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Entanglement signatures for the dimerization transition in the Majumdar-Ghosh model
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The transition from a gapless liquid to a gapped dimerized ground state that occurs in the frustrated
antiferromagnetic Majumdar-Ghosh (or J1 − J2 Heisenberg) model is revisited from the point of view of
entanglement. We study the evolution of entanglement spectra, a “projected subspace” block entropy, and
concurrence in the Schmidt vectors through the transition. The standard tool of Schmidt decomposition along
with the existence of the unique Majumdar-Ghosh (MG) point where the ground states are degenerate and
known exactly suggest the projection into two orthogonal subspaces that is useful even away from this point.
Of these, one is a dominant five-dimensional subspace containing the complete state at the MG point and the
other contributes marginally, albeit with increasing weight as the number of spins is increased. We find that the
marginally contributing subspace has a minimum von Neumann entropy in the vicinity of the dimerization
transition. Entanglement content between pairs of spins in the Schmidt vectors, studied via concurrence,
shows that those belonging to the dominant five-dimensional subspace display a clear progress towards
dimerization as the MG point is approached. In contrast, study of the Schmidt vectors in the marginally
contributing subspace, as well as in the projection of the ground state in this space, display pair concurrence
which decreases on both sublattices as the MG point is approached. The robustness of these observations indicate
their possible usefulness in the study of models that have similar transitions, and have hitherto been difficult to
study using standard entanglement signatures.
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I. INTRODUCTION

Entanglement in many-body systems has been extensively
studied recently [1–6] ever since the remarkable properties of
quantum entanglement have come to be understood, especially
through its various uses in quantum information processing
[7–11]. Quantum phase transitions [12] which occur at zero
temperature as some external parameter is changed has been
particularly addressed with the help of entanglement [13–16].
The Ising-model critical point, for example, has been shown
to have an entropy of entanglement that scales logarithmically
(∼ ln L) with the length L of the spin chain, while away
from criticality it is independent of L [17–19]. While many
condensed matter systems have been studied with the help
of such a “block” entanglement entropy [17,19–25], it seems
more natural to consider measures of two-body entanglement
like concurrence [26] in contexts where dimerization occurs
[27–30]. One of the well-studied Hamiltonians in this context
is the Majumdar-Ghosh (MG) or the J1 − J2 Heisenberg
model [31,32]. This model has a well-known transition from a
gapless critical phase to a gapped phase with short-range corre-
lations and dimer order [33,34]. Earlier studies with this model
from the entanglement perspective have employed scaling
behaviors of the von Neumann entropy of contiguous blocks
of spins, the valence-bond entanglement entropy [15,35,36],
and other measures of multipartite entanglement [37] to study
this transition.
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Direct signatures of the dimerization transition in this model
using two-spin entanglement measures such as concurrence
have been elusive. In the J1 − J2 model the antiferromag-
netic nearest-neighbor Heisenberg chain is augmented with
a next-nearest-neighbor Heisenberg interaction which is also
antiferromagnetic [31,32,38]. The interest in this has been
considerable since Majumdar and Ghosh proposed this as
a model with an exactly solvable ground state that shows
dimerization at J2/J1 = 1/2; the so-called MG point. The
Hamiltonian is

H = J1

N∑
i=1

�σi · �σi+1 + J2

N∑
i=1

�σi · �σi+2, (1)

with J1, J2 > 0. The particles are spin- 1
2 and �σi are the Pauli

matrices. Periodic boundary conditions are assumed so that
�σN+1 = �σ1 and �σN+2 = �σ2. At the MG point the ground state
is doubly degenerate and the ground-state manifold is spanned
by two states |RN 〉 and |LN 〉, where

|RN 〉 = (1 2)(3 4) · · · (N − 1 N ),
(2)

|LN 〉 = (2 3)(4 5) · · · (N 1).

Here, for example, (1 2) refers to the singlet state 1√
2
(|01〉 −

|10〉) of spins 1 and 2, and |0〉 and |1〉 are eigenstates of
σz with eigenvalues 1 and −1, respectively. Thus at the MG
point the degenerate ground states can be considered to have
maximal nearest-neighbor entanglements as the entanglement
of a singlet is the maximum possible between two spin- 1

2
particles. Thus it would seem natural that entanglement
between spins is enhanced at a transition from a spin-liquid
to a dimerized phase [33,34], a transition which occurs
when J2/J1 ≈ 0.24 . . . . While a fair amount of literature
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already addresses this [15,37,39], the present paper revisits
the issues from the point of view of analysis of entanglement
spectra at finite lattice sizes, a nonstandard block entropy, and
concurrences in the Schmidt vectors of the reduced density
matrices. We expect this to be of interest in larger classes of
problems where the possibility of transitions from spin liquid
to dimer order need to be investigated.

Few earlier works concentrate more on the MG point at
J2/J1 = 1/2. For example, some concurrence-based quanti-
ties were studied as potential indicators of the level crossing
and transition at this point in Ref. [15]. The pairwise
concurrence between the nearest-neighbor sites (NN) and that
of the next-nearest-neighbor sites (NNN) was studied both at
finite temperatures and for the ground state in Ref. [27], where
it was found that the NN concurrence decreases while the
NNN concurrence increases with increasing J2 and that, at
the MG point, these quantities have singularities, which
originate clearly due to the crossing. It was also found in
Ref. [36] that it is the NNN entanglement entropy, rather than
concurrence, that has a maximum at the MG point.

As mentioned earlier, attention in the present work is
centered in the range 0 � J2/J1 � 1/2 and especially the
dimerization occurring therein. The strategy, though, is to
focus on the fact that this is one of the rare systems where at
least at one point in the phase diagram (namely, the MG point)
the ground state can be solved for exactly and has a form
simple enough to enable the evaluation of the entanglement
spectrum analytically. The nature of the entanglement
spectrum at this point suggests a separation of the state into
two orthogonal components with supports in what one may
call a “MG” and a “non-MG” subspace. At the MG point, the
MG subspace solely contributes towards the construction of
the ground states, hence the terminology. The MG subspace
is only five dimensional and in the range 0 � J2/J1 � 1/2
seems dominant at least for small system sizes. In fact, the
competition between this subspace and its complement seems
to be crucial for the emergence of a dimer order. For later con-
venience the non-MG subspace is denoted as MG. However,
these subspaces are not unique in a way that is elaborated in the
next section.

