f2 have

no annihilator of degree less than dn
2
e.

Proof : Since AIn(f) = dn
2
e, f has no annihilator of degree less than dn

2
e. That is, there

cannot be any

g(x1, . . . , xn) = a0 +
n∑
i=0

aixi + · · ·+
∑

1≤i1...≤idn
2
e−1

≤n

ai1...idn
2
e−1

xi1 · · ·xidn
2
e−1

such that g(x1, . . . , xn) = 0 where f(x1, . . . , xn) = 1. That is there is no nonzero solution

of the system of homogeneous linear equations g(x1, . . . , xn) = 0 for (x1, . . . , xn) ∈ supp(f)

on ai’s, i.e., this system has full rank (
∑dn

2
e−1

i=0

(
n
i

)
). So, there must be

∑dn
2
e−1

i=0

(
n
i

)
many

linearly independent equations. Now we construct f2 such that supp(f2) is the set of input

vectors corresponding to
∑dn

2
e−1

i=0

(
n
i

)
many linearly independent equations. So, f2 has no

annihilator of degree less than dn
2
e. Similarly, we can construct f1 considering (1 + f) has

no annihilator of degree less than dn
2
e.

Based on Lemma 4 and Lemma 5, we get a clear idea of a construction strategy for a

function with maximum possible algebraic immunity.

For odd n, there is no option other than f1 = f and f2 = 1 + f to have maximum

algebraic immunity for f , since wt(f1) + wt(f2) = 2
∑dn

2
e−1

i=0

(
n
i

)
= 2n. This fact also follows

from Corollary 3 in Chapter 3 that a function on odd number of variables must be balanced

(weight 2n−1 for n-variable function) to achieve the maximum possible algebraic immunity.

Also recently it has been shown [26] that for balanced functions on odd number of variables,

it is enough to consider the annihilators of f (the case for 1+f will automatically be deduced)

in terms of maximum algebraic immunity. The exact result is as follows.

Proposition 10 [26] Let f ∈ Bn (n odd) be balanced Boolean function and it does not have

any annihilator with algebraic degree less than dn
2
e. Then 1 + f has no annihilator with

algebraic degree less than dn
2
e. Consequently, AIn(f) = dn

2
e.
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However, for even n, wt(f1)+wt(f2) = 2
∑dn

2
e−1

i=0

(
n
i

)
= 2n−

(
n
n
2

)
. So, a part of remaining(

n
n
2

)
output points can be chosen randomly to get different functions f without affecting the

algebraic immunity. Hence for even n case this restriction is not as strict as odd n case.

5.1.1 A Construction for Maximum Algebraic Immunity

Let us now present the application of the basic theory for a concrete construction of functions

having optimal algebraic immunity.

Construction 5 Let f ∈ Bn.

1. If n is odd then

f(x1, . . . , xn) = 0 for wt(x1, . . . , xn) ≤ bn
2
c,

= 1 for wt(x1, . . . , xn) ≥ dn
2
e.

2. If n is even then

f(x1, . . . , xn) = 0 for wt(x1, . . . , xn) <
n

2
,

= 1 for wt(x1, . . . , xn) >
n

2
,

= b(x1,...,xn) ∈ {0, 1} for wt(x1, . . . , xn) =
n

2
.

Lemma 6 Define two functions f1, f2 ∈ Bn as follows.

f1(x1, . . . , xn) = 1 for wt(x1, . . . , xn) < dn
2
e,

= 0 for wt(x1, . . . , xn) ≥ dn
2
e.

f2(x1, . . . , xn) = 0 for wt(x1, . . . , xn) ≤ bn
2
c,

= 1 for wt(x1, . . . , xn) > bn
2
c.

Then f1, f2 have no annihilator of degree less than dn
2
e.

Proof : We first show that f1 has no annihilator of degree less than dn
2
e. Suppose f1 has a

nonzero annihilator g ∈ Bn having degree less than dn
2
e of the form

a0 +
n∑
i=0

aixi + · · ·+
∑

1≤i1<...<idn
2
e−1

≤n

ai1,...,idn
2
e−1

xi1 · · ·xidn
2
e−1

,
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where a’s are in IF2, but not all of them are zero. As g is an annihilator of f1, g(x1, . . . , xn) =

0 when f1(x1, . . . , xn) = 1. Hence solving the system of homogeneous linear equations

(considering a’s as the variables) formed by g(x1, . . . , xn) = 0 when f1(x1, . . . , xn) = 1, we

must get a nontrivial (not all zero) solution on a’s.

Let us consider an input (x1, . . . , xn), where xi1 , . . . , xit are 1 (t < dn
2
e) and the rest are

0 with f1(x1, x2, . . . , xn) = 1. Then for this input, we have the homogeneous linear equation

of the form ∑
I⊆{i1,...,it}

aI = 0, i.e., ai1,...,it =
∑

I⊂{i1,...,it}

aI .

Since f1(0, . . . , 0) = 1, we must have g(0, . . . , 0) = 0, i.e., a0 = 0. As f1(x) = 1 for

wt(x) = 1, we have ai = a0 = 0. Following the same process repeatedly till wt(x) = dn
2
e − 1,

we have all a’s in g are 0. Thus g becomes a zero function, which is a contradiction as we

have started with nonzero g. Thus f1 has no annihilator of degree less than n
2
.

Now we show that f2 has no annihilator of degree less than dn
2
e. Suppose f2 has an

annihilator h of degree less than dn
2
e. That is, f2(x1, · · · , xn) ∗ h(x1, · · · , xn) = 0. Note that

f1(x1, · · · , xn) = f2(1 + x1, · · · , 1 + xn), i.e., f2(x1, · · · , xn) = f1(1 + x1, · · · , 1 + xn). Thus,

f1(1+x1, · · · , 1+xn)∗h(x1, · · · , xn) = 0. Define h′ as h′(x1, · · · , xn) = h(1+x1, · · · , 1+xn),

i.e., h(x1, · · · , xn) = h′(1 + x1, · · · , 1 + xn). This gives deg(h′) = deg(h) < dn
2
e. Hence, we

have f1(1+x1, · · · , 1+xn)∗h′(1+x1, · · · , 1+xn) = 0, i.e., f1(x1, . . . , xn)∗h′(x1, . . . , xn) = 0.

So, f1 has an annihilator of degree less than dn
2
e, which is a contradiction.

Thus we get the following theorem.

Theorem 10 Let f(x1, . . . , xn) ∈ Bn constructed by Construction 5. Then AIn(f) = dn
2
e.

Proof : First we prove for odd n. Here supp(1 + f) = supp(f1) and supp(f) = supp(f2),

where f1, f2 are as described in Lemma 6. Thus from Lemma 4 we have the proof for odd

n. Now we will prove for n even. It can be checked that supp(1 + f) ⊇ supp(f1) and

supp(f) ⊇ supp(f2), where f1, f2 are as described in Lemma 6. This, using Lemma 4, gives

the proof for n even.
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5.2 Algebraic Degree and Nonlinearity for a Sub case

Here we can consider a special case of the functions in Construction 5 as follows:

Construction 6

ψn(x1, . . . , xn) = 0 for wt(x1, . . . , xn) ≤ bn
2
c,

= 1 for wt(x1, . . . , xn) > bn
2
c.

From the proof of the Lemma 6 we have the following corollary for even n.

Corollary 9

1. ψ2k and 1 + ψ2k has no annihilator of degree less than k and k + 1 respectively.

2. ψ2k and 1 + ψ2k have annihilators of degree k and k + 1 respectively.

Note that in this case ψn is a symmetric Boolean function (See Section 2.1.5 of Chapter 2

for definitions and terms). The function ψn is also called majority function as it is one

for higher weight input vectors. Now we exactly calculate the algebraic degree, weight and

nonlinearity of the functions in Construction 6.

Corollary 10 For k > 0,

1. wt(ψ2k) =
k−1∑
i=0

(
2k

i

)
= 22k−1 −

(
2k − 1

k

)
.

2. wt(ψ2k+1) =
k∑
i=0

(
2k + 1

i

)
= 22k.

5.2.1 Algebraic Degree

The relationship between ref , raf (see Section 2.1.5 of Chapter 2) for any symmetric function

f have been presented in [117, Theorem 3] as

ref (i) = (
i∑

k=0

raf (k)

(
i

k

)
) mod 2, (5.1)
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where 0 ≤ i ≤ n. From [46, Page 85], for two integer sequences p, q,

pi =
i∑

k=0

qk

(
i

k

)
iff qi =

i∑
k=0

pk(−1)i−k
(
i

k

)
. (5.2)

From Equation 5.1 and Equation 5.2 we get

Proposition 11 raf (i) = (
i∑

k=0

ref (k)

(
i

k

)
) mod 2.

We have Lucas’ theorem [45, page 79] as following.

Theorem 11 (Lucas’ theorem) Let two nonnegative integers a, b, written base p (prime)

as a =
∑e

i=0 aip
i and b =

∑e
i=0 bip

i respectively, where 0 ≤ ai, bi < p. Then
(
a
b

)
=

∏e
i=0

(
ai
bi

)
mod p. Consequently, if p = 2,

(
a
b

)
= 1 mod 2 iff supp(a) ⊇ supp(b).

Now we have the following proposition comes from the Theorem 11.

Proposition 12 Suppose n and k are nonnegative integers with n ≥ k. Let n = 2t+ l where

0 ≤ l < 2t and t ≥ 0. Then we have

1. Let k = 2t + l1 where l1 ≤ l. Then
(
n
k

)
is even iff

(
l
l1

)
is even.

2. Let k = 2t−1 + l2 where l2 < 2t−1. Then
(
n
k

)
is even if k > l.

Proof : For item 1, we have
(
n
k

)
=

(
1
1

)(
l
l1

)
mod 2, i.e.,

(
n
k

)
=

(
l
l1

)
mod 2. For item 2,

we have k = 2t−1 + l2 where l2 < 2t−1 and l < k which implies supp(l) 6⊇ supp(k). So,(
n
k

)
=

(
1
0

)(
l
k

)
mod 2, i.e.,

(
n
k

)
=

(
l
k

)
mod 2, i.e.,

(
n
k

)
= 0 mod 2 as supp(l) 6⊆ supp(k).

The following result provides the algebraic normal form and degree of ψn.

Theorem 12 Let ψn ∈ Bn a symmetric function as given in Construction 6. Then,

1. raψn(i) = 0 for i ≤ bn
2
c,

2. raψn(bn2 c+ 1) = 1,

3. raψn(i) =
∑i

k=bn
2
c+1

(
i
k

)
mod 2, for i ≥ bn

2
c+ 2,

4. deg(ψn) = 2blog2 nc.
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Proof : Given the function ψn, it is clear that reψn(i) = 0 for 0 ≤ i ≤ bn
2
c and reψn(i) = 1

for bn
2
c+1 ≤ i ≤ n. Thus from raψn(i) = (

∑i
k=0 reψn(k)

(
i
k

)
) mod 2 (Proposition 11), we get

raψn(i) = 0 for i ≤ bn
2
c and raψn(bn2 c+ 1) = 1. So we get the proofs of items 1 and 2.

The item 3 follows from Proposition 11 considering the result from item 1 and using

reψn(k) = 1 for k ≥ bn
2
c+ 1.

Suppose t = blog2 nc and l = n − 2t, i.e., n = 2t + l where 0 ≤ l < 2t and t ≥ 0.

For item 4 we need to show that raψn(i) = 1 for i = 2t = 2blog2 nc and raψn(i) = 0 for all

i > 2t. Now for i ≥ 2t, raψn(i) =
∑i

k=bn
2
c+1

(
i
k

)
mod 2. Here n = 2t + l, i.e., bn

2
c + 1 =

2t−1 + b l
2
c + 1. Suppose i = 2t + l1 where 0 ≤ l1 ≤ l. Now for bn

2
c + 1 ≤ k < 2t, we have

k ≥ bn
2
c + 1 = 2t−1 + b l

2
c + 1 > l ≥ l1 as b l

2
c < 2t−1. So following the fact

(
i
k

)
= 0 mod 2

for bn
2
c + 1 ≤ k < 2t in Proposition 12 (Item 2) we have raψn(i) =

∑i
k=2t

(
i
k

)
mod 2. Then

raψn(i) =
∑l1

j=0

(
2t+l1
2t+j

)
mod 2 as i = 2t + l1. Then following Proposition 12 (Item 1) we have

raψn(i) =
∑l1

j=0

(
l1
j

)
mod 2 = 2l1 mod 2. Thus, raψn(2

t) = 1 as l1 = 0 and raψn(i) = 0 for

i > 2t as l1 > 0.

Let us explain this with an example of ψ9 ∈ B9, a symmetric function, as given in

Construction 6. In this case reψ9 will be of the form “0 0 0 0 0 1 1 1 1 1”. The raψ9 of this

function will be “0 0 0 0 0 1 1 1 1 0”. Thus the function will be of algebraic degree 8 and

algebraic immunity 5.

5.2.2 Nonlinearity

In this sub section we will analyse the nonlinearity of the function ψn as explained in Con-

struction 6. Nonlinearity is one of the most important cryptographic properties of Boolean

functions which is used in cryptosystems to prevent linear attacks [73]. Moreover, this prop-

erty is also very interesting from combinatorial point of view.

As the function ψn explained in Construction 6 is a symmetric Boolean function, we here

concentrate on the Walsh spectra of this class. The Walsh spectra of symmetric Boolean

functions have very nice combinatorial properties related to Krawtchouk polynomial [152].

Krawtchouk polynomial [112, Page 151, Part I] of degree i is given by

Ki(x, n) =
i∑

j=0

(−1)j
(
x

j

)(
n− x

i− j

)
, i = 0, 1, . . . , n. (5.3)
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It is known that for a fixed ω ∈ IFn2 , such that wt(ω) = k,∑
x∈IFn2 ,wt(x)=i

(−1)ω·x = Ki(k, n).

Thus it can be checked that if f ∈ Bn is symmetric, then for wt(ω) = k,

Wf (ω) =
n∑
i=0

(−1)ref (i)Ki(k, n). (5.4)

This also implies that for a symmetric function f ∈ Bn and α, β ∈ IFn2 , Wf (α) = Wf (β),

if wt(α) = wt(β). Thus it is enough to calculate the Walsh spectra for the inputs of n + 1

different weights. Keeping this in mind, given a symmetric Boolean function f ∈ Bn, we

denote rwf (i) = Wf (ω), such that wt(ω) = i. Thus rwf can be seen as a mapping from

{0, . . . , n} to Z.

Let us now list some known results in this area [112, 106].

Proposition 13

1. K0(k, n) = 1, K1(k, n) = n− 2k,

2. (i+ 1)Ki+1(k, n) = (n− 2k)Ki(k, n)− (n− i+ 1)Ki−1(k, n),

3. Ki(k, n) = (−1)kKn−i(k, n) (This implies, for n even and k odd, Kn
2
(k, n) = 0),

4.
(
n
k

)
Ki(k, n) =

(
n
i

)
Kk(i, n),

5. Ki(k, n) = (−1)iKi(n− k, n), (This implies, for n even and i odd, Ki(
n
2
, n) = 0),

6. (n− k)Ki(k + 1, n) = (n− 2i)Ki(k, n)− kKi(k − 1, n),

7. (n− i+ 1)Ki(k, n+ 1) = (3n− 2i− 2k + 1)Ki(k, n)− 2(n− k)Ki(k, n− 1).

