from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
%cd '/content/drive/MyDrive/CS460 ML Project /CODES/EXPERIMENTS/Data sets'
/content/drive/MyDrive/CS460 ML Project /CODES/EXPERIMENTS/Data sets
import matplotlib.pyplot as plt
import csv
import pandas as pd
import numpy as np
from statsmodels.tsa.statespace.varmax import VARMAX
# from pmdarima import auto_arima
/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm
# log transform
tol = 1e-4
ltr = lambda x: np.log(x + tol)
# inverse
iltr = lambda y: np.exp(y) - tol
DATA
df = pd.read_csv('ker.csv',index_col='Date',parse_dates=True)
df=df.dropna()
df = df.drop('State', axis =1)
df
Confirmed | Recovered | Deceased | Other | Tested | First Dose Administered | Second Dose Administered | Total Doses Administered | Active cases | Active tested | Active Vaccinated | Active Tested | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | ||||||||||||
2020-02-02 | 2 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 |
2020-02-03 | 3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 |
2020-02-14 | 3 | 3 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0.0 |
2020-03-02 | 3 | 3 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0.0 |
2020-03-03 | 3 | 3 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2021-10-17 | 4854321 | 4739270 | 26865 | 529 | 36802640.0 | 25079316.0 | 12171427.0 | 37250743.0 | 88186 | 73157.0 | 13055.0 | 73157.0 |
2021-10-18 | 4860997 | 4750293 | 26925 | 529 | 36871308.0 | 25106712.0 | 12314762.0 | 37421474.0 | 83779 | 68668.0 | 170731.0 | 68668.0 |
2021-10-19 | 4868640 | 4760781 | 27002 | 529 | 36953716.0 | 25115770.0 | 12364284.0 | 37480054.0 | 80857 | 82408.0 | 58580.0 | 82408.0 |
2021-10-20 | 4879790 | 4769373 | 27084 | 529 | 37047867.0 | 25130853.0 | 12437190.0 | 37568043.0 | 83333 | 94151.0 | 87989.0 | 94151.0 |
2021-10-21 | 4888523 | 4779228 | 27202 | 529 | 37134170.0 | 25153284.0 | 12564537.0 | 37717821.0 | 82093 | 86303.0 | 149778.0 | 86303.0 |
602 rows × 12 columns
df['Active cases'].plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7f309b865d90>
l = int(df.shape[0]*0.15)
train = df.iloc[:-l]
test = df.iloc[-l:-1]
train = train.astype(np.float64)
test = test.astype(np.float64)
# en = train.drop(['TESTED'], axis=1)
ens = ['Recovered', 'Deceased', 'Total Doses Administered', 'Active Tested']
del ens[2:]
en = train[['Active cases'] + ens]
exs = ['Active Tested']
ex= train[exs]
ext = test[exs]
en
Active cases | Recovered | Deceased | |
---|---|---|---|
Date | |||
2020-02-02 | 2.0 | 0.0 | 0.0 |
2020-02-03 | 3.0 | 0.0 | 0.0 |
2020-02-14 | 0.0 | 3.0 | 0.0 |
2020-03-02 | 0.0 | 3.0 | 0.0 |
2020-03-03 | 0.0 | 3.0 | 0.0 |
... | ... | ... | ... |
2021-07-19 | 122202.0 | 3033258.0 | 15408.0 |
2021-07-20 | 126894.0 | 3045310.0 | 15512.0 |
2021-07-21 | 130138.0 | 3059441.0 | 15618.0 |
2021-07-22 | 129381.0 | 3072895.0 | 15739.0 |
2021-07-23 | 135700.0 | 3083962.0 | 15871.0 |