It is found that a suitably defined entanglement
corresponding to the MG component of the wave function
has a minimum in the vicinity of the dimerization transition.
Thus, while there do not seem to be simple signatures (except
for scaling with L) in either the entanglement entropy of the
state [36], or its dominant part (namely, the MG component),
the typically small MG components apparently carry
information that may signal the transition. The separation
of the entanglement spectrum into these two components
also allows for a detailed study of the entanglement of the
eigenvectors of the reduced density matrices. While much
attention has concentrated on the entanglement spectrum
per se, it is but natural that the eigenvectors have significant
information in them. The entanglement in these Schmidt
vectors is studied, especially the concurrence between nearest
neighbors. It is observed that, for vectors corresponding to the
MG component, a clear dimerization happens, with alternate
pairs of nearest-neighbor entanglements either increasing to
the maximum value as the MG point is approached, or vanish
in the vicinity of the dimerization transition.

II. EIGENVALUE SPECTRUM OF GROUND STATE
OF MAJUMDAR-GHOSH MODEL

First, we seek a separation of the ground state of the MG
Hamiltonian, say |�(J2)〉 (J1 = 1 from now on), into two
distinct orthogonal states with the properties described below.
Thus,

|�(J2)〉 = α(J2)|ψMG(J2)〉 + β(J2)|ψMG(J2)〉, (3)

where |ψMG(J2)〉 approaches a superposition of |RN 〉 and |LN 〉
as J2 → 1/2, and α(J2) → 1, β(J2) → 0 in the same limit.
The state |ψMG(J2)〉 is orthogonal to this and will play a rather
important role here. This non-MG part forms a small fraction of
the whole state, at least for small N (e.g., 3% for N = 16). With
increasing number of spins, though, this component grows and
the detailed manner in which this happens as a function of J2 is
interesting and may hold information about the dimerization.
However, by definition this component decreases to zero at
the MG point (J2 = 1/2) for all N . Such a separation is
possible but is potentially nonunique, as demonstrated further
below. Throughout this paper the number of spins is an even
number, and there are two main subclasses: N/2 even and
N/2 odd, which are simply referred to as “even” and “odd”
cases. Also from the point of view of symmetry, the translation
symmetry is broken in the projected MG and MG parts for
all J2.

One would especially like to treat the interval 0 � J2 <

1/2, which contains the point where there is a gapless-to-
gapped transition. When J2 = 0 the ground state (and indeed
any excited state) is solvable via the Bethe ansatz [40];
however, the explicit forms are unwieldy and difficult to
analyze in detail. Thus a rather “complex” antiferromagnetic
ground state at J2 = 0 evolves to a rather simple dimerized
state at J2 = 1/2. That a part of the ground state can be
identified for all J2 in the interval [0,1/2) that evolves to
the dimers at the MG point is not necessarily obvious and is
elucidated in this paper.

That this is possible is strongly suggested from a study of the
Schmidt decomposition of the ground state. Let N spins in the
chain be split into two parts (say A and B) of contiguous spins
having NA and NB particles each. This paper will concentrate
on the cases when NA and NB are even numbers as well.
This ensures that the subsystems under consideration are of
the same parity (number of spins odd or even) as the original
chain. The Schmidt decomposition in terms of vectors from
these two halves reads

|�(J2)〉 =
2NA∑
j=1

√
λj (J2)|φj (J2)〉A|φj (J2)〉B. (4)

Here, λj (J2) are the eigenvalues of the reduced density matrix
(RDM)

ρNA
(J2) = trB [|�(J2)〉〈�(J2)|] ,

and |φj (J2)〉A are the corresponding eigenvectors. The eigen-
values λj (J2) are also dependent on the partition size NA, but
this is not explicitly indicated. The von Neumann entropy
SNA

(J2) = −∑2NA

j=1 λj (J2) log2[λj (J2)] is a measure of the
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FIG. 1. (Color online) Eigenvalues of RDM ρNA
(J2) for N = 16, 24 (corresponding to NA = N/2) and N = 18, N = 22 (corresponding

to NA = N/2 − 1). In the top row, the 50 largest eigenvalues are plotted. Prominently seen are the five “dimer” or MG subspace eigenvalues,
a large eigenvalue around 0.6, the almost constant triplet around 0.1, and the small but rising eigenvalue that becomes important around the
dimerization transition. The middle row shows the same as the top, but with the y axis magnified, showing the MG triplet eigenvalue (in one
color) that crosses the rising singlet eigenvalue of the MG subspace (in a different color). The bottom row shows the MG eigenvalues rescaled
so that their sum is unity. The largest 50 eigenvalues are shown.

entanglement between parts A and B. There have been several
works that study the so-called entanglement spectrum [41–43]
which is defined as {−ln(λj ), j = 1,2, . . .} in many systems;
such a spectrum naturally containing much more information
than just the entropy. For most of this paper, unless otherwise
mentioned, NA = N/2 for the even case and NA = N/2 − 1
for the odd case. It must be noted that only for the entanglement
spectrum do we take the logarithm to the base e and for all
other measures of entropy the logarithm is taken with respect
to base 2. All of the numerical results in this paper are obtained
from exact diagonalizations.

Figure 1 (top row) shows the eigenvalues of the RDM,
where the principal eigenvalues corresponding to the MG

subspace are seen clearly. The largest eigenvalue decreases
as the MG point is approached from the Heisenberg. The
second-largest eigenvalue actually consists of a triplet that
is almost a constant as J2 varies in [0,1/2). The smallest of
the eigenvalues that is clearly visible in this figure increases as
the MG point is approached and indeed seems to become
significant in the vicinity of the dimerization transition. It
is shown below that, at the MG point, this eigenvalue is
coupled with the largest one. As N → ∞, it approaches the
value 1/8. The Schmidt vectors (pure states of N/2 particles)
corresponding to these five eigenvalues along with identical

vectors from the remaining N/2 particles form the N -particle
MG subspace.

Figure 1 (middle row) shows the intersection of the largest
eigenvalue in MG (which is triply degenerate and shown using
one color) with the rising eigenvalues of the dimer MG sector
(shown using a different color). This is a robust feature for
all N and an even number of spins in the subspaces. More of
the eigenvalues corresponding to the MG subspace are seen
in the bottom row which shows the rescaled eigenvalues in
this sector. In the rescaled figure which shows only the MG

eigenvalues, the most prominent ones are again few and the
two that are shown correspond to a pair of triplets that seem to
be coupled strongly.