Proposition 14 For n even, Ki(
n
2
, n) =

0 for odd i.

(−1)
i
2

(n
2
i
2

)
for even i.

Proof : For odd i, it is proved in Proposition 13(Item 5). Now we will prove for even i using

induction on i. For the base step, i.e., i = 0, we have K0(
n
2
, n) =

(n
2
0

)
= 1. We will prove

inductive step. Suppose it is true for i = l, i.e., Kl(
n
2
, n) = (−1)

l
2

(n
2
l
2

)
. Now we will prove for
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i = l+2. Following Proposition 13(Item 2), we have (l+2)Kl+2(
n
2
, n) = −(n− l)Kl(

n
2
, n) (in

the proposition, we put l+1 instead of i). So, Kl+2(
n
2
, n) = (−1)

l
2
+1 n−l

l+2

(n
2
l
2

)
= (−1)

l
2
+1

( n
2
l
2
+1

)
.

Hence proved.

Let us now concentrate on the Walsh spectra of the symmetric function ψn as explained

in Construction 6.

Lemma 7 Consider the function ψn on n number of variables as given in Construction 6.

1. For k even, rwψn(k) =

{
Kn

2
(k, n) for even n.

0 for odd n.

2. For k odd, rwψn(k) = 2

bn−1
2
c∑

i=0

Ki(k, n).

3. rwψn(1) = 2

(
n− 1

bn
2
c

)
.

4. rwψn(n) =


(−1)

n
2

(
n
n
2

)
for even n.

(−1)
n−1

2 2

(
n− 1
n−1

2

)
for odd n.

5. For even n, rwψn(
n
2
) =


(−1)

n
4

(
n
2
n
4

)
for even

n

2
.

2

n−2
4∑
i=0

(−1)i
(
n
2

i

)
for odd

n

2
.

Proof : From Equation 5.4 we have

rwψn(k) =
n∑
i=0

(−1)reψn (i)Ki(k, n) =

bn
2
c∑

i=0

Ki(k, n)−
n∑

i=bn
2
c+1

Ki(k, n),

as

reψn(i) =

{
0 for 0 ≤ i ≤ bn

2
c

1 for bn
2
c < i ≤ n.
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Moreover, from Proposition 13(Item 3), we have Ki(k, n) = (−1)kKn−i(k, n), i.e., if k is even,

Ki(k, n) = Kn−i(k, n). Now,
n∑

i=bn
2
c+1

Ki(k, n) =

dn
2
e−1∑

j=0

K
j+bn

2
c+1

(k, n) =

dn
2
e−1∑

j=0

Kn−j(k, n) =

dn
2
e−1∑
i=0

Ki(k, n) =

bn−1
2
c∑

i=0

Ki(k, n). Hence, rwψn(k) = Kn
2
(k, n) for even n and rwψn(k) = 0 for

odd n. This proves the first item.

Here we will prove Item 2. From Proposition 13(Item 3), we have Ki(k, n) = −Kn−i(k, n)

as k is odd. Following the line of the proof of Item 1, we get rwψn(k) = 2
∑bn−1

2
c

i=0 Ki(k, n)

(the even n and odd k case is handled under the same formula as Kn
2
(k,n) = 0). So, we prove

the second item.

To prove Item 3, we have from Equation 5.3 that Ki(1, n) =
(
n−1
i

)
−

(
n−1
i−1

)
. Thus,

following item 2, rwψn(1) = 2
∑dn

2
e−1

i=0 (
(
n−1
i

)
−

(
n−1
i−1

)
) = 2

( n−1

dn
2
e−1

)
. So, for odd n, rwψn(1) =

2
(
n−1
n−1

2

)
and for even n, rwψn(1) = 2

(
n−1
n
2
−1

)
= 2

(
n−1
n
2

)
. Therefore for any n, rwψn(1) = 2

(n−1

bn
2
c
)
.

For the fourth item, note that, Ki(n, n) = (−1)iKi(0, n) = (−1)i
(
n
i

)
. For n even, fol-

lowing item 1, rwψn(n) = Kn
2
(n, n) = (−1)

n
2Kn

2
(0, n) = (−1)

n
2

(
n
n
2

)
. For odd n, following

item 2, rwψn(n) = 2
∑n−1

2
i=0 (−1)i

(
n
i

)
= 2

∑n−1
2

i=0 (−1)i(
(
n−1
i

)
+

(
n−1
i−1

)
) = ±2

(
n−1
n−1

2

)
(positive when

n = 1 mod 4, negative when n = 3 mod 4).

For fifth item, following Item 1 of this lemma and Proposition 14, the case for n
2

even is

proved. Similarly, following Item 2 of this lemma and Proposition 14, the case for n
2

odd is

proved.

Lemma 8 For 1 ≤ k ≤ bn−1
2
c and 0 ≤ i ≤ bn−1

2
c, Ki(1, n) ≥ |Ki(k, n)|.

Proof : Note that, Ki(1, n) =
(
n−1
i

)
−

(
n−1
i−1

)
≥ 0 for 0 ≤ i ≤ bn−1

2
c and that implies

|Ki(1, n)| = Ki(1, n) in 0 ≤ i ≤ bn−1
2
c.

First, we will prove it for i ≥ k using induction on k. In this direction for the base step

we need to show Ki(1, n) ≥ |Ki(1, n)| (which is obvious) and Ki(1, n) ≥ |Ki(2, n)|. Now

Ki(2, n) =
(
n−2
i

)
− 2

(
n−2
i−1

)
+

(
n−2
i−2

)
and Ki(1, n) =

(
n−1
i

)
−

(
n−1
i−1

)
=

(
n−2
i

)
+

(
n−2
i−1

)
−

(
n−2
i−1

)
−(

n−2
i−2

)
=

(
n−2
i

)
−

(
n−2
i−2

)
. If Ki(2, n) ≥ 0 then Ki(1, n) − Ki(2, n) = 2(

(
n−2
i−1

)
−

(
n−2
i−2

)
) ≥ 0 as

(i−1) ≤ bn−2
2
c. If Ki(2, n) ≤ 0 then Ki(1, n)+Ki(2, n) = 2(

(
n−2
i

)
−

(
n−2
i−1

)
) ≥ 0 for i ≤ bn−2

2
c.
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Note that, bn−1
2
c = bn−2

2
c when n is even and

(
n−2
i

)
−

(
n−2
i−1

)
= 0 for i = bn−1

2
c when n is odd.

Therefore, |Ki(1, n)| ≥ |Ki(2, n)|, i.e., Ki(1, n) ≥ |Ki(2, n)|. Thus the base steps are proved.

Suppose for some 1 ≤ k < bn−1
2
c, Ki(1, n) ≥ |Ki(j, n)| for all j, 1 ≤ j ≤ k. Now we will

prove Ki(1, n) ≥ |Ki(k + 1, n)|. From Proposition 13(6), we have

(n− k)Ki(k + 1, n) = (n− 2i)Ki(k, n)− kKi(k − 1, n),

i.e., (n− k)|Ki(k + 1, n)| ≤ (n− 2i)|Ki(k, n)|+ k|Ki(k − 1, n)|,
i.e., (n− k)|Ki(k + 1, n)| ≤ (n− 2i)Ki(1, n) + kKi(1, n),

i.e., |Ki(k + 1, n)| ≤ n−2i+k
n−k Ki(1, n),

i.e., |Ki(k + 1, n)| ≤ Ki(1, n), since n−2i+k
n−k ≤ 1 for i ≥ k. So, the proof is completed for

j = k + 1. Hence, Ki(1, n) ≥ |Ki(k, n)| for 0 ≤ i ≤ bn−1
2
c, 1 ≤ k ≤ bn−1

2
c and i ≥ k.

Now we will prove for 0 ≤ i < k ≤ bn−1
2
c. Since k > i, following the above proof, we have

Kk(1, n) ≥ |Kk(i, n)| by interchanging the role of k and i. Thus,
(
n
i

)
Kk(1, n) ≥

(
n
i

)
|Kk(i, n)|.

Now following Proposition 13(4), we have
(
n
i

)
Kk(1, n) ≥

(
n
k

)
|Ki(k, n)|, i.e.,(

n
i

)(
n
k

)Kk(1, n) ≥ |Ki(k, n)|. (5.5)

Further, following Proposition 13(4), we have Kk(1, n) =
(nk)
(n1)
K1(k, n) =

(nk)
n

(n − 2k) and

Ki(1, n) =
(ni)
n

(n−2i). So, Kk(1,n)
Ki(1,n)

=
(nk)(n−2k)

(ni)(n−2i)
, i.e., Kk(1, n) =

(nk)(n−2k)

(ni)(n−2i)
Ki(1, n). Now putting

the value of Kk(1, n) in Equation 5.5, we have n−2k
n−2i

Ki(1, n) ≥ |Ki(k, n)|, i.e., Ki(1, n) ≥
|Ki(k, n)|, since n−2k

n−2i
< 1 as i < k. Hence the proof.

In the next corollary we extend the range of i and k.

Corollary 11

1. For odd n, |Ki(1, n)| ≥ |Ki(k, n)| where 0 ≤ i ≤ n and 1 ≤ k ≤ n− 1.

2. For even n, |Ki(1, n)| ≥ |Ki(k, n)| where 0 ≤ i ≤ n and 1 ≤ k ≤ n− 1 except i = n
2

or

k = n
2
.

Proof : The proof for 0 ≤ i ≤ bn−1
2
c and 1 ≤ k ≤ bn−1

2
c is done in Lemma 8. The

remaining part can be proved using the symmetry relations Ki(k, n) = (−1)kKn−i(k, n) and

Ki(k, n) = (−1)iKi(n− k, n) in Proposition 13(Item 3 and Item 5).

When n is even the relation proved above is not true for i = n
2

and even k, since

Kn
2
(1, n) = 0 and Kn

2
(k, n) is a non zero number for even k.
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Theorem 13 Consider the functions ψn ∈ Bn, as explained in Construction 6. Then

nl(ψn) = 2n−1 −
(n−1

bn
2
c
)
.

Proof : First we prove that rwψn(1) is maximum among all rwψn(k) in 0 ≤ k ≤ n.

Case 1. Let n be odd. First we show that |rwψn(k)| ≤ rwψn(1) for all k in the range

1 ≤ k ≤ n − 1. We know, |rwψn(k)| = |2
∑bn−1

2
c

i=0 Ki(k, n)| ≤ 2
∑bn−1

2
c

i=0 |Ki(k, n)|. From

Lemma 8 we have, Ki(1, n) ≥ |Ki(k, n)| for 1 ≤ k ≤ n − 1, and 0 ≤ i ≤ bn−1
2
c. This

gives, |rwψn(k)| ≤ 2
∑bn−1

2
c

i=0 Ki(1, n) = rwψn(1). Again from Lemma 7 we have, rwψn(1) =

|rwψn(n)|. Finally rwψn(0) = 0. Hence rwψn(1) ≥ |rwψn(k)| for 0 ≤ k ≤ n.

Case 2. Let n be even. Let us first consider that k is odd and in 1 ≤ k ≤ n− 1 except

k = n
2
. From Lemma 7 we get that |rwψn(k)| = |2

∑bn−1
2
c

i=0 Ki(k, n)|. So following the same

argument used in the previous case, we get |rwψn(k)| ≤ rwψn(1). For k = n
2

odd, from

Lemma 7(item 5) we have |rwψn(n2 )| = |2
∑n−2

4
i=0 (−1)i

(n
2
i

)
| ≤ 2

∑n−2
4

i=0

(n
2
i

)
= 2

n
2 . By induction

on n it can be proved that 2
n
2 ≤ 2

(
n−1
n
2

)
= rwψn(1). So, for k odd and 1 ≤ k ≤ n−1, the proof

is done. When k even and 2 ≤ k ≤ n− 2, we have from Lemma 7 that rwψn(k) = Kn
2
(k, n).

Now Kn
2
(k, n) =

∑n
2
j=0(−1)j

(
k
j

)(
n−k
n
2
−j

)
≤

∑n
2
j=0

(
k
j

)(
n−k
n
2
−j

)
=

(
n
n
2

)
= rwψn(1). Further, since

Kn
2
(0, n) =

(
n
n
2

)
= |Kn

2
(n, n)|, we get, rwψn(1) = rwψn(0) = |rwψn(n)|. Thus |rwψn(k)| ≤

rwψn(1) for all k in 0 ≤ k ≤ n.

So for any n, nl(ψn) = 2n−1 − 1
2
|rwψn(1)| = 2n−1 −

(n−1

bn
2
c
)
.

Like the proof of nonlinearity of φ2k in Proposition 8 (Item 3) in Chapter 4, using the

result in Theorem 4 in Chapter 3, one can proof the nonlinearity of ψ2k in a simpler way as

follows. According the last paragraph of Section 6.1 in Chapter 6 we have AI2k+1(x2k+1 +

ψ2k) = k + 1. Hence, by Theorem 4, we have nl(x2k+1 + ψ2k) ≥ 22k −
(
2k
k

)
which implies

nl(ψ2k) ≥ 22k−1 − 1
2

(
2k
k

)
. On the other hand, since the wt(ψ2k) = 22k−1 − 1

2

(
2k
k

)
, nl(ψ2k) ≤

22k−1 − 1
2

(
2k
k

)
. Therefore the nl(ψ2k) = 22k−1 − 1

2

(
2k
k

)
= 22k−1 −

(
2k−1
k

)
.

Though this proof is simpler than our original proof, our proof was the first available

proof for the result. Further, by this study, one can understand the structure of the function

ψn which are related to Krawtchouk polynomials. Further the results related to Krawtchouk

polynomial can be used to find out the Walsh Spectra values of ψn at all the points.

Little later in [22], Braeken et. al. independently presented that function ψn has optimal

AI with a different proof technique. They have also studied the nonlinearity of these functions,

but only experimentally.
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Now we would like to present a few observations.

1. We have checked for odd n up to n = 11, the function we have constructed in Con-

struction 6, is the only function with maximum possible algebraic immunity among the

symmetric functions. There is no other symmetric Boolean function on odd number of

variables that are of algebraic immunity dn
2
e as far as we have experimented. This is

an important open question to be proved or disproved.

2. For even n, we have found that there are symmetric functions with full algebraic

immunity other than what we have presented in Construction 6. In fact so far we

have experimented, up to n = 12, we found functions with full algebraic immunity
n
2

and nonlinearity greater than that of the function constructed in Construction 6.

In Table 5.1, we present the maximum nonlinearity available for symmetric Boolean

functions on even number of variables having maximum possible algebraic immunity.

This we found by computer search by writing computer program. In [22], some more

classes of symmetric Boolean functions having optimal AI have been characterized.

n 4 6 8 10 12

nonlinearity of Construction 6 5 22 93 386 1586

maximum nonlinearity (by exhaustive search) 6 26 94 394 1630

Table 5.1: Nonlinearity of symmetric Boolean functions on even number of variables by

Construction 6 and maximum nonlinearity by exhaustive search.