512 rows × 3 columns
MODEL
model = VARMAX(en, order=(4, 8), exog = ex)
model_fit = model.fit()
/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/statespace/varmax.py:159: EstimationWarning: Estimation of VARMA(p,q) models is not generically robust, due especially to identification issues. EstimationWarning) /usr/local/lib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:219: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting. ' ignored when e.g. forecasting.', ValueWarning)
y = model_fit.forecast(steps=len(test), exog = ext)
/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/statespace/varmax.py:159: EstimationWarning: Estimation of VARMA(p,q) models is not generically robust, due especially to identification issues. EstimationWarning) /usr/local/lib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:576: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`. ValueWarning)
y.index = test.index
y.columns += [' pred']*y.shape[1]
y
Active cases pred | Recovered pred | Deceased pred | |
---|---|---|---|
Date | |||
2021-07-24 | 140929.921766 | 3.138534e+06 | 16166.115606 |
2021-07-25 | 130839.920256 | 3.010455e+06 | 15654.214862 |
2021-07-26 | 121727.112982 | 2.889253e+06 | 15162.524484 |
2021-07-27 | 151523.496392 | 3.171290e+06 | 16439.036754 |
2021-07-28 | 154969.857623 | 3.161123e+06 | 16440.817568 |
... | ... | ... | ... |
2021-10-16 | 152226.430991 | 8.500018e+05 | 5517.362008 |
2021-10-17 | 148691.996281 | 8.333241e+05 | 5428.229524 |
2021-10-18 | 143940.109332 | 8.054055e+05 | 5289.982377 |
2021-10-19 | 143392.886188 | 8.162696e+05 | 5323.870715 |
2021-10-20 | 145556.316690 | 8.506807e+05 | 5463.237305 |
89 rows × 3 columns
plt.matshow(y.corr())
plt.colorbar()
plt.show()
# train['ACTIVE'].plot(legend = True)
test['Active cases'].plot(legend = True)
y['Active cases pred'].plot(legend = True)
<matplotlib.axes._subplots.AxesSubplot at 0x7f6cc8dbebd0>
pr = model_fit.predict(2, len(df)-2, exog = ext)
/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/statespace/varmax.py:159: EstimationWarning: Estimation of VARMA(p,q) models is not generically robust, due especially to identification issues. EstimationWarning) /usr/local/lib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:576: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`. ValueWarning)
pr.index = df.iloc[1:len(df)-2].index
# pr.columns += [' pred']*pr.shape[1]
train['Active cases'].plot(label = 'Active cases', legend = True)
test['Active cases'].plot(legend = True, label = 'Actual')
pr['Active cases'].iloc[:-l].plot(style = '--',label = 'Fit', legend = True)
pr['Active cases'].iloc[-l:].plot(style = '--',label = 'Forecast', legend = True)
# y['ACTIVE pred'].plot(legend = True)
<matplotlib.axes._subplots.AxesSubplot at 0x7f6cc94fec50>
model_fit.plot_diagnostics(variable=0, lags=20, fig=None, figsize= (9,7))
plt.matshow(model_fit.cov_params())
plt.show()
model_fit.summary().tables[4]