Figure 2 shows the entanglement spectrum, defined as
− ln(λj ), plotted against J2. This figure now highlights the
small eigenvalues in the MG subspace and a clear separa-
tion is seen as those belonging to the MG subspace now
decrease as the MG point is approached. There are several
sharp peaks that are seen in these figures and their density
increases with N . These signal eigenvalues of the RDM that
either go exactly to zero or come very close to it (it is
sometimes difficult to tell with given the numerical resolution
in J2) and interestingly resume their career immediately
thereafter.
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FIG. 2. (Color online) Entanglement spectrum that shows MG as excited states (50 of the largest density matrix eigenvalues are plotted).
The separation of the MG and MG eigenvalues is seen clearly here, and the proliferating number of eigenvalues that vanish at isolated points
along J2 are seen as sharp peaks.

It is then quite apparent that there are only few dominant
eigenvalues of the density matrix, even away from the MG
point. That these are actually those that produce the dimer
is made clear by studying the entanglement spectrum of a
superposition of the dimers. Towards this end consider the
state

|�MG〉 = α1|RN 〉 + α2|LN 〉, (5)

where |RN 〉 and |LN 〉 are as defined in Eq. (2), and α1 and
α2 are real. It is the simplest type of “valence-bond state,”
which is a superposition of dimerized states [44]. While in
general such VBS states have been quite extensively studied,
including from the point of view of entanglement [20,21,45–
47] to our knowledge a detailed analysis of the simple state
in |�MG〉 at finite N and arbitrary partition sizes has not been
reported.

We begin here by evaluating the required RDMs. Let NA =
2k be the number of particles in the subsystem A (k is any
appropriate integer > 1) whose density matrix is given by

(details are relegated to the Appendix)

ρMG
A = trB (|�MG〉〈�MG|)

= α2
1 |R2k〉〈R2k| + α2

2

[
I1

2
⊗ |L2k−2〉〈L2k−2| ⊗ I2k

2

]

+ α1α2

2(N−2k)/2
(−1)(N−2k)/2 [|R2k〉〈L2k| + |L2k〉〈R2k|] ,

(6)

where |R2k〉 = (1 2) · · · (2k − 1 2k) and |L2k−2〉 =
(2 3) · · · (2k − 2 2k − 1) while |L2k〉 = |L2k−2〉(2k 1) are
dimers of part A; |L2k−2〉 does not contain the singlet between
the first and the “last” (2k) spin of part A. Because the inner
product 〈RK |LK〉 = (−1)K/2/2K/2−1, it is readily verified
that tr(ρMG

A ) = α2
1 + α2

2 + 2α1α2〈RN |LN 〉 = 〈�MG|�MG〉.
Thus, if α1 and α2 are taken such that |�MG〉 is normalized,
the trace of the RDM ρMG

A is indeed 1.
To find the spectrum of ρMG

A , it is useful to express the
identity operator in the space of spins 1 and 2k, I1 ⊗ I2k ,
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in terms of the complete set of corresponding Bell-state
projectors. This results in

ρMG
A = α2

1 |R2k〉〈R2k| + α2
2

4
|L2k〉〈L2k| + α2

2

4

(
3∑

l=1

∣∣Ll
2k

〉〈
Ll

2k

∣∣)

+ α1α2

2(N−2k)/2
(−1)(N−2k)/2 (|R2k〉〈L2k| + |L2k〉〈R2k|) .

(7)

Here, |Ll
2k〉 are |L2k−2〉 ⊗ |φl

b〉2k,1, where |φ1
b〉 = (|01〉 +

|10〉)/√2, |φ2
b〉 = (|00〉 + |11〉)/√2, and |φ3

b〉 = (|00〉 −
|11〉)/√2 are three Bell states, the remaining one being
the singlet that along with |L2k−2〉 results in |L2k〉. These
Bell-state augmented dimers are quite easily seen to sat-
isfy 〈R2k|Ll

2k〉 = 〈L2k|Ll
2k〉 = 0 for l = 1,2,3. Thus, |Ll

2k〉
are three degenerate eigenstates of ρMG

A with eigenvalues
λMG

2 = λMG
3 = λMG

4 = α2
2/4. Two other eigenstates are linear

combinations of the nonorthogonal states |R2k〉 and |L2k〉, and
the resultant eigenvalues are

λMG
1,5 = 1

2

[ (
〈�MG|�MG〉 − 3α2

2

4

)
±

√(
〈�MG|�MG〉 − 3α2

2

4

)2

−
(

1 − 4

22k

)(
1 − 4

2N−2k

)
α2

1α
2
2

]
. (8)

These five eigenvalues of the 2k-particle (k > 1) RDM
are the only nonzero ones, and it is easily verified that
they add up to the trace of the RDM. If the initial dimer
state is normalized they add to unity. They are ordered
according to their typical magnitude, especially when α2

1 =
α2

2 = 1/2, with λMG
1 being the largest and λMG

5 being the
smallest eigenvalue. When N = ∞ and α2

1 = α2
2 = 1/2, the

eigenvalues are, as indicated earlier, (1/2, 1/8, 1/8, 1/8, 1/8)
and the entropy or entanglement is 2 ebits. For finite N

the entropy is smaller; for example, when N = 8 and 2k =
4, taking the normalized state |�MG〉 with α1 = α2 = 2/3
leads to λMG

2 = λMG
3 = λMG

4 = 1/9 as the eigenvalues for
the degenerate triplet of states and the other two are λMG

1 =
(2 + √

3)/6 ≈ 0.622 and λMG
5 = (2 − √

3)/6 ≈ 0.044, while
the entanglement is ≈1.683 ebits. To take an example of an
odd case, let N = 10 and 2k = 4. The normalized state that
has momentum π may be taken as |ψMG〉 = √

8/17(|R10〉 −
|L10〉). Thus, with α1 = −α2 = √

8/17, the above gives
λMG

2,3,4 = 2/17 ≈ 0.117 and λMG
1 = (11 + 2

√
19)/34 ≈ 0.579

and λMG
5 = (11 − 2

√
19)/34 ≈ 0.067. This may be compared

with the eigenvalues of the RDM near the MG point. For
example, for N = 10 and 2k = 4 when J2 = 0.4975, the
triplets in the dimerized part have eigenvalues of 0.1175,
while the large eigenvalue and the smallest one in this part
are 0.582 and 0.065, which indeed compare well with the
numbers derived above.