5.3 Results Comparing that of φ2k in Chapter 4

We have proved in Theorem 13 that the nonlinearity of the functions ψ2k, k > 0 in Con-

struction 6 are same as their weight (i.e., both 2n−1 −
(
n−1
n
2

)
). Interestingly their weight

and nonlinearity are equal with that for the function φ2k in Chapter 4. This because the

lowest degree of annihilators of both the functions φ2k and ψ2k are at degree k and the lowest

degree annihilators of their complements are at degree k + 1 (see Corollary 7 of Chapter 4

and Corollary 9 of Chapter 5), which implies that their nonlinearity and weight same to each

other (see Proposition 8 of Chapter 4 and nonlinearity calculation using Lobanov result [111]

in the previous section). However, these functions are not same and further not always affine

transformation of φ2k as the algebraic degree of the functions are different from that of φ2k

as presented in Table 5.2.
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n = 2k 2 4 6 8 10 12 14 16

deg(φ2k) 2 4 5 8 9 11 13 16

deg(ψ2k) 2 4 4 8 8 8 8 16

Table 5.2: Comparison of algebraic degree.

5.4 Construction of Balanced Functions

Let us now concentrate on construction of balanced f with maximum possible algebraic

immunity for even n. Refer to the general form of f as given in Construction 5. If b is so

chosen that out of
(
n
n
2

)
inputs, half of the corresponding outputs are 1 and the other half are

0, then f will be balanced. To formalize it, consider two sets Sn, Tn ⊂ {x ∈ IFn2 | wt(x) = n
2
},

such that Sn ∩ Tn = ∅ and |Sn| = |Tn| = 1
2

(
n
n
2

)
. Note that there are

( (nn
2
)

1
2(

n
n
2
)

)
=

( (nn
2
)

(n−1
n
2

)

)
many

different options to choose any Sn and correspondingly a Tn.

Now we have the following result.

Proposition 15 Let F be an n-variable balanced function (n even) as follows.

F (x1, . . . , xn) = 0 for wt(x1, . . . , xn) <
n

2
,

= 1 for wt(x1, . . . , xn) >
n

2
,

= 0 for (x1, . . . , xn) ∈ Sn,
= 1 for (x1, . . . , xn) ∈ Tn.

Then nl(F ) ≥ 2n−1 −
(
n
n
2

)
.

Proof : Consider the function f in Construction 6. It is clear that 1
2

(
n
n
2

)
many output points

in the truth table of f need to be toggled to get the function F . Thus nl(F ) ≥ nl(f)− 1
2

(
n
n
2

)
.

From Theorem 13, nl(f) = 2n−1−
(
n−1
n
2

)
. Thus nl(F ) ≥ 2n−1−

(
n−1
n
2

)
− 1

2

(
n
n
2

)
= 2n−1− 1

2

(
n
n
2

)
−

1
2

(
n
n
2

)
= 2n−1 −

(
n
n
2

)
.

However, we now show a heuristic construction with which we can actually get much

better value of nonlinearity of the balanced functions. Note that we do not present any

theoretical proof here, but only list the experimental results.

For that we first refer to Maiorana-McFarland type of bent functions. The Maiorana-

McFarland class of bent function is as follows [72]. Consider n-variable Boolean functions on
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(X, Y ), where X, Y ∈ IF
n
2
2 of the form f(X, Y ) = X ·π(Y )+g(Y ) where π is a permutation on

IF
n
2
2 and g is any Boolean function on n

2
variables. The function f can be seen as concatenation

of 2
n
2 distinct (up to complementation) affine function on n

2
variables. For our purpose we

consider π as an identity permutation, g as a constant zero function and refer to this function

on n variables as b(x1, . . . , xn), for n even. Now we construct an n-variable function G as

follows.

G(x1, . . . , xn) = 0 for wt(x1, . . . , xn) <
n

2
,

= 1 for wt(x1, . . . , xn) >
n

2
,

= b(x1, . . . , xn) for wt(x1, . . . , xn) =
n

2
.

Experimentally we observe that nl(G) = nl(f), for even n up to 16, where f is the function as

described in Construction 6. Note that G is much closer to balancedness than the function

f .

1. If wt(G) < 2n−1, then we choose 2n−1−wt(G) points randomly from the inputs having

weight n
2

and output 0 of G and toggle those outputs to 1.

2. If wt(G) > 2n−1, then we choose wt(G)− 2n−1 points randomly from the inputs having

weight n
2

and output 1 of G and toggle those outputs to 0.

After this change G will become balanced. Experimentally we get the following result for

the function G in Table 5.3. We execute 100 runs for each n and take the best result among

the runs in terms of nonlinearity. We also observe that algebraic degree of the reported

functions is the maximum possible, i.e., n− 1.

n = 2k 4 6 8 10 12 14 16

2n−1 −
(
n−1
n
2

)
5 22 93 386 1586 6476 26333

nl(G) 4 22 92 384 1582 6468 26316

4(2n−3 −
(
n−3
n−2

2

)
) 4 20 88 372 1544 6344 25904

Table 5.3: Comparison of nonlinearities.

We have also checked that the degree of G is always the maximum possible, i.e., n − 1,

for a balanced function.
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As by itself the function φ2k was not balanced, the construction of balanced function

(using the strategy of Chapter 4 with full algebraic immunity is basically x1 + x2 + φ2k−2,

where φ2k−2 was on the variables x3, . . . , x2k. The nonlinearity of this function is 4 nl(φ2k−2) =

4(2n−3 −
(
n−3
n−2

2

)
). That is presented in the last row of Table 5.3. Clearly this heuristic

construction presents better nonlinearity than this.

5.5 Conclusion

In this chapter we have presented the basic theory towards the construction of Boolean

functions with full algebraic immunity. Based on this theory we present some concrete con-

struction ideas. Further we could study the other cryptographic properties like nonlinearity

and algebraic degree in detail.
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Chapter 6

Resistance of Boolean Functions

against Fast Algebraic Attack: Study

and Construction

Algebraic and fast algebraic attacks have recently received a lot of attention in cryptographic

literature [3, 7, 43, 58, 56, 51, 109, 123]. Using good algebraic immunity one may achieve

resistance against algebraic attacks done in a particular way, i.e., using annihilators and

linearization. In fact, one may not need linearization if algorithms using Gröbner bases

can be properly exploited. Further it should be noted that based on some recent works

related to fast algebraic attacks [5, 51, 20, 4], one should concentrate more carefully on the

design parameters of Boolean functions for proper resistance. The weakness of algebraic

immunity against fast algebraic attack has been demonstrated in [53] by mounting an attack

on SFINKS [19]. We have discussed more details in Section 2.2.3 of Chapter 2.

Consider a function f with maximum possible algebraic immunity dn
2
e. It may very well

happen that in that case f ∗ g = h, where deg(h) = dn
2
e, but deg(g) < dn

2
e. Subsequently

the lower degree of g may be exploited to mount a fast attack (well known as fast algebraic

attack) even if the algebraic immunity of f is the maximum possible. In fact, there are

examples, where one can get a linear g too. Initial study of Boolean functions in this area

has been started in [20, 4]. Since algebraic immunity is now understood as a necessary (but

not sufficient) condition against resisting algebraic and fast algebraic attacks, we feel there is

a need to consider the functions with full algebraic immunity for their performance in terms

of f ∗g = h relationship. That is for the functions f with full algebraic immunity we consider

deg(h) ≥ dn
2
e, and then after fixing the degree of h, we try to get the minimum degree g.
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One should be aware that checking these f ∗ g = h relationships are not all and there are

number of scenarios to mount algebraic and fast algebraic attacks which are available in

details in [56, 51].

It is always meaningful to consider f ∗ g = h only when deg(g) ≤ deg(h) as otherwise

f ∗ g = h will imply f ∗ h = h. So for all the discussion in this chapter we will consider

deg(g) ≤ deg(h) for a relation f ∗ g = h unless mentioned otherwise.

In this chapter, we present a specific class of balanced functions f for even number

of input variables n having algebraic immunity n
2

such that for any f ∗ g = h relation if

deg(h) = n
2

then deg(g) cannot be less than n
2
. This class of functions was not known earlier.

Further we show that existence of these functions has direct implication towards existence

of resilient functions with maximum possible algebraic immunity.

6.1 Algebraic Immunity of f and the f ∗ g = h Rela-

tionships

In this section we present some basic results.

Proposition 16 Consider an n-variable (n odd) function f having AIn(f) = dn
2
e. Then

1. there will always exist g, h, such that f ∗ g = h, where deg(g) = bn
2
c and deg(h) = dn

2
e.

2. there never exist g, h, such that f ∗ g = h, where deg(g) = bn
2
c and deg(h) < dn

2
e.

Proof : By [51, Theorem 7.2.1], we know that there always exists g, h, such that f ∗ g = h,

with deg(g) + deg(h) = n. Thus, if we fix deg(g) = bn
2
c and deg(h) = dn

2
e, we get the

required result for first item. The second item comes from the fact that AIn(f) = dn
2
e.

This always means that even if a function on odd number of variables n has full algebraic

immunity dn
2
e, one will always get a g one degree lower than that. However, for even n, this

may or may not be true. Later in this chapter we will show that given a Boolean function

on n variables with full algebraic immunity n
2
, one may or may not get a g having degree

less than n
2

such that f ∗ g = h when deg(h) = n
2
.

Proposition 17 Consider an n-variable function f . Consider the relationship f ∗ g = h,

such that deg(h) = AIn(f). Then if deg(g) < AIn(f) then both f and 1 + f have minimum

degree annihilators at degree AIn(f).
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Proof : It is clear that at least one of f and 1 + f will have an annihilator at degree

AIn(f). Without loss of generality, consider that f has the minimum degree annihilator

at degree AIn(f) and 1 + f has the minimum degree annihilator at degree greater than

or equal to AIn(f). Consider the relations of the form f ∗ g = h, when deg(g) < deg(h)

and deg(h) = AIn(f). From [20], f ∗ g = h iff f ∗ (g + h) = 0 and (1 + f) ∗ h = 0. As

deg(g) < deg(h), we have deg(g + h) = deg(h) = AIn(f). Thus 1 + f has an annihilator at

degree AIn(f).

The following corollary is immediate from Proposition 17.

Corollary 12 Let only one of f and 1 + f has minimum degree annihilator at AIn(f) and

the other one has minimum degree annihilator at degree greater than AIn(f). Then there is

no f ∗ g = h relation having deg(h) = AIn(f) and deg(g) < AIn(f).

We also present the following result that can be used to find minimum degree g in the

relation f ∗ g = h, where deg(h) = AIn(f).

Proposition 18 Consider that f, 1+f have minimum degree annihilators at the same degree

AIn(f). Let A be the set of annihilators of f and B be the set of annihilators of 1 + f at

degree AIn(f). Then the minimum degree of g such that f ∗ g = h is min
βA∈A,βB∈B

deg(βA +βB),

where h is a function of degree AIn(f).

Also we present the following result relating g and h only.

Proposition 19 If f ∗ g = h, then g ∗ h = h, i.e., h is the annihilator of 1 + g.

Proof : We have, f ∗ g = h, i.e., f ∗ g ∗ g = g ∗ h, i.e., f ∗ g = g ∗ h, i.e., h = g ∗ h.

Consider two functions τ1, τ2 ∈ Bn having full algebraic immunity dn
2
e when n is odd. If

we consider the function τ = (1 + xn+1)τ1 + xn+1τ2, on even number of variables, it can be

checked using Proposition 3(2) in Chapter 3 that this is again of full algebraic immunity n+1
2

which is actually dn
2
e.

However, the situation is not as simple when we take n even. In such a situation we

start with two functions τ1, τ2 ∈ Bn having full algebraic immunity n
2
. In that case, τ =

(1 + xn+1)τ1 + xn+1τ2, on odd number of variables may or may not have full algebraic

immunity dn+1
2
e = n

2
+ 1.

Consider τ1, τ2 have annihilators π1, π2 at degree n
2

and 1 + τ1, 1 + τ2 have annihilators

π′1, π
′
2 at degree n

2
. Then following the Proposition 3(2) in Chapter 3, τ will have algebraic

immunity n
2
, iff deg(π1 + π2) <

n
2

or deg(π′1 + π′2) <
n
2
.
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Now consider that τ1, τ2 have minimum degree annihilators π1, π2 at degree n
2

and n
2

+ 1

respectively. Further 1 + τ1, 1 + τ2 have minimum degree annihilators π′1, π
′
2 at degree n

2
+ 1

and n
2

respectively. Then one can check that τ has algebraic immunity n
2

+ 1. Note that the

functions φ2k (see Section 6.2) and the functions ψ2k (see Section 6.3) have the properties

like τ1 and 1 +φ2k, 1 +ψ2k have the properties like τ2. Thus the availability of the functions

φ2k, ψ2k having full algebraic immunity k presents a clear construction using them to get

functions with full algebraic immunity k+1 on odd number of variables 2k+1. As concrete

examples, x2k+1+φ2k, x2k+1+ψ2k, (1+xn+1)φ2k+xn+1(1+ψ2k), (1+xn+1)ψ2k+xn+1(1+φ2k)

are functions on odd number of variables with full algebraic immunity.

6.2 Study of φ2k from Chapter 4

In Corollary 7 of Chapter 4, it is proved that the minimum degree annihilators of φ2k are at

the degree k and the the minimum degree annihilators of 1+φ2k are at the degree k+1. Then

using Corollary 12, we get that there is no g having degree less than k such that φ2kg = h,

where deg(h) = k.

Theorem 14 Let f ∈ B2k such that the degree of minimum degree annihilators of f and

1 + f are d and e respectively, d, e > 0. Suppose there exist g, h ∈ B2k such that f ∗ g = h,

where g is a non zero function. Then either h is zero or deg(h) ≥ e. If h is zero then

deg(g) ≥ d.

Proof : If possible, consider that there exists a nonzero h of degree e1 < e. Then from the

result [20, Lemma 1] that f ∗ g = h iff f ∗ (g + h) = 0 and (1 + f) ∗ h = 0, we find h is

an e1 degree annihilator of 1 + f which is a contradiction. Further if h is a zero function

then f ∗ g = 0. As f has no annihilator of degree less than d and g is a non zero function,

deg(g) ≥ d.

Now consider any function f ∈ B2k such that the minimum degree annihilators of f and

1 + f are at degree k and k + 1. Then following Theorem 14, we can not find any such

nonzero h of degree less than k + 1. If we take h as a zero function then degree of g has to

be greater than or equal to k. Since φ2k has minimum degree annihilator at degree k and

1 + φ2k has minimum degree annihilator at degree k + 1, we get the following result.

Corollary 13 Consider g, h ∈ B2k such that φ2kg = h where g 6= 0. Then either deg(h) > k

or if h = 0 then deg(g) ≥ k.
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2k deg(g) deg(h)

6 1 4

8 1 5

2k deg(g) deg(h)

10 2 6

10 2 7

10 1 8

2k deg(g) deg(h)

12 3 7

12 3 8

12 1 9

2k deg(g) deg(h)

14 4 8

14 4 9

14 2 10

14 2 11

14 1 12

Table 6.1: Experimental results on φ2kg = h relationship.