coef | std err | z | P>|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
intercept | -209.3012 | 1.707 | -122.639 | 0.000 | -212.646 | -205.956 |
L1.ACTIVE | -0.0073 | 0.001 | -6.935 | 0.000 | -0.009 | -0.005 |
L1.RECOVERED | -0.0284 | 0.001 | -28.884 | 0.000 | -0.030 | -0.026 |
L1.DEATH | 7.2504 | 0.161 | 45.108 | 0.000 | 6.935 | 7.565 |
L2.ACTIVE | 0.0033 | 0.001 | 3.323 | 0.001 | 0.001 | 0.005 |
L2.RECOVERED | 0.0284 | 0.001 | 30.019 | 0.000 | 0.027 | 0.030 |
L2.DEATH | -6.4510 | 0.162 | -39.827 | 0.000 | -6.768 | -6.134 |
L1.e(ACTIVE) | 0.0246 | 0.001 | 23.220 | 0.000 | 0.023 | 0.027 |
L1.e(RECOVERED) | 0.0231 | 0.002 | 13.438 | 0.000 | 0.020 | 0.027 |
L1.e(DEATH) | -5.7875 | 0.162 | -35.674 | 0.000 | -6.105 | -5.470 |
L2.e(ACTIVE) | -0.0196 | 0.001 | -31.251 | 0.000 | -0.021 | -0.018 |
L2.e(RECOVERED) | -0.0287 | 0.001 | -20.475 | 0.000 | -0.031 | -0.026 |
L2.e(DEATH) | 6.7048 | 0.095 | 70.693 | 0.000 | 6.519 | 6.891 |
beta.Active Tested | 0.0206 | 0.004 | 4.801 | 0.000 | 0.012 | 0.029 |
model_fit.cov_params()
intercept.ACTIVE | intercept.RECOVERED | intercept.DEATH | L1.ACTIVE.ACTIVE | L1.RECOVERED.ACTIVE | L1.DEATH.ACTIVE | L2.ACTIVE.ACTIVE | L2.RECOVERED.ACTIVE | L2.DEATH.ACTIVE | L1.ACTIVE.RECOVERED | L1.RECOVERED.RECOVERED | L1.DEATH.RECOVERED | L2.ACTIVE.RECOVERED | L2.RECOVERED.RECOVERED | L2.DEATH.RECOVERED | L1.ACTIVE.DEATH | L1.RECOVERED.DEATH | L1.DEATH.DEATH | L2.ACTIVE.DEATH | L2.RECOVERED.DEATH | L2.DEATH.DEATH | L1.e(ACTIVE).ACTIVE | L1.e(RECOVERED).ACTIVE | L1.e(DEATH).ACTIVE | L2.e(ACTIVE).ACTIVE | L2.e(RECOVERED).ACTIVE | L2.e(DEATH).ACTIVE | L1.e(ACTIVE).RECOVERED | L1.e(RECOVERED).RECOVERED | L1.e(DEATH).RECOVERED | L2.e(ACTIVE).RECOVERED | L2.e(RECOVERED).RECOVERED | L2.e(DEATH).RECOVERED | L1.e(ACTIVE).DEATH | L1.e(RECOVERED).DEATH | L1.e(DEATH).DEATH | L2.e(ACTIVE).DEATH | L2.e(RECOVERED).DEATH | L2.e(DEATH).DEATH | beta.Active Tested.ACTIVE | beta.Active Tested.RECOVERED | beta.Active Tested.DEATH | sqrt.var.ACTIVE | sqrt.cov.ACTIVE.RECOVERED | sqrt.var.RECOVERED | sqrt.cov.ACTIVE.DEATH | sqrt.cov.RECOVERED.DEATH | sqrt.var.DEATH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
intercept.ACTIVE | -6.390369e-04 | 2.726122e-04 | -0.054603 | 0.001184 | 0.000517 | -0.001630 | -0.001199 | -4.811624e-04 | -0.004768 | 0.006019 | 0.006187 | 0.002392 | -0.005946 | -0.006187 | 0.002676 | 2.836880e-05 | 2.833080e-05 | -0.000372 | -2.816697e-05 | -2.816133e-05 | 0.000367 | -9.830560e-04 | 2.098003e-04 | -0.000855 | 0.000026 | -4.358434e-05 | -1.926002e-04 | -0.004828 | 0.001937 | 7.676587e-05 | 0.000068 | -0.000761 | 2.041483e-05 | -2.422498e-05 | 6.978804e-06 | 0.000384 | -1.070530e-06 | -4.134842e-06 | 0.000219 | -1.687376e-04 | -0.001018 | -4.534963e-06 | 5.126742e-04 | 2.134241e-06 | 2.986266e-04 | -1.020647e-02 | 0.000366 | -0.000289 |