Thus the “entanglement spectrum” at the MG point consists
of only five levels. The fact that the ground state of the MG
model for 0 � J2 < 1/2 does not undergo any crossings [15]
indicates a certain robustness that will be reflected in the entan-
glement spectrum as well. As evidenced also by results shown
in Figs. 1 and 2, indeed a five-dimensional subspace dominates
the entanglement spectrum and evolves to the one derived
above when J2 → 1/2. Thus Eq. (4) may be split into two
parts with |�(J2)〉 = ∑5

j=1

√
λj (J2)|φj (J2)〉A|φj (J2)〉B +∑2NA

j=6

√
λj (J2)|φj (J2)〉A|φj (J2)〉B , which is the separation

that is alluded to in Eq. (3). Thus |ψMG(J2)〉 is in the
five-dimensional “dimer” MG subspace that dominates the
state, while |ψMG(J2)〉 belongs to the (2NA − 5)-dimensional
subspace which constitutes the rest. The eigenvalues λi(J2) for
1 � i � 5 are defined as those that evolve to λMG

i at the MG

point J2 = 1/2. Thus it follows that

α2(J2) =
5∑

j=1

λj (J2),

β2(J2) =
2NA∑
j=6

λj (J2) = 1 − α2(J2),

|ψMG(J2)〉 =
5∑

j=1

√
λj (J2)

α2(J2)
|φj (J2)〉A|φj (J2)〉B,

|ψMG(J2)〉 =
2NA∑
j=6

√
λj (J2)

β2(J2)
|φj (J2)〉A|φj (J2)〉B. (9)

The identification of the eigenvalues belonging to MG is
complicated slightly by the fact that the largest eigenvalue
in this set crosses the eigenvalue that becomes λMG

5 of Eq. (8).
Indeed, this “rising” eigenvalue in the dimer subspace is
coupled to the largest eigenvalue state and its dominance in
the spectrum seems correlated with the dimerization process.

It is important to note that the identification of the
N -particle pure states |ψMG(J2)〉 and |ψMG(J2)〉 from the
Schmidt vectors is dependent on the partition sizes NA and
NB and thus usage of terms such as MG and MG subspaces
is predicated upon a definite partition dependence, usually the
symmetric one, corresponding to NA = NB .

Following the above considerations, one may find three
entanglements between NA contiguous spins and the rest:

S(J2) = −
2NA∑
i=1

λi(J2) log2[λi(J2)],

SMG(J2) = −
5∑

i=1

λi(J2)

α2(J2)
log2

(
λi(J2)

α2(J2)

)
, (10)

SMG(J2) = −
2NA∑
i=6

λi(J2)

β2(J2)
log2

(
λi(J2)

β2(J2)

)
,

whose interpretations as the entanglements in the ground
state [|�(J2)〉] and separately in the MG and MG parts
[|ψMG(J2)〉 and |ψMG(J2)〉] of the ground state, respectively,

012302-5



RAMKARTHIK, CHANDRA, AND LAKSHMINARAYAN PHYSICAL REVIEW A 87, 012302 (2013)

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

β2 (J
2)

0 0.1 0.2 0.3 0.4 0.5

1.6

1.8

2

2.2

S
(J

2) 
(e

bi
ts

)
0 0.1 0.2 0.3 0.4 0.5

J
2

1.4

1.6

1.8

2

S
M

G
(J

2) 
(e

bi
ts

)

0 0.1 0.2 0.3 0.4 0.5
J

2

2

2.4

2.8

3.2

S
M

G
(J

2) 
(e

bi
ts

)

N=8
N=10
N=12
N=14
N=16
N=18
N=20
N=22
N=24

FIG. 3. (Color online) Sum of eigenvalues corresponding to MG subspace, β2(J2), is shown on top-left plot for various values of number
of spins N from N = 8 to N = 24 in steps of two, while the top-right plot shows the entanglement of NA spins with the rest [the entropy S(J2)]
in the complete ground state. The bottom-left plot shows the entanglement of the projection in the MG subspace [the entropy SMG(J2)]. The
entropy SMG(J2), which is the entanglement of the projection in the MG subspace as defined in Eq. (10), is shown in the bottom-right plot.
NA = N/2 for the even case and N/2 − 1 for the odd case.

is straightforward. The behaviors of β2(J2) and S(J2) are
shown respectively in the top-left and top-right plots of Fig. 3,
while the bottom-left plot of Fig. 3 shows SMG(J2), which
is the entanglement in the MG subspace projection. The
bottom-right plot shows SMG(J2). In these figures, for even
cases (N/2 is even), NA = N/2, while in the odd case
NA = N/2 − 1. It is interesting that while the entropies S(J2)
and SMG are monotonic, the entropy SMG shows a minimum
in the vicinity of the dimerization transition. If indeed these
are entanglement signatures of this quantum phase transition,
it is interesting that it is found in the non-MG part of the state.
Of course this part increases in dominance as N increases; see
Fig. 3 (top-left plot).

That there is a fairly significant dimerized part that is
already present in the small-N Heisenberg model that may be
the reason why the entanglement signatures of the transition
are not easy to see. But once the dimerized part is excised,
at least in part, the remaining “grass” seems to reveal the
transition. It should also be noted that calculations not
presented show that if the entropy S is itself split into a
MG and MG part without rescaling the eigenvalues, then
these are monotonic on [0,1/2]; the interpretation of SMG as
a entanglement is necessary.

It is also observed that the spectrum of the RDM for various
partition sizes NA = 2k are qualitatively similar including the
crossing of the lowest eigenvalue corresponding to the MG

subspace with the triplet from the MG subspace. The existence
of a minimum entropy of entanglement for the |ψMG(J2)〉
state between NA and the rest of the spins is interestingly a
robust feature, as shown in Fig. 4. Of course the case k = 1
(two-spin RDM) is special, the number of eigenvalues of the

RDM being four and all that remain being nonzero at the
MG point. In fact, it is easy to see from the Eq. (6), which
becomes a Werner state, that these eigenvalues correspond to
the one dominant one and the triplet. The rising state is absent
from this spectrum and is a property of chains with more than
four spins. It is quite essential that the number of spins in the
subsystems A and B are even. If there are an odd number of
spins (in the subsystems) the number of eigenvalues in the
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entanglement of NA spins with the rest for the MG projection. The
existence of a minimum is robust to altering partition sizes.
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RDM that are nonzero at the MG point is four and the entropy
SMG remains monotonic in [0,1/2]. There is also the added
complication that the ground state of the J1 − J2 model in this
range has zero momentum when N/2 is even and momentum
π otherwise.