Note that this means one cannot get a lower degree (than AI2k(φ2k) = k) function g by fixing

h at a degree k. Note that in [4, Table 3], the functions on 2k variables are not φ2k, but

the functions of the form x1x2 + φ2k−2(x3, . . . , x2k) which are also of full algebraic immunity

k. That is why those functions are weak against fast algebraic attack. Further in case of

deg(h) > k, we present the experimental results in Table 6.1 for the φ2kg = h relationships

for 6 ≤ 2k ≤ 14. We present the minimum degree of g in the table till it becomes 1.

From Table 6.1, it is clear that with the increase of deg(h), the degree of g decreases as

expected, but the rate is not sharp. In fact, if one uses φ14, then one gets a linear g only

when h is of degree 12. Thus we like to point out that though the function φ2k is not good

in terms of nonlinearity, its structure is good for immunity against both algebraic and fast

algebraic attacks.

6.3 Study on Symmetric Functions

Construction for symmetric functions ψ2k with maximum algebraic immunity has been pre-

sented in Construction 6 in Chapter 3. ψn ∈ Bn, as follows:

ψn(x) =

{
0 for wt(x) ≤ dn

2
e,

1 for wt(x) > dn
2
e.

We have from Corollary 9 in Chapter 5 that ψ2k has minimum degree annihilators at

degree k and 1 + ψ2k has minimum degree annihilators at degree k + 1. Thus, similar to
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2k deg(g) deg(h)

6 0 4

8 1 5

2k deg(g) deg(h)

10 2 6

10 2 7

10 0 8

2k deg(g) deg(h)

12 3 7

12 0 8

2k deg(g) deg(h)

14 0 8

Table 6.2: Experimental results on ψ2kg = h relationship.

Corollary 13, we get the following result.

Corollary 14 Consider g, h ∈ B2k such that ψ2kg = h where g 6= 0. Then either deg(h) > k

or if h = 0 then deg(g) ≥ k.

Corollary 14, proves that for g, h ∈ B2k, there cannot be any relation ψ2kg = h, where

deg(h) = k. Similar interesting f ∗ g = h relationship has been studied in [20, 4].

From Theorem 12 of chapter 5, the algebraic degree of ψn is 2blog2 nc and hence we will

always get a constant 1 function g (i.e., of degree 0) such that ψng = h, where deg(h) =

2blog2 nc, i.e., h = ψn. Similarly extending the result of [20], if 2t < n ≤ 2t+1, then there

always exist ψng = h relations having deg(g) = 1 and deg(h) = 2t + 1 (the result in [20]

shows this only when n is a power of 2). Note that the theoretical results given in [4, Table

4] are not tight due to this reason. In Table 6.2, we present the results in tabular form and

this may be compared with Table 6.1. Based on these, it seems that the ψ2k functions have

worse profile than φ2k. Note that the weight and nonlinearity of ψ2k and φ2k are same, but

the algebraic degree of φ2k is in general greater than that of ψ2k.

A more general class of functions with maximum possible algebraic immunity has been

presented in Construction 5 of Chapter 5. For n even we name the function ζ2k, k ≥ 0 and

the exact definition is as following.

Construction 7

ζ2k(x) =


0 for wt(x) < k,

ax for wt(x) = k, ax ∈ {0, 1},
1 for wt(x) > k.
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2k nl(ζ2k) deg(ζ2k) deg(g) deg(h)

6 22 5 3 3

1 4

8 92 7 3 4

1 5

10 384 9 4 5

2 6

2 7

1 8

2k nl(ζ2k) deg(ζ2k) deg(g) deg(h)

12 1584 11 5 6

3 7

3 8

1 9

14 6470 13 6 7

4 8

1 9

Table 6.3: Profiles for the functions ζ2k.

Note that if the value of ax is same for all the weight k inputs x, then it is a symmetric

function. However, we will now specifically consider the case where the outputs corresponding

to weight k inputs take both the distinct values 0, 1 and the function becomes non symmetric.

Proposition 20 Consider ζ2k as described above. Then both ζ2k, 1 + ζ2k have minimum

degree annihilators at degree k.

Proof : We already have AI2k(ζ2k) = k. That both ζ2k, 1 + ζ2k has minimum degree

annihilators at degree k can be proved considering their weights of ζ2k, 1 + ζ2k and following

the same kind of argument as in the proof of Theorem 2 in Chapter 3.

Based on Proposition 20, it is not clear whether there exists g having deg(g) < k such

that ζ2kg = h, where deg(h) = k. Thus we go for the following experimentation. We use

similar kind of functions as described in Chapter 5 as follows.
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Construction 8

G(x1, . . . , x2k) =


1 for wt(x1, . . . , x2k) < k,

0 for wt(x1, . . . , x2k) > k,

b(x1, . . . , x2k) for wt(x1, . . . , x2k) = k,

where b(x1, . . . , x2k) is a Maiorana-McFarland type bent function.

1. If wt(G) < 22k−1, then we choose 22k−1−wt(G) points randomly from the inputs having

weight k and output 0 of G and toggle those outputs to 1 to get ζ2k.

2. If wt(G) > 22k−1, then we choose wt(G)−22k−1 points randomly from the inputs having

weight k and output 1 of G and toggle those outputs to 0 to get ζ2k.

Thus we get balanced ζ2k. As we have already described in Proposition 20, the f ∗ g = h

relationships for the functions of the type of ζ2k may not be decided immediately. Thus we

present some experimental results in Table 6.3 for this purpose for a randomly chosen ζ2k
for each 6 ≤ 2k ≤ 14.

6.4 Experimental Results

6.4.1 Rotation Symmetric Functions

We consider the following rotation symmetric functions with good cryptographic properties

and full algebraic immunity as they have been studied in Section 3.4.1 of Chapter 3.

First we consider the 7-variable, 2-resilient, nonlinearity 56 rotation symmetric Boolean

functions with algebraic immunity 4. There are 12 such functions. For all these functions

f , we got f ∗ g = h relationship where g is a linear function and h has degree 4. Thus these

functions are not good in resisting fast algebraic attacks.

Next we consider the 8-variable, 1-resilient, nonlinearity 116 rotation symmetric Boolean

functions with algebraic immunity 4. There are 6976 such functions. Out of them there are

6080 many functions f , for which we get good profile. For these functions, we get the profile

like deg(g) = 3, deg(h) = 4; deg(g) = 2, deg(h) = 5 and deg(g) = 1, deg(h) = 6. In all these

cases we fix degree of h and then find the minimum degree g. Thus there exist 8-variable,

1-resilient, nonlinearity 116 rotation symmetric Boolean functions where we get good profile
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in terms of fast algebraic attack. Further note that these functions are of degree 6 by itself.

The truth table of one of these functions is as below in hexadecimal format:

0005557337726F4A1E6E7B4C3CAB7598

03FD7CB86ADA61F41FE48C9E7A26C280

6.4.2 (Modified) Balanced Patterson-Wiedemann type Functions

Patterson and Wiedemann [139, 140] considered the Boolean functions on odd number of

input variables n and succeeded to find out functions having nonlinearity strictly greater than

2n−1 − 2
n−1

2 for odd n ≥ 15. This result is pioneering as this is the first instance when such

a high nonlinearity has been demonstrated and further till date there is no other strategy

to get such functions. Later in [116] these functions have been changed heuristically to get

highly nonlinear balanced functions. We consider one of the functions presented in [116],

which is a balanced function on 15 variables having nonlinearity 16262 > 215−1 − 2
15−1

2 . We

found that the algebraic immunity of the function we have considered is 7 (not 8, which is

the maximum possible for 15-variable functions). Given this function f , we experimented

on the f ∗ g = h relationships fixing deg(h) ≥ 7 and then finding out the minimum degree

g. The (deg(g), deg(h)) relationships for the function f is as follows: (6, 7), (6, 8), (3, 9),

(3, 10), (2, 11), (2, 12), (1,13).

6.5 Functions with Additional Constraints over Maxi-

mum AI

In this section we consider the functions f ∈ Bn with maximum possible AI, i.e., dn
2
e with

the property that given fg = h relation such that deg(h) = dn
2
e, we should get deg(g) ≥ bn

2
c.

This is the additional constraint. These functions are indeed better than any functions with

only maximum AI with respect to fast algebraic attacks, since one can not get a g having

deg(g) < bn
2
c when deg(h) is fixed at dn

2
e. From Proposition 16, one can see that this is the

best possible case when deg(h) is fixed at dn
2
e.

First concentrate on functions similar to φ2k, ψ2k having full algebraic immunity such that

a function f ∈ B2k, the lowest degree annihilators are at degree k and for its complement

1+ f , the lowest degree annihilators are at degree k+1. Hence from Corollary 12 that these

functions cannot have fg = h relation such that deg(h) = k and deg(g) < k. Now one can
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also check that the (2k + 1)-variable function F = x2k+1 + f is of algebraic immunity k + 1;

further F is balanced. One can also check that the function x2k+2 + x2k+1 + f has algebraic

immunity k + 1 and it is also an 1-resilient function. We summarize these results below.

Theorem 15

1. For any even n, it is possible to get unbalanced f ∈ Bn with maximum possible AI i.e.,
n
2

such that given any f ∗ g = h relation having deg(h) = n
2
, deg(g) 6< n

2
.

2. For any even n it is possible to get 1-resilient function having full algebraic immunity.

With respect to Theorem 15(1), it is open to get such balanced functions fb when n is

even. We solve this problem in Subsection 6.5.1 for all even n except when n is an exact

power of 2 and then considering xn+1 + fb the corresponding case for Theorem 15(2) will

be solved for n + 1 (odd) variable functions. Note that experimental evidences of resilient

functions with full algebraic immunity are available in Chapter 3, but no theoretical result

is available in the literature so far.

The results in Theorem 15 are proved using the functions φ2k and ψ2k which are of the

property that only one of f, 1+ f has minimum degree annihilators at AI2k(f) and the other

one has minimum degree annihilators at degree 1 + AI2k(f). We have already studied for

such functions having wt(f) = 22k−1 −
(
2k−1
k

)
(i.e., these functions are not balanced) and

nl(f) ≤ 22k−1 −
(
2k−1
k

)
.

6.5.1 Annihilators of f, 1 + f at the Same Degree

Now we will concentrate on the functions such that the minimum degree annihilators of the

function and its complement are at the same degree but they never cancel out when added.

We formally define this as below.

Definition 13 Suppose f ∈ B2k be such that AI2k(f) = k, the maximum possible; the lowest

degree annihilators of both f and 1 + f are at degree k. Further there is no two nonzero

k-degree annihilators g and h of f and 1 + f respectively, such that deg(g + h) < k. We

denote such functions by P2k functions.
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Theorem 16 Suppose f be a P2k function. Then

1. AI2k+1(x2k+1 + f) = k + 1, which is the maximum possible;

2. if for f1, f2 ∈ B2k, ff1 = f2 where deg(f1) ≤ deg(f2) = k then deg(f1) = k;

3. nl(f) ≥ 22k−1 −
(
2k−1
k−1

)
.

Proof : Let us denote F = x2k+1 + f . Any nonzero annihilator of F is of the form

g1 + x2k+1(g1 + g2), where g1 ∈ AN(f) and g2 ∈ AN(1 + f) and both g1, g2 are not 0 at the

same time. Similarly any nonzero annihilator of 1 + F is of the form g2 + x2k+1(g1 + g2).

As g1 6= g2 and their highest degree terms can not cancel out in g1 + g2, their degree of the

annihilators can not be less than or equal to k. Thus AI2k+1(F ) = k + 1.

Now we prove item 2. Consider we have some f1, f2 such that ff1 = f2 with deg(f1) ≤ k,

deg(f2) = k. Note that ff1 = f2 iff f(f1+f2) = 0 and (1+f)f2 = 0 [20]. So, f1 = (f1+f2)+f2

is the sum of the two k degree annihilators f1 + f2 and f2 of f and 1 + f respectively. As

their highest degree terms never cancel out we have deg(f1) = k.

Next we prove the last item. Since x2k+1 +f is of full algebraic immunity k+1, following

Theorem 4 by Lobanov, one gets nl(x2k+1 +f) ≥ 22k−
(
2k
k

)
. As for every 2k-variable function

f , we have nl(x2k+1 + f) = 2nl(f), we get nl(f) ≥ 22k−1 −
(
2k−1
k−1

)
.

This kind of function provides the best possible relationship when we use functions f on

n variables and consider f ∗ g = h relationship with deg(h) = n
2

as in that case deg(g) can

not be less than n
2
. This is the optimum situation when deg(h) = n

2
.

Now consider the function ζ2k from Construction 7. One can get a balanced ζ2k(x) if the

outputs corresponding to half of the weight k inputs are 0 and the outputs corresponding

to half of the weight k inputs are 1. Note that there are
( (2k

k )
1
2(

2k
k )

)
many balanced functions of

the form ζ2k. From ζ2k(x), the Construction 8 is attempted to get balanced functions.

Now we like to point out the problems with the Constructions 7, 8 where the annihilators

of f and 1 + f are at the same degree.

1. The constructions are randomized and hence the exact nonlinearity of the functions

cannot be calculated. In fact, the experimental results show that the nonlinearity of

the functions are slightly less than 22k−1 −
(
2k−1
k−1

)
.

2. Experimental results in Table 6.3 show that there exists g having deg(g) < k such that

ζ2kg = h, where deg(h) = k.
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We solve these problems in the construction presented in the following sub section where

the functions will have nonlinearity not less than 22k−1 −
(
2k−1
k−1

)
and there cannot be any

deg(g) < k.

6.5.2 The Exact Construction

We present the following construction.

Construction 9 Consider η2k ∈ B2k, as follows:

η2k(x) =


1 for wt(x) < k,

ax for wt(x) = k, ax ∈ {0, 1}, with the constraint ax = ax,

0 for wt(x) > k,

where x is the bitwise complement of the vector x. Further all the ax’s are not same, i.e.,

they take both the values 0, 1.

Theorem 17 The functions η2k(x) as in Construction 9 are P2k functions.

Proof : Using the similar proof technique used in Theorem 10 in Chapter 5, one gets that

both η2k and 1 + η2k has no annihilators at degree less than k. Further,
∑k

i=0

(
n
i

)
is greater

than both wt(η2k) and wt(1 + η2k) and hence from Theorem 2, both η2k and 1 + η2k must

have annihilator at degree less than or equal to k. Hence both η2k and 1+η2k have minimum

degree annihilators exactly at degree k.

