Install dependencies
from google.colab import drive
drive.mount('/content/drive')
%cd '/content/drive/MyDrive/CS460 ML Project /CODES/EXPERIMENTS/ARIMA'
!pip install pmdarima
Import libraries
import matplotlib.pyplot as plt
import csv
import pandas as pd
from pmdarima import auto_arima
from statsmodels.tsa.arima.model import ARIMA
Read data
df = pd.read_csv('Maharashtra.csv',index_col='DATE',parse_dates=True)
df=df.dropna()
df.shape
df.head()
Stepwise fit by auto_arima
stepwise_fit = auto_arima(df['ACTIVE'],trace=True)
stepwise_fit.summary()
Train
train = df.iloc[:-15]
test = df.iloc[-15:]
model=ARIMA(train['ACTIVE'],order=(3,1,3))
model=model.fit()
model.summary()
Predict
start=len(train)
end=len(train)+len(test)-1
pred=model.predict(start=start,end=end,typ='levels')
pred.index=df.index[start:end+1]
pred
Check
pred.plot(legend=True)
test['ACTIVE'].plot(legend=True)
from sklearn import metrics
metrics.mean_absolute_error(test['ACTIVE'], pred)
metrics