The eigenvalues in MG themselves have structure and
a hierarchy that is not unlike that of the dimerized state.
While the largest triplet MG eigenvalue, λ6(J2) decreases
monotonically in [0,1/2], the scaled value [divided by β2(J2),
see the bottom panel of Fig. 1] shows a single peak again in
the vicinity of the dimerization transition, which may be the
origin of the minimum in the entropy of the grass. Indeed,
− log2[λ6(J2)/β2(J2)] is the so-called min-entropy, S∞MG,
and along with the von Neumann entropy is a special case of the
Renyi entropies. It is guaranteed from general considerations
that S∞MG < SMG.

To explore entanglement sharing in the pure N -particle
states |ψMG(J2)〉 and |ψMG(J2)〉 and for a fixed partition N =
NA + NB , one can study multipartite measures and two-spin
measures such as concurrence. The latter is studied in the
next section, while for the former, the entanglement entropy
of m contiguous spins is numerically calculated in the case
of symmetric partitions NA = NB , the results of which are
shown in Fig. 5 for a chain of length N = 16. The translation
symmetry is lost on projection and, by construction, from
the Schmidt decomposition, these states have a symmetry of
shifting by N/2 sites. Thus, it makes a difference as to where
the first of the m contiguous spins is chosen. The case of “0
shift” corresponds to the first being also the first in the block
of N/2 spins that remains after tracing. Further shifts refer
to right shifting the first spin in the block by the indicated
amount. The rather more complex entanglement sharing of
the state |ψMG(J2)〉 is seen here. The dependence on the shift
of the first spin of the m blocks is clear and for no shift the
prominent feature remains the m = 8 case that has already
been discussed above. However, the case of m = 4 also shows
a local minimum, albeit a shallow one, in the entanglement at
exactly the same value of J2 as for m = 8. The other values of
m also indicate the fair amount of multipartite entanglement
present in this state. Shifting the first spin away now explores
different entanglement features; for instance, with a shift of 1
and m = 2, this is the entanglement of spins 2 and 3 with the
rest when the whole state is |ψMG(J2)〉. The first observation
is that there is no minimum anymore for any value of m,
especially eight spins. Thus, it is required for the minimum
in the entropy that the block coincides with the partitioning
in the Schmidt decomposition. The second is the considerably
large entanglements that are present; for example, with blocks
shifted by three. These are in sharp contrast to the behavior of
the corresponding quantities for the state |ψMG(J2)〉, wherein
the entanglements are seen to be monotonically increasing
and the shifts do not change the features much, and the
entanglement entropies are only about half as large.

III. CONCURRENCES IN SCHMIDT VECTORS AND MG,
MG PROJECTIONS

Attention is now turned to a more detailed study of two-spin
entanglements. In particular, one wishes to know the nature
of entanglement in the eigenstates of the RDM of ρNA

.

These correspond to the NA-particle Schmidt vectors in a
Schmidt decomposition of the ground state. Also of interest
is the concurrences present in the corresponding projected
N -particle pure states |ψMG〉 and |ψMG〉. The concurrence
is a one-to-one function of the entanglement of formation
and the recipe to obtain the concurrence between any pair
of spins which are either in a pure or a mixed state ρ

is as follows [26]: Compute the eigenvalues of the matrix
ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) (the complex conjugation being done
in the computational basis). The eigenvalues are guaranteed to
be positive and if they are arranged as {λ1 � λ2 � λ3 � λ4},
the concurrence between the pair of spins considered is given
by C = max[0,

√
λ1 − √

λ2 − √
λ3 − √

λ4]. The concurrence
C is such that 0 � C � 1, with zero for the case of an
unentangled state and unity when it is maximally entangled.

Recall that the MG subspace for a given even partition is
spanned by five states whose corresponding eigenvalues are a
large and decreasing one, three degenerate and nearly constant
ones, while the last is small and increasing. Concentrating on
the case NA = N/2 and N an even integer, it is sufficient
to study the N/2-particle pure states |φ1(J2)〉A, |φ2,3,4(J2)〉A,
and |φ5(J2)〉A [see Eq. (9)], respectively. Collectively they
contribute to the normalized state |ψMG(J2)〉. The comple-
mentary subspace is the normalized state |ψMG(J2)〉 whose
principal contribution comes from a triplet whose eigenvalue is
decreasing and intersects with the increasing lowest eigenvalue
from the MG subspace. In all of these states one can look at
the nature of pairwise entanglement via nearest-neighbor
pairwise concurrence [26], which is a genuine and well-
used measure of entanglement between two qubits or spin- 1

2
particles, especially useful when they are not in a pure state.
One may study the concurrences C(i,i+1)(J2) between spin at
i and i + 1 (identifying L + 1 as the first spin), as well as
their totals either over the entire chain, or over two parts,
where i is even or when it is odd. Note that while the ground
state has translational invariance, this is typically broken in
the states |ψMG(J2)〉 and |ψMG(J2)〉 and the corresponding
Schmidt vectors. Thus, C(i,i+1)(J2) are typically different for
different values of i, unlike in the original state.

As the dimer part of the state survives until the MG
point, it is likely to have large pairwise concurrences. The
top panel of Fig. 6 shows these for the most dominant state;
namely, |φ1(J2)〉A and the rising state |φ5(J2)〉A. It is seen
that the nearest-neighbor concurrences show a clear progress
to dimerization as J2 increases. In the case of |φ1(J2)〉A,
the entanglement between the alternate bonds starting
from the first is large and increases with J2, while the others
decrease and vanish well before the MG point, and in this
respect are like |RN/2〉; for |φ5(J2)〉A the highly entangled
bonds start from the second spin, and in this respect are like
|LN/2〉. The insets show the sum of the concurrences in the
even and odd sublattices of the N/2 spin chain, and it is seen
that the entanglements vanish in the alternate bonds again in
the vicinity of the dimerization transition, but not at exactly one
point. Also notice that for |φ5(J2)〉A entanglement develops for
distant spins at sites 1 and 8 for the case shown of N = 16.
The full chain has been “cut” keeping sites 1–8 and tracing
out 9–16. This singles out the sites 1 and 8; also note the
reflection symmetry that is apparent from the distribution of
concurrences amongst spins 1–8. It may be noted that the

012302-7



RAMKARTHIK, CHANDRA, AND LAKSHMINARAYAN PHYSICAL REVIEW A 87, 012302 (2013)