Any k degree function g ∈ B2k can be written as

a0 +
n∑
i=0

aixi + · · ·+
∑

1≤<i1<···<ik≤n

ai1,...,ikxi1 . . . xik ,

where the coefficients a’s are either 0 or 1. If g is an annihilator of η2k then g(x) = 0

when η2k(x) = 1. Since η2k(x) = 1 for wt(x) < k, we can eliminate all the coefficients (a’s)

associated to monomials of degree less than or equal to k− 1 of g. Then we have η2k(x) = 1

for some input vectors x of weight k. For such an x = (b1, . . . , bn), where bi1 = · · · = bik = 1

and rest are 0, one can eliminate the coefficient ai1,...,ik . Thus the k degree independent

annihilators of η2k form the set S1 = {xj1 . . . xjk | η2k(b1, . . . , bn) = 0 and bj1 = · · · = bjk =

1, rest are 0}. Here any k-degree annihilator of η2k does not contain any monomial of degree

less than k.
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Define f ′(x) = 1 + η2k(x). Following the similar proof for η2k(x), one can prove that the

space of k degree annihilators of f ′ is generated by the basis set {xj1 . . . xjk | f ′(b1, . . . , bn) =

0 and bj1 = · · · = bjk = 1, rest are 0}. Hence, the k degree annihilator space of f ′(x) =

1 + η2k(x) is generated by the basis set {(1 + xj1) . . . (1 + xjk) | f ′(1 + b1, . . . , 1 + bn) =

1 + η2k(b1, . . . , bn) = 0 and bj1 = · · · = bjk = 0, rest are 1}. So, the subspace of k de-

gree monomials of k degree annihilators of 1 + η2k is generated by the basis set S2 =

{xj1 . . . xjk | η2k(b1, . . . , bn) = 1 and bj1 = · · · = bjk = 0, rest are 1}. One can check that

these two sets S1 and S2 are disjoint iff η2k(x) = η2k(x) for wt(x) = k.

Since the basis sets S1, S2 are disjoint, the k degree terms of any annihilator of η2k and

the k degree terms of any annihilator of 1 + η2k cannot be the same. Thus the proof.

Corollary 15 One can get a balanced η2k iff 2k is not a power of 2 and the count of such

balanced functions is
( 1

2(
2k
k )

1
4(

2k
k )

)
.

Proof : For a 2k-variable function, there are
(
2k
k

)
many input vectors of weight k and there

are 1
2

(
2k
k

)
many (x, x) distinct pairs of weight k. One can construct a balanced η2k if and

only if 1
2

(
2k
k

)
is even, i.e.,

(
2k
k

)
is divisible by 4. Since

(
2k
k

)
= 2

(
2k−1
k−1

)
, we need to test whether(

2k−1
k−1

)
is even.

Suppose the t = blog2 2kc+ 1 bit binary representations of 2k, k, 2k− 1 and k− 1 are as

follows (most significant bit at the left most position):

2k = bt bt−1 . . . bl+1 bl = 1 0 0 . . . 0,

k = 0 bt . . . bl+2 bl+1 bl = 1 0 . . . 0,

2k − 1 = bt bt−1 . . . bl+1 1 + bl = 0 1 1 . . . 1,

k − 1 = 0 bt . . . bl+2 bl+1 1 + bl = 0 1 . . . 1,

where 1 < l ≤ t, bi ∈ {0, 1} and bt = bl = 1. Now following Lucas’ theorem [45, Page 79]

with the prime 2, we have
(
2k−1
k−1

)
≡

(
bt
0

)(
bt−1

bt

)
. . .

(
0

bl+1

)(
1
0

)(
1
1

)
. . .

(
1
1

)
mod 2. If 2k is a power of

2, then t = l. So,
(
2k−1
k−1

)
≡

(
1
0

)(
1
1

)
. . .

(
1
1

)
mod 2, i.e.,

(
2k−1
k−1

)
≡ 1 mod 2. Hence

(
2k−1
k−1

)
is odd.

If 2k is not a power of 2, then
(
2k−1
k−1

)
≡

(
bt−1

bt

)
. . .

(
bl+1

bl+2

)(
0

bl+1

)
mod 2. At some place we

will get bs = 0 and bs+1 = 1 for l ≤ s < t because bt = 1. Hence
(
2k−1
k−1

)
is even if 2k is not a

power of 2.

Thus
(
2k
k

)
is divisible by 4, when 2k is not exactly a power of 2. In such a case, there

will be 1
2

(
2k
k

)
many distinct pairs of (x, x), where x is a 2k bit binary pattern of weight k.

One can choose 1
4

(
2k
k

)
many distinct pairs and in such inputs of η2k, output 1 is assigned
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and for the rest of 1
4

(
2k
k

)
many distinct pairs of inputs, output 0 is assigned. This provides

a balanced η2k. Note that the number of such distinct balanced η2k is

(1
2

(
2k
k

)
1
4

(
2k
k

)).

Now an important question is whether there exist balanced P2k functions when 2k is a

power of 2. We have checked that for 2k = 4 = 22, there is no balanced P4 function by

running exhaustive computer program.

6.5.3 Functions on Odd Number of Input Variables

Now let us study the functions f on odd number of input variables 2k+ 1 having maximum

possible algebraic immunity k + 1. That is the functions must be balanced. Consider

the following balanced symmetric functions from Chapter 5 on 2k + 1 variables having full

algebraic immunity k + 1.

Construction 10 Consider τ2k+1 ∈ B2k+1, as follows:

τ2k+1(x) =

{
1 for wt(x) ≤ k,

0 for wt(x) ≥ k + 1.

We list a few experimental values of minimum degree of g when τ2k+1g = h and deg(h) = k+1.

In the format < 2k+ 1, deg(g), deg(h) > these values are < 5, 1, 3 >, < 7, 1, 4 >, < 9, 1, 5 >,

< 11, 2, 6 >. Note that the minimum degree of g is substantially less than k and hence the

functions τ2k+1 are not interesting in resistance against fast algebraic attacks.

To get a better resistance against fast algebraic attack, we are interested about the

balanced functions with the following additional property. Given any f ∗ g = h relation

having deg(h) = k + 1, we require that deg(g) ≥ k.

We run exhaustive search for 2k + 1 = 5 variable functions and found such functions.

One example is the truth table 00000001000101110001101111011111 which is of nonlinearity

10 and algebraic degree 4. Note that there is no nonlinearity 12 function on 5 variables with

such property. Existence of such functions for 7 variables onwards is an open question.

6.6 Conclusion

In this chapter, construction of balanced Boolean functions with maximum possible algebraic

immunity is studied with an additional property which is necessary to resist certain kind
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of fast algebraic attacks. We have studied (in some cases theoretically, in some other cases

experimentally) a few existing constructions of Boolean functions for their resistances against

certain kinds of fast algebraic attacks. The additional property considered here is, given an

n-variable (n even) balanced function f with maximum possible AI, i.e., n
2
, and given two

n-variable Boolean functions g, h such that f ∗ g = h, if deg(h) = n
2
, then deg(g) must be

greater than or equal to n
2
. Our results can also be used to present theoretical construction

of resilient Boolean functions having maximum possible AI. Getting a primary construction

of cryptographically significant Boolean functions (mainly with high nonlinearity) having

maximum possible algebraic immunity and good resistance against fast algebraic attacks

has not been solved satisfactorily yet.
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Chapter 7

Reducing the Number of

Homogeneous Linear Equations in

Finding Annihilators

Results on algebraic attacks have received a lot of attention recently in studying the security

of crypto systems [3, 7, 21, 26, 41, 43, 58, 56, 51, 109, 4, 69, 54]. Boolean functions are

important primitives to be used in the crypto systems and in view of the algebraic attacks,

the annihilators of a Boolean function play considerably serious role [33, 22, 123, 134].

It is known from [56, 123] that for any function f or 1 + f must have an annihilator at

the degree dn
2
e. Thus the target of a good design is to use a function f such that neither f

nor 1 + f has an annihilator at a degree less than dn
2
e. Thus there is a need to construct

such functions and the first one in this direction is described in Chapter 4. Later symmetric

functions with this property has been presented in Chapter 6 (also independently in [22]).

However, all these constructions are not rich in terms of some important cryptographic

properties like nonlinearity, resiliency etc.

Thus there is a need to study the Boolean functions, which are rich in terms of other

cryptographic properties, in terms of their annihilators. One has to find out the annihilators

of a given Boolean function for this. Moreover, for Cryptanalysis, it is necessary to find

the annihilators. Initially a basic algorithm in finding the annihilators has been proposed

in [123, Algorithms 1 and 2]. A minor modification of [123, Algorithm 2] has been presented

very recently in [20] to find out relationships for algebraic and fast algebraic attacks. In [22],

there is an efficient algorithm to find the annihilators of symmetric Boolean functions, but
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symmetric Boolean functions are not cryptographically promising. Algorithms using Gröbner

bases are also interesting in this area [6], but still they are not considerably efficient. Recently

more efficient algorithms have been designed in this direction [4, 69]. The algorithm presented

in [4] can be used efficiently to find out relationships for algebraic and fast algebraic attacks.

In [4], matrix triangularization has been exploited nicely to solve the annihilator finding

problem (of degree d for an n-variable function) in O(
(
n
d

)2
) time complexity. In [69] a

probabilistic algorithm having time complexity O(nd) has been proposed where the function

is divided to its sub functions recursively and the annihilators of the sub functions are checked

to study the annihilators of the original function.

The main idea in this chapter is to reduce the size of the matrix (used to solve the

system of homogeneous linear equations) as far as possible. We could successfully improve

the handling of equations associated with small weight inputs of the Boolean function. This

uses certain structure of the matrix that we discover here. We start with a matrix Mn,d(g)

(see Theorem 18) which is self inverse and its discovered structure allows to compute the

new equations efficiently by considering the matrix UAr (see Theorem 20 in Section 7.2).

Moreover, each equation associated with a low weight input point directly provides the value

of an unknown coefficient of the annihilator, which is the key point that allows to lower the

number of unknowns. Further reduction in the size of the matrix is dependent on getting

a proper linear transformation on the input variables of the Boolean function, which is

discussed in Section 7.3.

One may wonder whether the very recently available strategies in [4, 69] can be applied

after the initial reduction proposed in this paper to get further improvements in finding the

lowest degree annihilators. The standard Gaussian reduction technique ([69, Algorithm 1])

is used in the main algorithm [69, Algorithm 2], and in that case our idea of reduction of the

matrix size will surely provide improvement. However, the ideas presented in [4, Algorithm

1, 2] and [69, Algorithm 3] already exploit the structure of the linear system in an efficient

way. In particular, the algorithms in [4] by themselves deal with the equations of small

weight efficiently. Thus it is not clear whether the reduction of matrix size proposed by us

can be applied to exploit further efficiency from these algorithms.

7.1 Preliminaries

Consider all the n-variable Boolean functions of degree at most d, i.e., R(n, d), the Reed-

Muller code of order d and length 2n. Any Boolean function can be seen as a multivariate
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polynomial over IF2. Note that R(n, d) is a vector subspace of the vector space Bn (which

is R(n, n)), the set of all n-variable Boolean functions. As the elements of R(n, d) are

multivariate polynomials over IF2, then the standard basis is the set of all nonzero monomials

of degree less than or equal to d. That is, the standard basis is

Sn,d = {xi1 . . . xil | 1 ≤ l ≤ d and 1 ≤ i1 < i2 < · · · < il ≤ n} ∪ {1},

where the input variables of the Boolean functions are x1, . . . , xn.

The ordering among the monomials is considered in lexicographic ordering (<l) as usual,

i.e., xi1xi2 . . . xik <
l xj1xj2 . . . xjl if either k < l or k = l and there is 1 ≤ p ≤ k such that ik =

jk, ik−1 = jk−1, . . . , ip+1 = jp+1 and ip < jp. For example, for n = 7, x1x3x6 <
l x1x2x4x5 and

x1x3x6 <
l x1x4x6. So, the set Sn,d is a totally ordered set with respect to this lexicographical

ordering (<l). Using this ordering we refer the monomials according their order, i.e., the

k-th monomial as mk, 1 ≤ k ≤
∑d

i=0

(
n
i

)
following the convention ml <

l mk if l < k.

Definition 14 Given n > 0, 0 ≤ d ≤ n, we define a mapping

vn,d : IFn2 7→ IF
Pd
i=0 (ni)

2 ,

such that vn,d(x) = (m1(x),m2(x), . . . ,mPd
i=0 (ni)

(x)). Here mi(x) is the ith monomial as in

the lexicographical ordering (<l) evaluated at the point x = (x1, x2, . . . , xn).

To evaluate the value of the t-th coordinate of vn,d(x1, x2, . . . , xn) for 1 ≤ t ≤
∑d

i=0

(
n
i

)
,

i.e., [vn,d(x1, . . . , xn)]t, one requires to calculate the value of the monomial mt (either 0 or 1)

at (x1, x2, . . . , xn). Now we define a matrix Mn,d with respect to a n-variable function f . To

define this we use the ordering <l over the elements of vector space IFn2 (see Chapter 2).

Definition 15 Given n > 0, 0 ≤ d ≤ n and an n-variable Boolean function f , we define a

wt(f)×
∑d

i=0

(
n
i

)
matrix

Mn,d(f) =


vn,d(X1)

vn,d(X2)
...

vn,d(Xwt(f))


where Xi ∈ supp(f), 1 ≤ i ≤ wt(f) and X1 <l X2 <l · · · <l Xwt(f).
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Note that the matrix Mn,d(f) is the transpose of the restricted generator matrix for

Reed-Muller code of length 2n and order d, R(d, n), to the support of f (see also [26, Page

7]). Any row of the matrix Mn,d(f) corresponding to an input vector (x1, . . . , xn) is

0 deg 1 deg . . . d deg︷︸︸︷
1

︷ ︸︸ ︷
x1, . . . , xi, . . . , xn . . .

︷ ︸︸ ︷
x1 . . . xd, . . . , xi1 . . . xid , . . . , xn−d+1 . . . xn .

Each column of the matrix is represented by a specific monomial and each entry of the

column tells whether that monomial is satisfied by the input vector which identifies the row,

i.e., the rows of this matrix correspond to the evaluations of the monomials having degree

at most d on support of f . As already discussed, here we have one-to-one correspondence

from the input vectors x = (x1, . . . , xn) to the row vectors vn,d(x) of length
∑d

i=0

(
n
i

)
. So,

each row is fixed by an input vector.

7.1.1 Annihilators of f and Rank of the Matrix Mn,d(f)

Let f be an n-variable Boolean function. We are interested to find out the lowest degree anni-

hilators of f . Let a nonzero g ∈ Bn be an annihilator of f , i.e., f(x1, . . . , xn)∗g(x1, . . . , xn) =

0 for all (x1, . . . , xn) ∈ IFn2 . In terms of truth table, this means that the function f AND g will

be a constant zero function, i.e., for each vector (x1, . . . , xn) ∈ IFn2 , the output of f AND g

will be zero. That means,

g(x1, . . . , xn) = 0 if f(x1, . . . , xn) = 1. (7.1)

Suppose degree of the function g is less than equal to d, then the ANF of g is of the form

g(x1, . . . , xn) = a0 +
n∑
i=0

aixi + · · ·+
∑

1≤i1<i2···<id≤n

ai1,...,idxi1 · · ·xid

where the subscripted a’s (coefficients of monomials) are from IF2 and not all of them are

zero. Following Equation 7.1, we get the following wt(f) many homogeneous linear equations

a0 +
n∑
i=0

aixi + · · ·+
∑

1≤i1<i2···<id≤n

ai1,...,idxi1 · · ·xid = 0, (7.2)

considering the input vectors (x1, . . . , xn) ∈ supp(f). This is a system of homogeneous

linear equations on a’s with
∑d

i=0

(
n
i

)
many a’s as variables. The matrix form of this system

of equations is Mn,d(f) Atr = O, where A = (a0, a1, a2, . . . , an−d+1,...,n), the row vector of
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coefficients of the monomials which are ordered according to the lexicographical order <l.