intercept.RECOVERED | -1.374139e-04 | 5.858796e-05 | -0.011735 | 0.000251 | 0.000120 | -0.000267 | -0.000246 | -1.120203e-04 | -0.000943 | 0.001340 | 0.001345 | 0.000503 | -0.001232 | -0.001333 | 0.000564 | 6.256374e-06 | 6.221872e-06 | -0.000086 | -5.809183e-06 | -6.134817e-06 | 0.000085 | -1.993122e-04 | 3.840592e-05 | -0.000184 | 0.000003 | -8.813398e-06 | -3.836670e-05 | -0.001038 | 0.000348 | 1.622561e-05 | 0.000034 | -0.000157 | 4.190045e-06 | -5.137932e-06 | 1.171339e-06 | 0.000088 | -1.547690e-07 | -8.731450e-07 | 0.000050 | -6.754988e-05 | -0.000580 | -2.562068e-06 | 1.103608e-04 | 4.171437e-07 | 6.441478e-05 | -2.188269e-03 | 0.000047 | -0.000062 |
intercept.DEATH | 3.410714e-02 | -1.454189e-02 | 2.912632 | -0.062478 | -0.029683 | 0.067453 | 0.061321 | 2.769083e-02 | 0.235179 | -0.332096 | -0.333781 | -0.124989 | 0.306114 | 0.330868 | -0.140143 | -1.551812e-03 | -1.542854e-03 | 0.021182 | 1.444451e-03 | 1.521671e-03 | -0.021045 | 4.968561e-02 | -9.604812e-03 | 0.045732 | -0.000639 | 2.192188e-03 | 9.550610e-03 | 0.257626 | -0.087072 | -4.029621e-03 | -0.008311 | 0.039015 | -1.041661e-03 | 1.276403e-03 | -2.939202e-04 | -0.021762 | 3.925582e-05 | 2.169722e-04 | -0.012383 | 1.648497e-02 | 0.140754 | 6.216539e-04 | -2.739083e-02 | -1.041519e-04 | -1.598486e-02 | 5.432469e-01 | -0.012328 | 0.015430 |
L1.ACTIVE.ACTIVE | -4.874211e-04 | 1.722479e-04 | -0.033384 | 0.016557 | -0.002129 | -0.046954 | -0.016382 | 2.698958e-03 | -0.049249 | 0.004924 | 0.003797 | 0.005711 | -0.000766 | -0.002901 | 0.005964 | 9.621304e-05 | -6.251871e-06 | 0.002795 | -7.807086e-05 | 1.223022e-05 | -0.003169 | -1.773861e-02 | 1.384264e-03 | -0.000335 | -0.006250 | 4.990034e-04 | -1.451984e-04 | -0.002620 | -0.004390 | 1.727489e-05 | 0.001543 | -0.003311 | 1.769735e-05 | -9.299482e-05 | 2.883914e-06 | -0.003156 | -1.692062e-05 | -1.415005e-06 | -0.002262 | -2.059758e-03 | -0.017671 | -7.927547e-05 | 3.568751e-04 | 4.125420e-06 | 1.833452e-04 | -7.625194e-03 | 0.007524 | -0.000876 |
L1.RECOVERED.ACTIVE | -9.938776e-05 | 5.111707e-05 | -0.010554 | -0.002305 | 0.003284 | 0.022111 | 0.002406 | -3.431453e-03 | 0.021460 | 0.001483 | 0.002337 | -0.001805 | -0.000057 | -0.001510 | -0.001770 | -6.580603e-06 | 2.187245e-05 | -0.000747 | 1.280999e-05 | -1.901049e-05 | 0.000893 | 4.769975e-03 | -7.463705e-04 | -0.000206 | 0.000196 | 4.996136e-06 | 2.020091e-04 | -0.001468 | -0.003978 | -3.474905e-06 | -0.000035 | 0.001876 | -1.127145e-05 | 1.395782e-05 | -2.355292e-05 | 0.000969 | -5.985095e-07 | 6.000389e-06 | 0.000394 | -1.345423e-03 | -0.015423 | -6.773962e-05 | 9.487083e-05 | 8.603308e-06 | 1.141697e-05 | -3.828554e-03 | 0.009446 | 0.000048 |
L1.DEATH.ACTIVE | 2.103535e-03 | -7.419232e-04 | 0.143390 | -0.049737 | 0.020739 | 0.296400 | 0.052860 | -2.343443e-02 | 0.305524 | -0.005655 | -0.006943 | -0.035014 | 0.030004 | 0.009387 | -0.035996 | -2.128828e-04 | 3.084590e-05 | 0.004989 | 3.252185e-04 | -3.153030e-05 | -0.002946 | 6.305078e-02 | -8.830449e-03 | 0.001567 | 0.008342 | 1.442742e-04 | 2.501537e-03 | 0.008904 | -0.031239 | -2.286051e-04 | -0.003260 | 0.025397 | -1.451958e-04 | 2.737416e-04 | -1.452498e-04 | -0.003428 | 1.193523e-05 | 1.105175e-04 | -0.001474 | -7.240979e-03 | -0.081204 | -3.581812e-04 | -1.481705e-03 | 5.306347e-05 | -1.152021e-03 | 1.524538e-02 | 0.055484 | -0.000566 |