0 0.1 0.2 0.3 0.4 0.5

2

2.5

3

vo
n 

N
eu

m
an

n 
en

tr
op

y 
of

  m
 -

 s
pi

ns

0 0.1 0.2 0.3 0.4 0.5
1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5
J

2

2

2.5

3

3.5

vo
n 

N
eu

m
an

n 
en

tr
op

y 
of

  m
 -

 s
pi

ns

0 0.1 0.2 0.3 0.4 0.5
J

2

2

3

4

0 shift 1 shift

2 shifts 3 shifts

m = 2

m = 8

m = 4

m = 5

m = 7

m = 2

m = 3

m = 6

m = 2

m = 5

m = 3

m = 4

m = 6

m = 7

m = 2

m = 3
m = 4

m = 5

m = 7

m = 8

FIG. 5. (Color online) Entanglement entropy between m contiguous spins and the rest for state |ψMG〉. Here N = 16, and “shift” refers to
the first spin site in the block of m spins.

concurrences for the case of the ground state do not show such
structures that reveal the dimerization [15,28,29].

In case of the triplets (as in the MG subspace, or the states
corresponding to the largest eigenvalue in the MG subspace)
the states are not unique due to degeneracy. However, the
projector onto the degenerate three-dimensional subspace is
unique and can be used to define a density matrix. For
example, for the triplet in the MG subspace consider the
state

ρ234(J2) = 1
3 [|φ2(J2)〉AA〈φ2(J2)| + |φ3(J2)〉AA〈φ3(J2)|
+ |φ4(J2)〉AA〈φ4(J2)|], (11)

and the corresponding mixed state for the most prominent
triple of MG, say ρ678. The concurrence in the bonds of these
states are shown in the lower panel of Fig. 6. The state ρ234

displays large entanglements in the alternative bonds starting
from the second spin and is in this respect like the rising state
|φ5(J2)〉, except that there is here no entanglement between
the distant spins 1 and 8. This distinction from the rising state
is understood upon calculating the two-qubit reduced density
matrix of the triplet density matrix at J2 = 1/2:

(ρ234(J2 = 1/2))18 = 1
3 (|00〉〈00| + |11〉〈11|
+ |+ +〉〈++|). (12)

The reduced density matrix of spins 1 and 8 is (ρ234(J2 =
1/2))18; the state |+〉 = (|0〉 + |1〉)/√2. The separability
of these spins in this density matrix is then evident, and
entanglement appears to be absent not only at J2 = 1/2 but
for the entire range considered. The entanglement of other
bonds decrease from the Heisenberg point and vanish again
well before the MG point. Indeed the point where the dimer

states takes on a pure alternate bond entanglement is again in
the region of the dimerization transition.

A similar analysis for ρ678 is shown in the same figure and
presents a somewhat different picture, with the dimerization
not being uniformly present. While the concurrence between
3-4 and the symmetric 5-6 spins are large, the rest of
the nearest-neighbor entanglements are nearly zero. The
concurrences that is present in the 3-4 pair is also decreasing
from the Heisenberg chain as the MG point is approached.
It is observed that the entanglement between the 1-2 and 7-8
pairs, which starts at zero, develops as J2 increases and is
nonzero at J2 = 1/2. This indicates the existence of some
dimerization in the MG subspace, but of a different kind than
in the MG subspace. The effective overall decrease of the
two-qubit entanglements is in sharp contrast to that found for
the Schmidt vectors that span the MG subspace.

To analyze this further, pair concurrences were calculated
for the N -spin state |ψMG(J2)〉 and the nearest-neighbor pair
concurrence is shown in the left part of Fig. 7. While this
looks similar to the case of the state ρ678, which is indeed
the dominant part of |ψMG(J2)〉, the prominent difference is
the somewhat large entanglement between the 1-16 and 8-9
pairs (here N = 16) which exists for the Heisenberg chain and
which decreases away as the MG point is approached. Once
again the overall decrease in the concurrence is in contrast
to that for the Schmidt vectors in the MG subspace and is
consistent with an increase of the von Neumann entropy in as
much as one can think of monogamy of entanglement being
operative and the entanglement becomes of a more multipartite
kind. Indeed, the structure of even the two-spin entanglements
present in this state is neither of an |LN 〉 kind nor of a |RN 〉
kind, but rather a mixture with some bonds being either very
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corresponding graphs show the sum of the alternate pair concurrences for each of the above-described eigenstates.

weakly or not at all entangled. For example, the entanglement
present in 1-16 and 8-9 is consistent with an |LN 〉 kind
of dimerization, while the prominent entanglement between
3-4 and 5-6 resembles |RN 〉. It is interesting that, as the

dimerization progresses, even in this grass contribution there
is a tendency to choose a type of dimerization, with the |LN 〉
kind taking a back seat at around the dimerization transition.
However, the decrease in the concurrence is also consistent
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with a rising entropy, as observed in Fig. 3 (bottom right).
The principal features discussed above have been verified to
remain intact for the case of N = 24 spins.

To contrast the nearest-neighbor entanglement of the more
complicated state |ψMG(J2)〉 with those in |ψMG(J2)〉 and in
the original translation symmetric ground state |�(J2)〉, the
latter two quantities are plotted in the right part of Fig. 7. The
broken translation symmetry in |ψMG(J2)〉 implies that there
is more than one NN concurrence value; however, as indicated
earlier there persists a symmetry of translation by N/2 sites
as well reflection symmetry. Together they indicate that five
different nearest-neighbor concurrence values are possible for
a chain of N = 16 spins and these are shown along with the
bond labels in Fig. 7. The low value of the entanglement where
the bonds are cut (8-9 and 1-16) compared to the others may
be noted. In contrast, that |ψMG(J2)〉 displays much lesser
concurrence is also clear. The original translation symmetric
state has one NN concurrence that decreases towards the MG
point where it reaches a value close to 1/4 (which is achieved
for N = ∞ [27]). Interestingly, its value is slightly smaller
than that for the |ψMG(J2)〉 subspace and may be due to the
mixing of the state’s MG projection.