Each nonzero solution of the system of equations formed by Equation 7.2 gives an annihilator

g of degree less than or equal to d. This is basically the Algorithm 1 presented in [123]. Since

the number of solutions of this system of equations are connected to the rank of the matrix

Mn,d(f), it is worth to study the rank and the set of linear independent rows/columns of

matrix Mn,d(f). If the rank of matrix Mn,d(f) is equal to
∑d

i=0

(
n
i

)
(i.e., number of columns)

then the only solution is the zero solution. So, for this case f has no annihilator of degree

less than or equal to d. This implies that the number of rows is greater than or equal to

the number of columns, i.e., wt(f) ≥
∑d

i=0

(
n
i

)
which is the Theorem 2 in Chapter 3. If the

rank of the matrix Mn,d(f) is equal to
∑d

i=0

(
n
i

)
− k for k > 0 then the number of linearly

independent solutions of the system of equations is k which gives k many linearly independent

annihilators of degree less than or equal to d and 2k − 1 many number of annihilators of

degree less than or equal to d. However, to implement algebraic attack one needs only

linearly independent annihilators. Hence, finding the degree of lowest degree annihilator of

f and 1 + f , one can use the following algorithm.

Algorithm 3

for(i = 1 to dn
2
e − 1) {

find the rank r1 of the matrix Mn,i(f);

find the rank r2 of the matrix Mn,i(1 + f);

if min{r1, r2} <
∑i

j=0

(
n
j

)
then output i;

}
output dn

2
e;

Since either f or 1+f has an annihilator of degree less than or equal to dn
2
e, we are interested

only to check till i = dn
2
e. This algorithm is equivalent to Algorithm 1 in [123].

The simplest and immediate way to solve the system of these equations or find out the

rank of Mn,d(f),Mn,d(1 + f) is the Gaussian elimination process. To check the existence or

to enumerate the annihilators of degree less than or equal to dn
2
e for a balanced function, the

complexity is approximately (2n−2)3. Considering this time complexity, it is not encouraging

to check annihilators of a function of 20 variables or more using the presently available com-

puting power. However, given n and d, the matrix Mn,d(f) has pretty good structure, which

we explore in this chapter towards a better algorithm (that is solving the set of homogeneous

linear equations in an efficient way by decreasing the size of the matrix involved).
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7.2 Faster Strategy to Construct the Set of Homoge-

neous Linear Equations

In this section we present an efficient strategy to reduce the set of homogeneous linear

equations. First we present a technical result.

Theorem 18 Let g be an n-variable Boolean function defined as g(x) = 1 iff wt(x) ≤ d for

0 ≤ d ≤ n. Then Mn,d(g)
−1 = Mn,d(g), i.e., Mn,d(g) is a self inverse matrix.

Proof : Suppose F = Mn,d(g)Mn,d(g). Then the i-th row and j-th column entry of F
(denoted by Fi,j) is the scalar product of i-th row and j-th column of Mn,d(g). Suppose the i-

th row is vn,d(x) for x ∈ {0, 1}n having xq1 , . . . , xql as 1 and others are 0. Further consider that

the j-th column is the evaluation of the monomial xr1 . . . xrk at the input vectors belonging to

the support of g. If {r1, . . . , rk} 6⊆ {q1, . . . , ql} then Fij = 0. Otherwise, Fi,j =
(
l−k
0

)
+

(
l−k
1

)
+

· · · +
(
l−k
l−k

)
mod 2 = 2l−k mod 2. So, Fi,j = 1 iff l = k, i.e, {xr1 , . . . , xrk} = {xq1 , . . . , xql}.

That implies, Fi,j = 1 iff i = j, i.e., F is identity matrix. Hence, Mn,d(g) is its own inverse.

See the following example for the structure of Mn,d(g) when n = 4 and d = 2.

Example 7 Let us present an example of Mn,d(g) for n = 4 and d = 2. We have {1, x1,

x2, x3, x4, x1x2, x1x3, x2x3, x1x4, x2x4, x3x4}, the list of 4-variable monomials of degree less

than or equal to 2 in ascending order (<l).

Similarly, {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0), (1, 0, 1, 0),

(0, 1, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)} present the 4 dimensional vectors of weight less

than or equal to 2 in ascending order (<l). So the matrix

M4,2(g) =



1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0

1 0 1 1 0 0 0 1 0 0 0

1 1 0 0 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0 0 1 0

1 0 0 1 1 0 0 0 0 0 1


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One may check that M4,2(g) is its inverse.

Lemma 9 Let A be a nonsingular m×m binary matrix where the row vectors are denoted

as v1, v2, . . . , vm. Let U be a k ×m binary matrix, k ≤ m, where the vectors are denoted as

u1, u2, . . . , uk. Let W = UA−1, a k ×m binary matrix. Consider that a matrix A′ is formed

from A by replacing the rows vi1 , vi2 , . . . , vik of A by the vectors u1, u2, . . . , uk. Further

consider that a k× k matrix W ′ is formed by taking the i1-th, i2-th, . . . , ik-th columns of W

(out of m columns). Then A′ is nonsingular iff W ′ is nonsingular.

Proof : Without loss of generality, we can take i1 = 1, i2 = 2, . . . , ik = k. So, the row

vectors of A′ are u1, . . . , uk, vk+1, . . . , vm.

We first prove that if the row vectors of A′ are not linearly independent then the row

vectors ofW ′ are also not linearly independent. As the row vectors of A′ are not linearly inde-

pendent, we have α1, α2, . . . , αm ∈ {0, 1} (not all zero) such that
∑k

i=1 αiui+
∑m

i=k+1 αivi = 0.

If αi = 0 for all i, 1 ≤ i ≤ k then
∑m

i=k+1 αivi = 0 which implies αi = 0 for all i, k+1 ≤ i ≤ m

as vk+1, vk+2, . . . , vm are linearly independent. So, all αi’s for 1 ≤ i ≤ k can not be zero.

Further, we have UA−1 = W , i.e., U = WA, i.e.,
u1

u2

...

uk

 =


w1

w2

...

wk




v1

v2

...

vm

 , i.e., ui = wi


v1

v2

...

vm

 .

Hence,
∑k

i=1 αiui =
∑k

i=1 αiwi


v1

v2

...

vm

 = r


v1

v2

...

vm


where r = (r1, r2, . . . , rm) =

∑k
i=1 αiwi.

If the restricted matrix W ′ were nonsingular, the vector r′ = (r1, r2, . . . , rk) is non zero

as (α1, α2, . . . , αk) is not all zero. Hence,
∑k

i=1 αiui +
∑m

i=k+1 αivi = 0, i.e.,
∑m

i=1 rivi +∑m
i=k+1 αivi = 0, i.e.,

∑k
i=1 rivi +

∑m
i=k+1(ri +αi)vi = 0. This contradicts that v1, v2, . . . , vm

are linearly independent as r′ = (r1, r2, . . . , rk) is nonzero. Hence W ′ must be singular. This

proves one direction.
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On the other direction if the restricted matrix W ′ is singular then there are β1, β2, . . . , βk
not all zero such that

∑k
i=0 βiwi = (0, . . . , 0, sk+1, . . . , sm). Hence,

k∑
i=0

βiui =
k∑
i=1

βiwi


v1

v2

...

vm

 = sk+1vk+1 + · · ·+ smvm,

i.e.,
∑k

i=0 βiui +
∑m

i=k+1 sivi = 0 which says matrix A′ is singular.

Following Lemma 9, one can verify the nonsingularity of the larger matrix A′ by verifing

the nonsingularity of the reduced matrix W ′. Thus checking the nonsingularity of the larger

matrix A′ will be more efficient if the computation of inverse of matrix A, i.e., A−1 and

matrix product W = UA−1 can be done efficiently. The self inverse nature of the matrix

Mn,d(g) presented in Theorem 18 helps to achieve this efficiency. In the rest of this section

we will study this in detail. In the following result we present the Lemma 9 in more general

form.

Theorem 19 Let A be a nonsingular m×m binary matrix with m-dimensional row vectors

v1, v2, . . . , vm and U be a k×m binary matrix with m-dimensional row vectors u1, u2, . . . , uk.

Consider W = UA−1, a k×m matrix. The matrix A′, formed from A by removing the rows

vi1 , vi2 , . . . , vil (l ≤ m) from A and adding the rows u1, u2, . . . , uk (k ≥ l), is of rank m iff

the rank of restricted k× l matrix W ′ including only the i1-th, i2-th, . . . , il-th columns of W

is l.

Proof : Here, the rank of matrix W ′ is l. So, there are l many rows of W ′, say w′
p1
, . . . , w′

pl

which are linearly independent. So, following the Lemma 9 we have the matrix A′′ formed

by replacing the rows vi1 , . . . , vil of A by up1 , . . . , upl is nonsingular, i.e., rank is m. Hence

the matrix A′ where some more rows are added to A′′ has rank m. The other direction can

also be shown similar to the proof of the other direction in Lemma 9.

Now using Theorem 18 and Theorem 19, we describe a faster strategy to check the exis-

tence of annihilators of certain degree d of a Boolean function f . Suppose g be the Boolean

function described in Theorem 18, i.e., supp(g) = {x|0 ≤ wt(x) ≤ d}. In Theorem 18,

we have already shown that Mn,d(g) is nonsingular matrix (in fact it is self inverse). Let

{x | wt(x) ≤ d and f(x) = 0} = {x1, x2, . . . , xl} and {x | wt(x) > d and f(x) = 1} =

{y1, y2, . . . , yk}. If k < l, directly one can say that f has annihilator of degree less than or

equal to d. Thus, we consider k ≥ l. Then we consider Mn,d(f) as A, vn,d(x1), . . . , vn,d(xl)
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as vi1 , . . . , vil and vn,d(y1), . . . , vn,d(yk) as u1, . . . , uk. Then following Theorem 19 we can

ensure whether Mn,d(f) is nonsingular. If it is nonsingular, then there is no annihilator of

degree less than or equal to d, else there are annihilator(s). We may write this in a more

concrete form as the following corollary to Theorem 19.

Corollary 16 Let f be an n-variable Boolean function. Let Ar be the restricted matrix of

A = Mn,d(g), by taking the columns corresponding to the monomials xi1xi2 . . . xil such that

l ≤ d and f(x) = 0 when xi1 = 1, xi2 = 1, . . . , xil = 1 and rest of the input variables are

0. Further U =


vn,d(y1)

vn,d(y2)
...

vn,d(yk)

, where {y1, . . . , yk} = {x | wt(x) > d and f(x) = 1}. If

rank of UAr is l then there is no annihilator of degree less than or equal to d, else there are

annihilator(s) of degree less than or equal to d.

Proof : As per Theorem 19, here W = UA−1 = UA, since A is its own inverse following

Theorem 18 and hence W ′ is basically UAr. Thus the proof follows.

Now we can use the following technique for fast computation of the matrix multiplication

UAr. For this we first present a technical result and its proof is similar in the line of the

proof of Theorem 18.

Proposition 21 Consider g as in Theorem 18. Let y ∈ IFn2 such that i1, i2, . . . , ip-th places

are 1 and other places are 0. Consider the j-th monomial mj = xj1xj2 . . . xjq according the

ordering <l. Then the j-th entry of vn,d(y)Mn,d(g) is 0 if {j1, . . . , jq} 6⊆ {i1, . . . , ip} else the

value is
∑d−q

i=0

(
p−q
i

)
mod 2.

Following Proposition 21, we can get each row of U as some vn,d(y) and each column of

Ar as mj and construct the matrix UAr. One can precompute the sums
∑d−q

i=0

(
p−q
i

)
mod 2

for d + 1 ≤ p ≤ n and 0 ≤ q ≤ d, and store them and the total complexity for calculating

them is O(d2(n − d)). These sums will be used to fill up the matrix UAr which is an

l × k matrix according to Corollary 16. Let us denote µf = |{x | wt(x) ≤ d, f(x) = 1}|
and νf = |{x | wt(x) > d, f(x) = 1}|. Then wt(f) = µf + νf and the matrix UAr is of

dimension νf × (
∑d

i=0

(
n
i

)
− µf ). Clearly O(d2(n − d)) can be neglected with respect to

νf × (
∑d

i=0

(
n
i

)
− µf ). Thus we have the following result.

Theorem 20 Consider U and Ar as in Corollary 16. The time (and also space) complexity

to construct the matrix UAr is of the order of νf × (
∑d

i=0

(
n
i

)
− µf ). Further checking the
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rank of UAr (as given in Corollary 16) one can decide whether f has an annihilator at degree

d or not.

In fact, to check the rank of the matrix UAr using Gaussian elimination process, we

need not store the νf many rows at the same time. One can add one row (following the

calculation to compute a row of the matrix given in Proposition 21) at a time incrementally

to the previously stored linearly independent rows by checking whether the present row is

linearly independent with respect to the already stored rows. If the current row is linearly

independent with the existing ones, then we do row operations and add the new row to the

previously stored matrix. Otherwise we reject the new row. Hence, our matrix size never

crosses the size (
∑d

i=0

(
n
i

)
− µf )× (

∑d
i=0

(
n
i

)
− µf ).

If νf (the number of rows) is less than (
∑d

i=0

(
n
i

)
− µf ) (the number of variables), then

there will be nontrivial solutions and we can directly say that the annihilators exist. Thus

we always need to concentrate on the case νf ≥ (
∑d

i=0

(
n
i

)
− µf ), where the matrix size

(
∑d

i=0

(
n
i

)
− µf ) × (

∑d
i=0

(
n
i

)
− µf ) provides a further reduction than the matrix size νf ×

(
∑d

i=0

(
n
i

)
− µf ) and one can save more space. This will be very helpful when one tries to

check the annihilators of small degree d.

Refer to Subsection 7.2.1 below for detailed description that this algorithm provides

asymptotic improvement than [123] in terms of constructing this reduced set of homogeneous

linear equations. In terms of the overall algorithm to find the annihilators, our algorithm

works around eight times further than [123] in general. Using our strategy to find the reduced

matrix first and then using the standard Gaussian elimination technique, we could find the

annihilators of any random balanced Boolean functions on 16 variables in around 2 hours

in a Pentium 4 personal computer with 1 GB RAM. Note that, the very recently known

efficient algorithms [4, 69] can work till 20 variables.

7.2.1 Comparison with Meier et. al. Algorithm

Here we compare the time and space complexity of our strategy with [123, Algorithm 2].

In paper [123], Algorithm 2 is probabilistic. In this section we study the time and space

complexity of the algorithm along with it’s deterministic version. Using these algorithms

we check whether there exist annihilators of degree less than or equal to d of an n-variable

function f . As we have already described, ANF of any n-variable function g of degree d is
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of the form

g(x1, . . . , xn) = a0 +
n∑
i=0

aixi + · · ·+
∑

1≤i1<i2···<id≤n

ai1,...,idxi1 · · ·xid

where subscripted a’s are from IF2. First we present the exact probabilistic algorithm [123,

Algorithm 2].

Algorithm 4

1. Initialize weight w = 0.

2. For all x’s of weight w with f(x) = 1, substitute each x in g(x) = 0 to derive a linear

equation on the coefficients of g, with a single coefficient of weight w. Use this equation

to express this coefficient iteratively by coefficients of lower weight.