L2.ACTIVE.ACTIVE | 4.499465e-04 | -1.602050e-04 | 0.031053 | -0.016342 | 0.002250 | 0.050071 | 0.016860 | -2.789659e-03 | 0.052123 | -0.000942 | -0.002584 | -0.006099 | 0.004419 | 0.002293 | -0.006337 | -7.854804e-05 | 1.015963e-05 | -0.002432 | 9.410896e-05 | -1.358071e-05 | 0.002824 | 1.773836e-02 | -1.687084e-03 | 0.000294 | 0.005787 | -5.182536e-04 | 3.189890e-04 | 0.002364 | 0.001067 | -2.670062e-05 | -0.000696 | 0.002719 | -3.214879e-05 | 9.047323e-05 | -1.573822e-05 | 0.002783 | 1.840568e-05 | -2.344867e-07 | 0.002077 | 1.629643e-04 | -0.003125 | -1.227336e-05 | -3.225219e-04 | -2.863556e-06 | -1.742615e-04 | 6.646045e-03 | -0.005024 | 0.000368 |
L2.RECOVERED.ACTIVE | 6.938535e-05 | -4.055794e-05 | 0.008507 | 0.002900 | -0.003415 | -0.024746 | -0.002971 | 3.599199e-03 | -0.024240 | -0.001037 | -0.002053 | 0.002124 | 0.000058 | 0.001334 | 0.002102 | 1.074028e-05 | -2.100508e-05 | 0.000710 | -1.506645e-05 | 1.872026e-05 | -0.000874 | -5.444618e-03 | 8.000136e-04 | 0.000181 | -0.000405 | -1.134999e-05 | -2.038332e-04 | 0.001316 | 0.003866 | 4.738029e-06 | 0.000171 | -0.002305 | 1.032077e-05 | -1.718163e-05 | 2.318963e-05 | -0.000942 | 4.200632e-07 | -7.792376e-06 | -0.000390 | 1.140413e-03 | 0.013241 | 5.811916e-05 | -7.243702e-05 | -8.784480e-06 | 2.151600e-06 | 3.446691e-03 | -0.009448 | -0.000202 |
L2.DEATH.ACTIVE | 2.397828e-03 | -8.658413e-04 | 0.168170 | -0.050335 | 0.020342 | 0.296278 | 0.053347 | -2.306194e-02 | 0.306900 | -0.008992 | -0.010076 | -0.035965 | 0.031821 | 0.012319 | -0.037080 | -2.284952e-04 | 1.677897e-05 | 0.005055 | 3.342227e-04 | -1.839558e-05 | -0.003013 | 6.344211e-02 | -8.765122e-03 | 0.001935 | 0.008526 | 9.031692e-05 | 2.518581e-03 | 0.011288 | -0.030209 | -2.535473e-04 | -0.003369 | 0.024954 | -1.520258e-04 | 2.856080e-04 | -1.403695e-04 | -0.003539 | 1.264186e-05 | 1.085230e-04 | -0.001481 | -6.713888e-03 | -0.075305 | -3.323934e-04 | -1.717615e-03 | 4.834423e-05 | -1.268706e-03 | 2.080216e-02 | 0.050542 | 0.000037 |
L1.ACTIVE.RECOVERED | -2.992134e-04 | 1.075506e-04 | -0.021160 | 0.000909 | 0.000719 | 0.013604 | 0.002802 | -5.311032e-04 | 0.011873 | 0.023469 | 0.007337 | -0.001465 | 0.018652 | -0.004018 | -0.001371 | 9.530065e-05 | 3.578468e-05 | -0.000671 | 8.963009e-05 | -2.161172e-05 | 0.000766 | 7.038674e-04 | -1.786473e-03 | -0.000442 | 0.000133 | -1.277413e-04 | 8.803474e-04 | -0.001858 | -0.019823 | -5.179828e-05 | 0.006168 | -0.001286 | -6.518721e-05 | -5.107149e-06 | -8.979195e-05 | 0.000547 | 2.583702e-05 | -8.608252e-06 | 0.000636 | -1.039955e-02 | -0.117639 | -5.170256e-04 | 2.689768e-04 | -1.039078e-05 | 1.859193e-04 | -2.964584e-03 | -0.006581 | -0.000101 |