IV. DISCUSSIONS AND SUMMARY

In this paper the frustrated J1 − J2 antiferromagnetic
Majumdar-Ghosh model has been revisited with a view on
entanglement properties, both multipartite and those between
pairs of spins. Entanglement studies of the ground state that
have revealed signatures of the dimerization transition have
hitherto relied on scaling of the entropy with the system size.
However, in this paper several suggestive simple signatures
are presented, from those that involve von Neumann entropy
to concurrence between spins. For this the principal tool is
the well-known Schmidt decomposition that combined with
the existence of the unique MG point (J2/J1 = 1/2) provided
an opportunity for a projection of the ground state into two
orthogonal subspaces that are unique once the partition in the
Schmidt decomposition is fixed. The dominant subspace is
only five dimensional and contains the complete state at the
MG point. The complementary subspace whose significance
wanes from the Heisenberg point (J2/J1 = 0) contributes only
marginally, but this contribution increases with the number of
spins N ; for instance for N = 16 this contribution is roughly
3% when J2/J1 = 0. These subspaces are indicated as MG and
MG, although again the partition dependence in the Schmidt
decomposition is implicit.

The entanglement between NA spins and the rest of the
spin chain is known to have different scaling laws as criticality
is lost at J2/J1 ≈ 0.24. What is shown above is that while
the entanglement of the full or dominant projection in the
MG subspace is monotonic, the projection onto MG has a
minimum in the vicinity of the transition for even NA, at least
for the values of N that have been explored. This feature
is robust against various different partitions of the ground
state. How robust this feature is to increasing number of spins
remains to be seen.

To understand better the behavior of entropies, one may cal-
culate further the entanglements present after the states |LN 〉
or |RN 〉 are projected out from the ground state |�(J2)〉. That

0 0.1 0.2 0.3 0.4 0.5
J2

0

0.5

1

1.5

2

2.5

E
nt

an
gl

em
en

t (
eb

it
s)

| L > projected out
full entropy
| R > projected out

SR(J2)

SL(J2)

S(J2)

N=16

FIG. 8. (Color online) Entanglements of half the chain with the
rest for SR(J2) and SL(J2) after projecting out fully dimerized |LN 〉
or |RN 〉 states, respectively. Shown also is the case for the complete
ground-state entanglement S(J2) for comparison, and here N = 16
spins are used.

is the quantities SL(J2) = S([|�(J2)〉 − |RN 〉〈RN |�(J2)〉]t)
and SR(J2) = S([|�(J2)〉 − |LN 〉〈LN |�(J2)〉]t), the entan-
glements of N/2 contiguous spins with the rest (t is a
normalization constant) are found and plotted in Fig. 8. Note
that SL(J2) tends to the entanglement of the state |LN 〉 at the
MG point (i.e., 2), while SR(J2) tends to that of |RN 〉 (i.e.,
0). It is interesting to note that the entanglement of these
symmetry-broken states are now monotonically decreasing
already for small values of N , reflecting well the fact that
the entanglement sharing in the spins is changing from a
more complex situation at the Heisenberg point to the fully
dimerized situation at the MG point. The dimerization, which
is leading to the formation of couples that are unentangled
with any other spin, discourages multipartite entanglement.

An important complementary view of entanglement sharing
is provided by calculating the concurrence between pairs of
spins. The state in which these are measured are, however, not
the ground state itself, but the eigenfunctions of the reduced
density matrix, or the Schmidt vectors. The Schmidt vectors
(now pure states of NA spins) of the MG subspace show a
clear progress towards dimerization as J2 increases with the
most dominant state resembling |RN/2〉 and the rising state
|LN/2〉. The triplet also shows dimerization as in |LN/2〉 except
for the end spins being unentangled. Here “dimerization” is
seen as the vanishing of concurrence on a sublattice, while
the complementary one develops into pairs with maximum
concurrence. The most dominant eigenvalue corresponding to
triply degenerate states in the MG subspace was also studied
using pair concurrences and it presents a different picture
compared to the five Schmidt vectors in the MG subspace,
in that the concurrences tend to decrease as the MG point is
approached. The projection of the state on the N -particle MG

subspace, |ψMG(J2)〉, also shows interesting differences and
larger multipartite entanglements. The initial decrease of the
entropy SMG which contributes to the nonmonotonic character
of this entropy may have its origins in the overall tendency for
decreasing entropy as evidenced by projecting out the |LN 〉
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or |RN 〉 states; however, more study is warranted on the exact
origins and significance, if any, of this.

If a bipartite split with one block containing the spins at
odd sites and the other block containing the spins at even
sites (“comb entanglement”) is taken, it presents a complex
entanglement spectrum with many crossings, and while this
is interesting, the dimerization transition seems difficult to
unravel. Also, the present study has calculated non-nearest-
neighbor concurrence in the various states presented, but
most of them are indeed zero. Preliminary investigations of
the J1 − J2 model with quenched disorder in J2 reveals a
certain robustness of the above analysis. Small disorders lead
to the exact crossing at the MG point being replaced by
an avoided one, and there is still to a large extent only a
five-dimensional dominant space and hence a split into a MG

and MG subspaces persists. Further study is needed on how
nondimerized subspaces such as MG dominate in the large-N
limit.

While this work has concentrated on the range 0 � J2 �
1/2, it is naturally interesting to look beyond this range. The
crossing of the first excited state with momentum π at J2 =
1/2 with the zero-momentum ground state is followed for
small N (such as used here) with several other intersections
between the same two states for J2 > 1/2. This rather complex
phase is interesting, and especially so when the methodology of
this paper is applied to it, and is currently under investigation.
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APPENDIX: COMPUTATION OF REDUCED DENSITY
MATRIX AND ITS SPECTRUM AT MG POINT

There is more than one way to derive the reduced density
matrix, and in the following a direct approach is used. First
start with the superposition |ψ〉 = α1|RN 〉 + α2|LN 〉 of the
two dimer states that are eigenfunctions at the MG point;
namely |RN 〉 and |LN 〉 [as given in Eq. (2)].

Let the bipartite split consist of (i) block A with 2k

contiguous spins and (ii) block B with the rest. One traces
over block B to find the reduced density matrix:

ρ2k = trB(|ψ〉〈ψ |) = α2
1ρ2k1 + α2

2ρ2k2 + α1α2
(
ρ2k3 + ρ

†
2k3

)
,

(A1)

where ρ2k1 = trB(|RN 〉〈RN |), ρ2k2 = trB(|LN 〉〈LN |), and
ρ2k3 = trB(|RN 〉〈LN |).