3. If w < d, increment w by 1 and go to step 2.

4. Choose random arguments x of arbitrary weight such that f(x) = 1 and substitute in

g(x) = 0, until there are same number of equations as unknowns.

5. Solve the linear system. If there is no solution, output no annihilator of degree d, but

if there is a solution then it is not clear whether there is an annihilator of degree d or

not.

Next we present the deterministic version of the original probabilistic algorithm [123, Algo-

rithm 2].

Algorithm 5

1. Initialize weight w = 0.

2. For all x’s of weight w with f(x) = 1, substitute each x in g(x) = 0 to derive a linear

equation in the coefficients of g, with a single coefficient of weight w. Use this equation

to express this coefficient iteratively by coefficients of lower weight.

3. If w < d, increment w by 1 and go to step 2.

4. Substitute x such that wt(x) > d and f(x) = 1 in g(x) = 0 to get linear equation in

the coefficient of g.
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5. Solve the linear system. Output no annihilator of degree d iff there is no non zero

solution.

Since first three steps of both algorithms are same, we initially study the time and

space complexity of both the algorithms for first three steps for a randomly chosen balanced

function f . In step 2, we apply x, such that wt(x) ≤ d and f(x) = 1, in g(x) and hence we get

a linear equation in the coefficient of g such that a single coefficient of that weight is expressed

as linear combination of its lower weight coefficients. Here we consider a particular w for

each iteration. As f is random and balanced, one can expect that there are 1
2

(
n
w

)
many input

vectors of weight w in set supp(f). For each x = (x1, . . . , xn) ∈ supp(f) where xi1 , . . . , xiw
are 1 and others are 0 of weight w, we will get linear equation of the form

ai1,...,iw = a0 +
w∑
j=1

aij + · · ·+
∑

{k1,...,kw−1}⊂{i1,...iw}

ak1,...,kw−1 . (7.3)

To store one equation we need
∑w

i=0

(
n
i

)
many memory bits (some places will be 0, some

will be 1). There are
∑w−1

i=0

(
w
i

)
many coefficients in the right hand side of the Equation 7.3.

As f is random, one can expect that half of them can be eliminated using the equations

obtained by lower weight input support vectors. So,
∑w

i=0

(
n
i

)
+ 1

2

∑w−1
i=0 (

(
w
i

) ∑i−1
j=0

(
n
j

)
) order

of computation is required to establish an equation. Here w varies from 0 to d and there are

approximately 1
2

∑d
w=0

(
n
w

)
many support vectors of weight less than or equal to d. Hence at

the starting of step 4 the space complexity is

S1 =
1

2

d∑
w=0

(

(
n

w

) w∑
i=0

(
n

i

)
)

and time complexity is

T1 =
1

2

d∑
w=0

(

(
n

w

)
(
w∑
i=0

(
n

i

)
+

1

2

w−1∑
i=0

(
w

i

) i−1∑
j=0

(
n

j

)
)).

Now we study the time and space complexity for steps 4 and 5 in both probabilistic

and deterministic version. To represent each equation for the system of equation one needs∑d
w=0

(
n
w

)
memory bits.

First we consider the probabilistic one. For probabilistic case one has to choose ap-

proximately 1
2

∑d
w=0

(
n
w

)
many support input vectors of weight greater than d. Hence each

linear equation obtained from these vectors has at least
∑d

i=0

(
d+1
i

)
many coefficients of g
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and half of them can be eliminated using the equations obtained in previous steps. So,

to get each equation one needs at least
∑d

w=0

(
n
w

)
+ 1

2

∑d
i=0(

(
d+1
i

) ∑i−1
j=0

(
n
j

)
) computations.

Hence the space complexity during 4th step is SP2 ≥ 1
2
(
∑d

w=0

(
n
w

)
)2 and time complexity

is TP2 ≥ 1
2

∑d
w=0

(
n
w

)
(
∑d

w=0

(
n
w

)
+ 1

2

∑d
i=0(

(
d+1
i

) ∑i−1
j=0

(
n
j

)
)). Finally, to generate system of

homogeneous linear equations one requires

SP = S1 + SP2 ≥ 1

2

d∑
w=0

(

(
n

w

) w∑
i=0

(
n

i

)
) +

1

2
(
d∑

w=0

(
n

w

)
)2

memory bits and

TP = T1+TP2 ≥ 1

2

d∑
w=0

(

(
n

w

)
(
w∑
i=0

(
n

i

)
+

1

2

w−1∑
i=0

(
w

i

) i−1∑
j=0

(
n

j

)
))+

1

2

d∑
w=0

(
n

w

)
(
d∑

w=0

(
n

w

)
+

1

2

d∑
i=0

(

(
d+ 1

i

) i−1∑
j=0

(
n

j

)
))

computations. Then in step 5, we have to solve 1
2

∑d
w=0

(
n
w

)
many linear equations with same

number of variables. To solve this system one needs TP3 = (1
2

∑d
w=0

(
n
w

)
)3 computations

using the Gaussian elimination technique.

Now we study space and time complexity for deterministic one. Since f is balanced,

there are approximately 2n−1 − 1
2

∑d
w=0

(
n
w

)
= 1

2

∑n
w=d+1

(
n
w

)
many support vectors having

weight greater than d and these many are considered to find out equations. Hence each linear

equation obtained from these vectors of weight w > d contains
∑d

i=0

(
w
i

)
many coefficients

of g and half of them can be eliminated using the equations obtained in steps 1, 2 and 3. To

get this equation one needs
∑d

i=0

(
n
i

)
+ 1

4

∑d
i=0(

(
w
i

) ∑i−1
j=0

(
n
j

)
) computations. Hence the total

space complexity during 4th step is SD2 = 1
4

∑n
w=d+1

(
n
w

) ∑d
w=0

(
n
d

)
) and time complexity is

TD2 = 1
2

∑n
w=d+1

(
n
w

)
(
∑d

i=0

(
n
i

)
+ 1

4

∑d
i=0(

(
w
i

) ∑i−1
j=0

(
n
j

)
). Finally, to generate homogeneous

linear equations one needs

SD = S1 + SD2 =
1

2

d∑
w=0

(

(
n

w

) w∑
i=0

(
n

i

)
) +

1

4

n∑
w=d+1

(
n

w

) d∑
w=0

(
n

d

)
)

memory bits and

TD = T1+TD2 =
1

2

d∑
w=0

(

(
n

w

)
(
w∑
i=0

(
n

i

)
+

1

2

w−1∑
i=0

(
w

i

) i−1∑
j=0

(
n

j

)
))+

1

2

n∑
w=d+1

(
n

w

)
(
d∑
i=0

(
n

i

)
+

1

4

d∑
i=0

(

(
w

i

) i−1∑
j=0

(
n

j

)
)

computations. Further, in step 5, we have to solve 1
2

∑n
w=d+1

(
n
w

)
many linear equations with

1
2

∑d
w=0

(
n
w

)
number of variables. To solve this system one needs TD3 = (1

2

∑n
w=d+1

(
n
w

)
)3
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computations.

The system of equations generated by our strategy as well as Meier et al [123] algorithms

are same. So, it takes same complexities to solve them. Only difference is during generation of

the system of equations. In the following table we show the complexities for both algorithms

for generating the system of equations.

Space Time
Meier’s 1

2

∑d
w=0(

(
n
w

) ∑w
i=0

(
n
i

)
) 1

2

∑d
w=0(

(
n
w

)
(
∑w

i=0

(
n
i

)
+ 1

2

∑w−1
i=0

(
w
i

) ∑i−1
j=0

(
n
j

)
))

algorithm +1
2(

∑d
w=0

(
n
w

)
)2 +1

2

∑d
w=0

(
n
w

)
(
∑d

w=0

(
n
w

)
+ 1

2

∑d
i=0(

(
d+1
i

) ∑i−1
j=0

(
n
j

)
))

Our algorithm 1
4(

∑d
w=0

(
n
w

)
)2 1

4(
∑d

w=0

(
n
w

)
)2

Table 7.1: Time and Space complexity comparison of Probabilistic algorithms to generate

equations.

Space Time
Meier’s 1

2

∑d
w=0(

(
n
w

) ∑w
i=0

(
n
i

)
)+ 1

2

∑d
w=0(

(
n
w

)
(
∑w

i=0

(
n
i

)
+ 1

2

∑w−1
i=0

(
w
i

) ∑i−1
j=0

(
n
j

)
))

algorithm 1
4

∑n
w=d+1

(
n
w

) ∑d
w=0

(
n
d

)
) +1

2

∑n
w=d+1

(
n
w

)
(
∑d

i=0

(
n
i

)
+ 1

4

∑d
i=0(

(
w
i

) ∑i−1
j=0

(
n
j

)
)

Our algorithm 1
4

∑n
w=d+1

(
n
w

) ∑d
w=0

(
n
w

)
1
4

∑n
w=d+1

(
n
w

) ∑d
w=0

(
n
w

)
Table 7.2: Time and Space complexity comparison of Deterministic algorithms to generate

equations.

7.3 Further Reduction in Matrix Size Applying Lin-

ear Transformation over the Input Variables of the

Function

To check for the annihilators, we need to compute the rank of the matrix UAr. Following

Theorem 20, it is clear that the size of the matrix UAr will decrease if µf increases and νf
decreases. Let B be an n × n nonsingular binary matrix and b be an n-bit vector. The

function f(x) has an annihilator at degree d iff f(Bx + b) has an annihilator at degree d.

Thus one will try to get the affine transformation on the input variables of f(x) to get

h(x) = f(Bx+ b) such that |{x | h(x) = 1,wt(x) ≤ d}| is maximized. This is because in this

case µh will be maximized and νh will be minimized and hence the dimension of the matrix
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UAr, i.e., νf×(
∑d

i=0

(
n
i

)
−µf ) will be minimized. This will indeed decrease the complexity at

the construction step (discussed in the previous section). More importantly, it will decrease

the complexity to solve the system of homogeneous linear equations.

See the following example that explains the efficiency for a 5-variable function.

Example 8 We present an example for this purpose. Consider the 5-variable Boolean func-

tion f(x1, . . . , x5) = x1+φ4(x2, x3, x4, x5) where φ4 is constructed using the method presented

in Chapter 4 such that neither f nor 1 + f has an annihilator at a degree less than 3. The

standard truth table representation of the function is 01010110010101100101011001101001,

i.e., the outputs are corresponding to the inputs which are of increasing value. One can check

that |{x ∈ IF5
2 | f(x) = 1 & wt(x) < 3}| = 6. Thus, following our strategy one has to check

the rank of a 10× 10 matrix. Now if we consider the function h(x) = f(Bx+ b) such that

B =


1 1 1 0 1

1 1 1 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

 , and b = {1, 1, 0, 0, 1},

then |{x ∈ {0, 1}5 | h(x) = 1 & wt(x) < 3}| = 16 and one can immediately conclude

(from the results in Chapter 5) that neither h nor 1 + h has an annihilator of degree less

than 3. This is an example where after finding the affine transformation there is even no

need for the solution step at all. For the function f , here h(x) = f(Bx + b) such that

|{x | h(x) = 1,wt(x) ≤ d}| is maximized.

We also present an example for a sub optimal case. In this case we consider

B =


1 0 1 0 0

1 1 0 0 0

1 1 1 0 1

0 0 0 1 1

0 1 1 1 0

 , and b = {0, 0, 0, 0, 0},

then |{x ∈ IF5
2 | h(x) = 1 & wt(x) < 3}| = 14. Thus the dimension of the matrix UAr

becomes 2× 2 as νf = 2 and
∑d

i=0

(
n
i

)
−µf = 2. Thus one needs to check the rank of a 2× 2

matrix instead of checking the rank of a 10× 10 matrix.

Now the question is how to find such an affine transformation (for the optimal or even for

sub optimal cases) efficiently.
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For exhaustive search to get the optimal affine transform one needs to check f(Bx + b)

for all n× n nonsingular binary matrices B and n bit vectors b. Since there are
∏n−1

i=0 (2n −
2i) many nonsingular binary matrices and 2n many n bit vectors, one needs to check

2n
∏n−1

i=0 (2n− 2i) many cases for an exhaustive search. As weight of the input vectors are in-

variant under permutation of the arguments, checking for only one nonsingular matrix from

the set of all nonsingular matrices whose rows are equivalent under certain permutation will

suffice. Hence the exact number of search options is 1
n!

2n
∏n−1

i=0 (2n − 2i). One can check for

n×n nonsingular binary matrices B where rowi < rowj for i < j (rowi is the decimal value

of binary pattern of ith row). It is clear that the search is infeasible for n ≥ 8.

Now we present a heuristic towards this. Our aim is to find out an affine transformation

h(x) of f(x), i.e., h(x) = f(Bx + b), which maximizes the value of µh. This means the

weight of the most of the input vectors having weight less than or equal to d should be in

supp(h). So we attempt to get an affine transformation for a Boolean function f such that

the transformation increases the probability that an input vector, having output 1, will be

translated to a low weight input vector.

Consider h(V x + v) = f(x), where V is an n × n binary nonsingular matrix and v =

(v1, v2, . . . , vn) ∈ IFn2 . Suppose r1, r2, . . . , rn ∈ IFn2 are the row vectors of the transformation

V . By V x+ v = y we mean V xtr + v = ytr, where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈
IFn2 . Given an x, we find a y by this transformation and then h(y) is assigned to the value of

f(x). If f(x) = 1, we like that the corresponding y = V x+ v should be of low weight. The

chance of (y1, y2, . . . , yn) getting low weight increases if the probability of yi = 0, 1 ≤ i ≤ n

is increased. That means the probability of ri · (x1, x2, . . . , xn) + vi = 0 for 1 ≤ i ≤ n

needs to be increased. Hence we will like to choose a linearly independent set ri ∈ IFn2 ,

1 ≤ i ≤ n and v ∈ IFn2 such that the probability ri · (x1, x2, . . . , xn) + vi = 0, 1 ≤ i ≤ n

is high when (x1, x2, . . . , xn) ∈ supp(f). Since we use the relations h(V x + v) = f(x) and

h(x) = f(Bx+ b), that means B = V −1 and b = V −1v.

The heuristic is presented below. By bin[i] we denote the n-bit binary representation of

the integer i.

Heuristic 1

1. loop = 0; max = |{x | f(x) = 1,wt(x) ≤ d}|;

2. For (i = 1; i < 2n; i+ +) {

(a) t = |{x = (x1, x2, . . . , xn) ∈ supp(f) | bin[i] · x = 0}|
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(b) if t ≥ wt(f)
2
, val[i] = t and ai = 0 else val[i] = wt(f)− t and ai = 1.

}

3. Arrange the triplets (bin[i], ai, val[i]) in descending order of val[i].

4. Choose suitable n many triplets (rj, vj, kj) for 1 ≤ j ≤ n such that rjs are linearly

independent and kj’s are high.

5. Construct the nonsingular matrix V taking rj, 1 ≤ j ≤ n as j-th row and v =

(v1, v2, . . . , vn).