L1.RECOVERED.RECOVERED | -1.418238e-03 | 5.992526e-04 | -0.119940 | 0.002080 | 0.002500 | 0.009038 | -0.001100 | -2.395735e-03 | 0.001856 | 0.018536 | 0.015888 | 0.003660 | -0.006788 | -0.014254 | 0.004291 | 8.320212e-05 | 7.442797e-05 | -0.000181 | -3.176234e-05 | -6.733522e-05 | 0.000248 | -6.059829e-04 | -4.881179e-04 | -0.001864 | -0.000941 | 4.033321e-05 | 2.819179e-05 | -0.011168 | -0.005276 | 1.280760e-04 | 0.001513 | -0.000329 | 1.552650e-05 | -5.129413e-05 | -2.458453e-05 | 0.000342 | 2.996118e-08 | -1.355532e-06 | 0.000073 | -4.197943e-03 | -0.046159 | -2.026792e-04 | 1.148044e-03 | 1.487458e-05 | 6.064413e-04 | -2.524989e-02 | 0.014899 | -0.002381 |
L1.DEATH.RECOVERED | -1.104417e-04 | 3.515447e-05 | -0.006617 | 0.004194 | -0.002088 | -0.027653 | -0.004685 | 2.309541e-03 | -0.028048 | -0.001341 | -0.000524 | 0.003068 | -0.003342 | -0.000016 | 0.003120 | 1.009605e-05 | -7.689545e-06 | -0.000588 | -3.115155e-05 | 6.366034e-06 | 0.000399 | -5.564493e-03 | 9.265435e-04 | -0.000049 | -0.000512 | -3.863822e-05 | -2.893312e-04 | -0.000155 | 0.004490 | 1.987180e-05 | -0.000051 | -0.002405 | 1.609020e-05 | -2.079225e-05 | 1.975810e-05 | 0.000434 | -1.569544e-06 | -1.096205e-05 | 0.000230 | 1.460724e-03 | 0.016557 | 7.280022e-05 | 6.883310e-05 | -6.634351e-06 | 7.659541e-05 | 2.913436e-04 | -0.007453 | 0.000410 |
L2.ACTIVE.RECOVERED | -2.883735e-04 | 8.966969e-05 | -0.017163 | 0.003831 | 0.001017 | 0.011082 | 0.000088 | -7.483724e-04 | 0.009154 | 0.023153 | 0.007980 | -0.001498 | 0.022005 | -0.004113 | -0.001353 | 1.168781e-04 | 1.828221e-05 | 0.003518 | 8.217874e-05 | -1.514200e-06 | -0.003490 | -2.316841e-03 | -1.803202e-03 | -0.000144 | -0.002812 | 7.799389e-05 | 1.134454e-03 | -0.002624 | -0.023454 | -7.722434e-05 | 0.003983 | -0.001326 | -8.447098e-05 | -3.581113e-05 | -8.550836e-05 | -0.003390 | 5.567839e-06 | 3.980438e-06 | -0.002033 | -1.124259e-02 | -0.126093 | -5.537564e-04 | 2.432069e-04 | 2.895834e-05 | -3.504281e-05 | -1.142295e-02 | 0.040911 | -0.004655 |
L2.RECOVERED.RECOVERED | 1.345784e-03 | -5.763790e-04 | 0.115544 | -0.001115 | -0.001636 | -0.006553 | 0.000738 | 1.639858e-03 | 0.000170 | -0.014677 | -0.013826 | -0.003994 | 0.010116 | 0.013657 | -0.004598 | -6.333090e-05 | -6.221324e-05 | 0.000224 | 4.329444e-05 | 6.148483e-05 | -0.000279 | 3.507689e-04 | 5.935663e-05 | 0.001796 | -0.000186 | -7.060992e-05 | 2.370411e-04 | 0.010620 | -0.000189 | -1.465505e-04 | -0.000228 | -0.000951 | -4.003394e-05 | 4.795938e-05 | 7.760314e-07 | -0.000344 | 1.373303e-06 | -3.612681e-06 | -0.000155 | 1.250659e-03 | 0.012739 | 5.586463e-05 | -1.085667e-03 | -1.199094e-05 | -5.921634e-04 | 2.335188e-02 | -0.009740 | 0.000952 |