Denote now |R2k〉 ≡ (12)(34) · · · (2k − 12k) and |L2k−2〉 ≡
(23)(45) · · · (2k − 22k − 1); these being spin states which are
not affected by the partial tracing operation. It is straightfor-
ward to calculate ρ2k1 because no singlet “bonds” are cut due to
the structure of |RN 〉. However, for calculating ρ2k2 the singlets
between (N1) and (2k 2k + 1) are broken, which results in
maximally mixed states I1

2 and I2k

2 at the ends. The remaining
tensor products of singlets |L2k−2〉 are left unaffected. Thus it

follows that

ρ2k1 = α2
1 |R2k〉〈R2k|,

(A2)

ρ2k2 = α2
2

4
(I1 ⊗ |L2k−2〉〈L2k−2| ⊗ I2k) .

The remaining part involves cross terms, which is written
explicitly by introducing standard σz basis for the spins in
block B:

ρ2k3 =
∑

i2k+1,...,iN ∈{0,1}
〈i2k+1 · · · iN |RN 〉〈LN |i2k+1 · · · iN 〉. (A3)

It is easy to verify that 〈i1i2|(|01〉 − |10〉) = (−1)iδi1,i2⊕1,
where the ⊕ denotes an addition modulo 2. The expression

〈i2k+1i2k+2 · · · iN |RN 〉

= (−1)i2k+1+i2k+3+···+iN−1

(
√

2)(N−2k)/2
δi2k+1,i2k+2⊕1 · · · δiN−1,iN⊕1|R2k〉 (A4)

and a similar expression are found for 〈LN |i2k+1i2k+2 · · · iN 〉,
which involves the untraced part |L2k−2〉 as follows:

〈LN |i2k+1i2k+2 · · · iN 〉

= 〈L2k−2|
(

1√
2

)[(N−2k)/2]−2

δi2k+2i2k+3⊕1 · · · δiN−2iN−1⊕1

×〈(2k 2k + 1)|i2k+1〉〈(N1)|iN 〉 (A5)

The “end spins” are taken into account as 〈(2k 2k +
1)|i2k+1〉 = 1√

2
(〈0|2kδ1,i2k+1 − 〈1|2kδ0,i2k+1 ) and 〈(N1)|iN 〉 =

1√
2
(〈1|1δ0,iN − 〈0|1δ1,iN ). Using this expression along with

Eqs. (A4) and (A5) and substituting them in Eq. (A3), the
final form of ρ2k (after some straightforward algebra taking
care of the modulo 2 addition) is found to be

ρ2k = α2
1 |R2k〉〈R2k| + α2

2

[
I1

2
⊗ |L2k−2〉〈L2k−2| ⊗ I2k

2

]

+ α1α2

2(N−2k)/2
(−1)(N−2k)/2 [|R2k〉〈L2k| + |L2k〉〈R2k|] .

(A6)

It is to be noted from the structure of ρ2k that the coherent
term is only of the order of 2−(N−2k)/2 and hence exponentially
decreases with the number of spins in block B.

The eigenvalues of ρ2k are now calculated. For notational
convenience, for K spins, we define

p = 〈RK |LK〉 = (−1)K/22(1−K/2),

γ = α1α2(−1)(N−2k)/2

2(N−2k)/2
.

Writing the I1 ⊗ I2k in (I1 ⊗ |L2k−2〉〈L2k−2| ⊗ I2k) as the
sum of projectors into the four-Bell basis, |φl

b〉 (1 � l � 4)
we can define new states |Ll

2k〉 = |L2k−2〉 ⊗ |φl
b〉2k,1; here

l = 1, 2, 3, 4, we then use the (easily obtained) properties that
〈R2k|Ll

2k〉 = 〈L2k|Ll
2k〉 = 0; l = 1, 2, 3. Explicitly,∣∣L1

2k

〉 = |L2k−2〉[(|01〉 + |10〉)/
√

2]2k,1,∣∣L2
2k

〉 = |L2k−2〉[(|00〉 + |11〉)/
√

2]2k,1,∣∣L3
2k

〉 = |L2k−2〉[(|00〉 − |11〉)/
√

2]2k,1,∣∣L4
2k

〉 = |L2k−2〉[(|01〉 − 10〉)/
√

2]2k,1 = |L2k〉.
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Now using the above we can rewrite ρ2k as

ρ2k = α2
1 |R2k〉〈R2k| + α2

2

4
|L2k〉〈L2k| + α2

2

4

[
3∑

l=1

∣∣Ll
2k

〉〈
Ll

2k

∣∣]

+ γ [|R2k〉〈L2k| + |L2k〉〈R2k|] . (A7)

It is straightforward to verify that |L1
2k〉, |L2

2k〉, and |L3
2k〉 are

three eigenstates of ρ2k with degenerate eigenvalues α2
2/4.

This corresponds to the triply degenerate eigenvalue in the

entanglement spectrum at the MG point. It is clear that the other
eigenvalues correspond to eigenvectors in the two-dimensional
subspace spanned by |R2k〉 and |L2k〉, and hence there are only
two of these. Either defining the orthogonal vectors |R2k〉 ±
|L2k〉 or proceeding to define linear superpositions of |R2k〉
and |L2k〉 as the eigenvectors, a straightforward (if somewhat
lengthy) calculation leads to Eq. (8). These two eigenvalues
correspond to the most dominant state and the rising state in
the entanglement spectrum of ρ2k .
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W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[12] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, New York, 2011).

[13] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110
(2002).

[14] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature (London)
416, 608 (2002).

[15] X.-F. Qian, T. Shi, Y. Li, Z. Song, and C. P. Sun, Phys. Rev. A
72, 012333 (2005).

[16] L. A. Wu, M. S. Sarandy, and D. A. Lidar, Phys. Rev. Lett. 93,
250404 (2004).

[17] V. Alba, L. Tagliacozzo, and P. Calabrese, Phys. Rev. B 81,
060411(R) (2010).

[18] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B 424, 443
(1994).

[19] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
[20] F. Alet, I. P. McCulloch, S. Capponi, and M. Mambrini, Phys.

Rev. B 82, 094452 (2010).
[21] Y.-C. Lin and A. W. Sandvik, Phys. Rev. B 82, 224414 (2010).
[22] P. Facchi, G. Florio, C. Invernizzi, and S. Pascazio, Phys. Rev.

A 78, 052302 (2008).

[23] G.-H. Liu, C.-H. Wang, and X.-Y. Deng, Phys. B (Amsterdam,
Neth.) 406, 100 (2011).

[24] R. W. Chhajlany, P. Tomczak, and A. Wójcik, Phys. Rev. Lett.
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