6. B = V −1, b = V −1v.

7. if max < |{x | f(Bx+ b) = 1,wt(x) ≤ d}| replace f(x) by f(Bx+ b) and update max

by |{x | f(Bx+ b) = 1,wt(x) ≤ d}|.

8. Increment loop by 1; while (loop < maxval)

Go to step 2.

The time complexity of this heuristic is (maxval × n22n). See the following example,

where we trace Heuristic 1 for the 5-variable function f given in Example 8.

Example 9 We have f = 01010110010101100101011001101001 and check that |{x ∈ IF5
2 |

f(x) = 1 & wt(x) ≤ 2}| = 6. In step 2, we get (val[i], ai) for 1 ≤ i ≤ 31 as 1 : (11, 1),

2 : (8, 1), 3 : (11, 1), 4 : (8, 1), 5 : (11, 1), 6 : (8, 1), 7 : (9, 0), 8 : (8, 1), 9 : (9, 1), 10 : (8, 1),

11 : (9, 1), 12 : (8, 1), 13 : (9, 1), 14 : (8, 1), 15 : (11, 0), 16 : (8, 1), 17 : (9, 1), 18 : (8, 1),

19 : (9, 1), 20 : (8, 1), 21 : (9, 1), 22 : (8, 1), 23 : (11, 0), 24 : (8, 1), 25 : (9, 0), 26 : (8, 1),

27 : (9, 0), 28 : (8, 1), 29 : (9, 0), 30 : (8, 1), 31 : (11, 1). Then after ordering according

the value of val[i], we choose the row of matrix V as the 5-bit binary expansion of 1, 3, 5, 15

and 7 with frequency values of 0’s as 11, 11, 11, 11, 9 respectively and v = (a1, a3, a5, a15, a7) =

(1, 1, 1, 1, 0). Here the matrix V is a nonsingular matrix. The new function is g = f(Bx+b),

where B = V −1, b = V −1v and one can check that |{x ∈ IF5
2 | g(x) = 1 & wt(x) ≤ 2}| = 16.

Experiments with this heuristic on different Boolean functions provide very positive re-

sults. First of all we have considered the functions which are random affine transformations

g(x) of the function from Chapter 5, fs(x) = 1 for wt(x) ≤ bn−1
2
c and fs(x) = 0 for

wt(x) ≥ bn+1
2
c, which has no annihilator having degree less than or equal to bn−1

2
c. This
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experimentation has been done for n = 5 to 16. For all the cases running Heuristic 1 on g(x)

we could go back to fs(x). Then we have randomly changed 2ζn bits on the upper half of

fs(x) (0.5 ≤ ζ ≤ 0.8 at steps of 0.1) to get f ′s(x) and then put random transformations on

f ′s(x) to get g(x). Running Heuristic 1, we could also go back to f ′s(x) easily. For experiments

we have taken maxval = 20.

The important issue is exactly when this matrix size is asymptotically reduced than the

trivial matrix size wt(f) ×
∑d

i=0

(
n
i

)
if one writes down the equations by looking at the

truth table of the function only. This happens only when µf is very close to
∑d

i=0

(
n
i

)
. Let∑d

i=0

(
n
i

)
− µf ≤ 2ζn, where ζ is a constant such that 0 < ζ < 1. In that case the matrix

size will be less than or equal to (wt(f) + 2ζn −
∑d

i=0

(
n
i

)
)× 2ζn. When d = bn

2
c and n odd,∑d

i=0

(
n
i

)
= 2n−1. Thus for a balanced function, the size of the matrix becomes as low as

2ζn × 2ζn. We summarize the result as follows.

Theorem 21 Predetermine a constant ζ, such that 0 < ζ < 1. Consider any Boolean

function f(x) ∈ Bn for which there exist a nonsingular binary matrix B and an n-bit vector

b such that
∑d

i=0

(
n
i

)
− |{x | f(Bx + b) = 1,wt(x) ≤ d}| ≤ 2ζn. If B and b are known, then

the size of the matrix UAr will be less than or equal to (wt(f) + 2ζn−
∑d

i=0

(
n
i

)
)× 2ζn which

is asymptotically reduced in size than wt(f)×
∑d

i=0

(
n
i

)
.

That B, b can be known is quite likely from the experimental results available running Heuris-

tic 1.

Next we have run our heuristics on randomly chosen balanced functions. The number

of inputs up to weight d for a Boolean function is
∑d

i=0

(
n
i

)
. Thus for a randomly chosen

balanced function, it is expected that there will be 1
2

∑d
i=0

(
n
i

)
many inputs up to weight

d for which the outputs are 1. Below we present the improvement (on an average of 100

experiments in each case) we got after running Heuristic 1 with maxval = 20 for n = 12 to

16.

n 12 13 14 15 16

d 3 4 5 4 5 6 4 5 6 5 6 7 5 6 7
dX

i=0

„
n

i

«
299 794 1586 1093 2380 4096 1471 3473 6476 4944 9949 16384 6885 14893 26333

d
1

2

dX
i=0

„
n

i

«
e 149 397 793 541 1190 2048 735 1736 3238 2472 4974 8192 3442 7446 13166

Heuristic

value
228 535 964 717 1438 2322 957 2051 3648 2917 5525 8811 3995 8194 14114

Table 7.3: Efficiency of Heuristic 1 on random balanced functions.
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It should be noted that after running our heuristic on random balanced functions, the

improvement is not extremely significant. There are improvements as we find that the the

values are significantly more than 1
2

∑d
i=0

(
n
i

)
(making our algorithm efficient), but the value

is not very close to
∑d

i=0

(
n
i

)
. This is not a problem with the efficiency of the heuristic,

but with the inherent property of a random Boolean function that there may not be an

affine transformation at all on f(x) such that |{x | f(Bx + b) = 1,wt(x) ≤ d}| is very

high. In fact we can show that for highly nonlinear functions f(x), the increment from

|{x | f(x) = 1,wt(x) ≤ d}| to |{x | f(Bx + b) = 1,wt(x) ≤ d}| may not be significant for

any B, b. The reason for this is as follows.

Proposition 22 Let f ∈ Bn be a balanced function (n odd) having nonlinearity nl(f) =

2n−1 − 2
n−1

2 . Then for any nonsingular n × n matrix B and any n-bit vector b, 2n−1 −
|{x | f(Bx+ b) = 1,wt(x) ≤ n−1

2
}| ≥ 1

2

(
n−1
n−1

2

)
− 2

n−1
2

−1.

Proof : Let f ∈ Bn be a balanced function (n odd) having nonlinearity nl(f) = 2n−1−2
n−1

2 .

Let g ∈ Bn be the function such that g(x) = 1 iff wt(x) ≤ n−1
2

. By Theorem 13 in Chapter 5,

nl(g) = 2n−1 −
(
n−1
n−1

2

)
. Now we like to find out a function h(x) = f(Bx + b) such that

|{x | h(x) = 1,wt(x) ≤ n−1
2
}| is high. Consider the value T = |supp(g) ∩ supp(h)|, i.e.,

T = |{x | h(x) = 1 & wt(x) ≤ n−1
2
}|. Without loss of generality consider T ≥ 2n−2. Hence,

d(h, g) = 2(2n−1 − T ) = 2n − 2T . Now, nl(f) = nl(h) ≤ nl(g) + d(h, g) = (2n−1 −
(
n−1
n−1

2

)
) +

2n − 2T . Thus, 2n−1 − 2
n−1

2 ≤ (2n−1 −
(
n−1
n−1

2

)
) + 2n − 2T , i.e., 2n−1 − T ≥ 1

2

(
n−1
n−1

2

)
− 2

n−1
2

−1.

Thus if one predetermines a ζ, then for a large n we may not satisfy the condition that∑n−1
2

i=0

(
n
i

)
−|{x | f(Bx+ b) = 1,wt(x) ≤ d}| ≤ 2ζn. In this direction we present the following

general result where the constraint of nonlinearity is removed.

Theorem 22 Suppose f ∈ Bn be a randomly chosen balanced function. Then the probability

to get an affine transformation such that

|{x | f(Bx+ b) = 1,wt(x) ≤ bn−1
2
c}| >

bn−1
2
c∑

i=0

(
n

i

)
− k is

1. less than
(n+ 1)2n

∑k−1
i=0

(
2n−1

i

)2(
2n

2n−1

) for n odd.

2. less than

(n+ 1)2n
∑k−1

i=0

(Pn
2−1

j=0 (nj)
i

)(2n−
Pn

2−1

j=0 (nj)
i+ 1

2(
n
n
2
)

)
(

2n

2n−1

) for n even.

117



Proof : First we prove it for n odd. The number of balanced functions h ∈ Bn such

that |{x | h(x) = 1,wt(x) ≤ n−1
2
}| > 2n−1 − k is

∑k−1
i=0

(
2n−1

i

)2
(consider the upper and

lower half in the truth table of the function). So, there will be at most
∑k−1

i=0

(
2n−1

i

)2
many

affinely invariant classes of such functions. Further the total number of balanced function is(
2n

2n−1

)
. As there are (2n− 1)(2n− 21) . . . (2n− 2n−1) many n×n nonsingular binary matrices

and 2n vectors in IFn2 , the total number of affinely invariant classes of balanced function

is greater than or equal to
( 2n

2n−1)
2n(2n−1)(2n−21)...(2n−2n−1)

>
( 2n

2n−1)
(n+1)2n

. Hence the probability of a

randomly chosen balanced function will be function type h is bounded by
(n+1)2n

Pk−1
i=0 (2n−1

i )
2

( 2n

2n−1)
.

Similarly, the case for n even can be proved.

If one takes k ≤ 2
3
4
n, then it can be checked easily that the probability decreases fast

towards zero as n increases. Thus for a random balanced function f , the probability of getting

an affine transformation (which generates the function h from f) such that |{x | f(Bx+b) =

1,wt(x) ≤ bn−1
2
c}| >

∑bn−1
2
c

i=0

(
n
i

)
− 2

3
4
n is almost improbable.

Thus when one randomly chosen balanced function is considered, using the strategy of

considering the function after affine transformation, one can indeed reduce the matrix size

by constant factor, but the reduction may not be significant in asymptotic terms when the

annihilators at the degree of bn−1
2
c are considered for large n.

7.4 Conclusion

In this chapter we present how to reduce the matrix size which is involved in finding the

annihilators of a Boolean function. Our results show that considerable reduction in the size

of the matrix is achievable. We identify the classes where it provides asymptotic improve-

ment. We also note that for randomly chosen balanced functions, the improvement is rather

constant than asymptotic. The reduction in matrix size helps in running the actual anni-

hilator finding steps by Gaussian elimination method. Though our method is less efficient

in general than the recently known efficient algorithms [4, 69] to find the annihilators, this

work helps in theoretically understanding the structure of the matrix involved.
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Chapter 8

Conclusion and Open Problems

In this chapter we summarize the contribution in this thesis with pointers to some important

open questions.

In Chapter 3, we presented a lower bound on nonlinearity of a Boolean function for cer-

tain AI values relating the Walsh spectrum values to AI. Later this bound is tightened by

Lobanov [111] by noting the maximum absolute value in the Walsh spectrum. It will be of

great interest to relate the distribution in the Walsh spectrum with AI as in that case one

may relate AI with order of resiliency of a function. Algebraic attacks become more stronger

and efficient if one gets more number of low degree linearly independent annihilators. To-

wards this we have presented some enumeration results on low degree linearly independent

annihilators of a Boolean function. In certain cases the enumeration results are tight, but

there are cases when we only present certain bounds. There is space to tighten these bounds.

We have studied AI of a Boolean function in terms of AI of its sub functions. There are lot

of constructions (see [150, 32] and the references in these papers) where functions of lower

number of variables are concatenated to construct a function on higher number of variables.

Thus, study of AI in terms of AI of its sub functions needs to be analysed further and using

these ideas one may construct functions with optimal AI which are good in terms of other

cryptographic properties. Also a disciplined study of existing constructions of cryptographi-

cally significant Boolean functions in terms of AI is welcome. We have studied some of them.

One may also note the well referred Tarannikov and related constructions [170, 136]. We

have shown that the algebraic immunity of this kind of construction is non decreasing and

later [18] it has been shown that the AI of this kind of n-variable functions are Ω(
√
n). In this

kind of construction, in one iteration, from k-variable functions (k + 3)-variable functions

are generated and the algebraic degree is increased by 1, whereas the order of resiliency is
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increased by 2. It seems (and also experimental results suggest) that the algebraic immunity

may increase by 1 after constant number of such iterations and thus it may be possible to

show that the AI of such an n-variable function may be O(n), i.e., of the form n
c
, where c is

a constant.

In Chapter 4 we presented the first ever construction to generate Boolean functions having

optimal AI. This construction is recursive in nature. We studied some other cryptographic

properties of this functions. The nonlinearity of the functions is not good enough to use

the functions directly as cryptographic primitives. However, these functions can be used in

conjunction with functions having good cryptographic properties.

In Chapter 5, we presented a general theory to construct Boolean functions having op-

timal AI. Using the theory, we present a basic construction of symmetric functions having

maximum algebraic immunity. The functions can be suitably modified to get non symmetric

functions. We study the algebraic degree and nonlinearity of these symmetric functions in

detail.

The most important open question with respect to Chapters 4, 5 is how to construct a

Boolean function with maximum possible AI having very good nonlinearity. So far number

of attempts have been made, but the solution stayed elusive. Once this problem is solved,

one may attempt to include other properties like resiliency or propagation characteristics in

the construction.

Apart from algebraic immunity, immunity of Boolean functions against fast algebraic

attacks needs serious study. In Chapter 6 we studied the immunity of Boolean functions

against certain kinds of fast algebraic attacks. We evaluated how a Boolean function with

optimal AI behaves against fast algebraic attacks, i.e., in terms of fg = h relationships. In

this direction, we have presented some experimental and theoretical results on the functions

described in the earlier chapters. Then we propose some construction ideas to generate

functions having properties additional to AI to provide resistance against certain kinds of

fast algebraic attacks. Once the problem related to construction of functions with very

high nonlinearity and maximum possible algebraic immunity is successfully solved, one may

consider these additional properties too.

In [123], initial algorithms have been proposed for checking existence of annihilators

and finding annihilators at a certain degree. In this process one has to solve a system of

homogeneous linear equations. For a balanced function the system contains 2n−1 equations

where n is the number of variables of f . Solving for a n > 15 becomes costly in this method.

In Chapter 7, we have exploited some interesting structure of the matrix involved in the
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system of homogeneous linear equations. Further we propose a heuristic to provide an affine

transformation on the input variables of a Boolean function that reduces the size of the

matrix further. Recently, two very efficient algorithms have been proposed in [4, 69] to

find the annihilators and relations required for fast algebraic attacks. Using the algorithms,

functions up to 20 variables can be analysed. It seems interesting to study whether our

observation on the algebraic structures of the system of homogeneous linear equations can

be efficiently exploited to design a more efficient algorithm.

The subject of studying Boolean functions having resistance against algebraic and fast

algebraic attacks is at an early stage. In this thesis we tried to present a disciplined study

in this direction, but a lot of issues remain to be solved satisfactorily. To reiterate, the im-

mediate question of finding Boolean functions having maximum possible algebraic immunity

and very good nonlinearity stays open at the time of completion of this thesis.
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