L2.DEATH.RECOVERED | -1.200335e-04 | 3.906297e-05 | -0.007394 | 0.004259 | -0.002090 | -0.027748 | -0.004748 | 2.312659e-03 | -0.028194 | -0.001266 | -0.000424 | 0.003107 | -0.003386 | -0.000114 | 0.003167 | 1.139879e-05 | -8.358428e-06 | -0.000356 | -3.226651e-05 | 7.050045e-06 | 0.000165 | -5.650387e-03 | 9.319870e-04 | -0.000055 | -0.000559 | -3.190217e-05 | -2.889709e-04 | -0.000246 | 0.004464 | 2.119662e-05 | -0.000100 | -0.002363 | 1.675491e-05 | -2.250373e-05 | 2.078285e-05 | 0.000206 | -2.011703e-06 | -1.015938e-05 | 0.000096 | 1.463084e-03 | 0.016597 | 7.300163e-05 | 7.616572e-05 | -5.836526e-06 | 7.697530e-05 | -2.877105e-05 | -0.006551 | 0.000310 |
L1.ACTIVE.DEATH | -2.691719e-06 | 9.056542e-07 | -0.000175 | 0.000080 | -0.000009 | -0.000125 | -0.000063 | 1.225590e-05 | -0.000139 | 0.000107 | 0.000042 | 0.000014 | 0.000085 | -0.000024 | 0.000016 | 1.112130e-06 | -2.470451e-07 | 0.000092 | -2.535084e-07 | 3.313591e-07 | -0.000094 | -8.667754e-05 | 6.006469e-07 | -0.000001 | -0.000032 | 2.041405e-06 | 3.626645e-06 | -0.000016 | -0.000091 | 8.117683e-08 | 0.000020 | -0.000016 | -7.656650e-08 | -8.617782e-07 | 9.249580e-08 | -0.000094 | -6.425631e-08 | 1.867354e-07 | -0.000053 | -4.960309e-05 | -0.000535 | -2.354993e-06 | 2.086332e-06 | 1.106117e-07 | 5.547836e-07 | -6.530275e-05 | 0.000159 | -0.000039 |
L1.RECOVERED.DEATH | -6.925896e-06 | 2.996894e-06 | -0.000602 | -0.000013 | 0.000023 | 0.000103 | 0.000016 | -2.290040e-05 | 0.000068 | 0.000091 | 0.000079 | 0.000013 | -0.000053 | -0.000068 | 0.000015 | -3.654512e-08 | 9.649118e-07 | -0.000118 | 1.727302e-07 | -9.230434e-07 | 0.000120 | 3.537645e-05 | -6.654455e-06 | -0.000012 | 0.000015 | -1.332730e-06 | -3.034126e-07 | -0.000051 | -0.000035 | 3.115540e-07 | 0.000028 | -0.000003 | -1.118671e-07 | 4.038254e-07 | -7.400783e-07 | 0.000119 | 1.835364e-07 | -3.200792e-07 | 0.000067 | -2.566070e-05 | -0.000294 | -1.299359e-06 | 5.758256e-06 | -1.835072e-07 | 4.330020e-06 | -6.821477e-05 | -0.000222 | 0.000014 |
L1.DEATH.DEATH | 2.525715e-04 | -1.141693e-04 | 0.023096 | 0.002553 | -0.000894 | 0.004540 | -0.002183 | 8.561304e-04 | 0.005684 | -0.002995 | -0.001847 | -0.001473 | 0.005905 | 0.001898 | -0.001349 | 8.211937e-05 | -1.253763e-04 | 0.025835 | -6.306754e-05 | 1.255579e-04 | -0.026030 | -4.879478e-03 | 4.619882e-04 | 0.000824 | -0.003888 | 3.109504e-04 | 2.760935e-04 | 0.000985 | 0.000064 | 4.273685e-05 | -0.004218 | 0.001271 | 2.748842e-05 | -1.234989e-04 | 1.263592e-04 | -0.025706 | -3.734004e-05 | 7.286673e-05 | -0.014651 | 4.160311e-04 | 0.006419 | 3.010236e-05 | -2.219964e-04 | 5.327081e-05 | -3.989752e-04 | -7.896479e-03 | 0.061486 | -0.006788 |
L2.ACTIVE.DEATH | 1.847730e-07 | -6.894978e-08 | 0.000012 | -0.000059 | 0.000017 | 0.000238 | 0.000076 | -1.786426e-05 | 0.000237 | 0.000097 | 0.000025 | -0.000028 | 0.000095 | -0.000011 | -0.000029 | -1.667211e-07 | 4.515097e-07 | -0.000074 | 9.998339e-07 | -4.008178e-07 | 0.000076 | 7.925870e-05 | -1.628266e-05 | -0.000001 | 0.000018 | -2.183999e-06 | 5.267540e-06 | -0.000003 | -0.000098 | -6.308123e-07 | 0.000023 | 0.000004 | -5.759040e-07 | 6.578083e-07 | -8.276661e-07 | 0.000075 | 1.870955e-07 | -1.922086e-07 | 0.000043 | -4.522500e-05 | -0.000531 | -2.327856e-06 | 1.024282e-07 | -1.708134e-08 | 1.318043e-08 | 5.381583e-07 | 0.000005 | 0.000016 |
L2.RECOVERED.DEATH | 6.495319e-06 | -2.854715e-06 | 0.000575 | 0.000020 | -0.000020 | -0.000103 | -0.000020 | 2.039561e-05 | -0.000071 | -0.000074 | -0.000069 | -0.000013 | 0.000067 | 0.000065 | -0.000015 | 1.360305e-07 | -9.116424e-07 | 0.000118 | -1.374243e-07 | 8.978953e-07 | -0.000120 | -3.912228e-05 | 5.152443e-06 | 0.000011 | -0.000020 | 1.171109e-06 | 1.368332e-06 | 0.000048 | 0.000012 | -3.781914e-07 | -0.000022 | -0.000004 | 9.125923e-09 | -4.328852e-07 | 6.439354e-07 | -0.000119 | -1.788911e-07 | 2.929410e-07 | -0.000067 | 1.289512e-05 | 0.000150 | 6.662393e-07 | -5.402275e-06 | 1.952113e-07 | -4.213484e-06 | 5.857110e-05 | 0.000244 | -0.000021 |
L2.DEATH.DEATH | -2.354111e-04 | 1.080801e-04 | -0.021918 | -0.002955 | 0.001028 | -0.002471 | 0.002603 | -1.009237e-03 | -0.003538 | 0.002930 | 0.001767 | 0.001223 | -0.005726 | -0.001806 | 0.001089 | -8.485303e-05 | 1.264448e-04 | -0.026023 | 6.629932e-05 | -1.266670e-04 | 0.026236 | 5.380496e-03 | -5.316544e-04 | -0.000815 | 0.003962 | -3.095275e-04 | -2.610426e-04 | -0.000897 | -0.000307 | -4.524420e-05 | 0.004237 | -0.001086 | -2.868309e-05 | 1.269699e-04 | -1.286161e-04 | 0.025906 | 3.776624e-05 | -7.263145e-05 | 0.014764 | -4.565863e-04 | -0.006906 | -3.225759e-05 | 2.099000e-04 | -5.349880e-05 | 3.929163e-04 | 8.172281e-03 | -0.061789 | 0.006900 |
L1.e(ACTIVE).ACTIVE | 4.131925e-04 | -1.362605e-04 | 0.025998 | -0.017751 | 0.004618 | 0.060752 | 0.017785 | -5.272903e-03 | 0.062587 | -0.002702 | -0.002097 | -0.006852 | 0.001569 | 0.001899 | -0.007097 | -1.008666e-04 | 2.929965e-05 | -0.005077 | 9.551532e-05 | -3.271894e-05 | 0.005555 | 2.166019e-02 | -1.831553e-03 | 0.000150 | 0.006468 | -6.019303e-04 | 2.961426e-04 | 0.001800 | 0.002157 | -2.145686e-05 | -0.000920 | 0.003683 | -3.216043e-05 | 1.150691e-04 | -2.560013e-05 | 0.005612 | 1.985446e-05 | -2.586249e-06 | 0.003418 | 6.687820e-04 | 0.000661 | 4.758569e-06 | -2.849961e-04 | -4.053459e-06 | -1.437526e-04 | 6.187572e-03 | -0.007359 | 0.002076 |
L1.e(RECOVERED).ACTIVE | -9.188382e-05 | 3.640944e-05 | -0.007170 | 0.001432 | -0.000701 | -0.008473 | -0.001740 | 7.520126e-04 | -0.008784 | -0.000942 | 0.000004 | 0.001247 | -0.002717 | -0.000441 | 0.001292 | 4.249562e-06 | -4.541513e-06 | 0.000485 | -2.023139e-05 | 2.995958e-06 | -0.000551 | -1.869139e-03 | 9.554686e-04 | -0.000109 | -0.000350 | -4.955646e-04 | -2.177340e-04 | -0.000008 | 0.009465 | 5.312529e-05 | -0.001121 | -0.006577 | -9.268863e-06 | -9.848211e-06 | 4.501380e-05 | -0.000606 | -6.970406e-06 | -2.730453e-05 | -0.000265 | 1.023952e-03 | 0.013495 | 5.877044e-05 | 6.568317e-05 | -8.589688e-07 | 4.720151e-05 | -1.006760e-03 | -0.001850 | -0.000440 |
L1.e(DEATH).ACTIVE | -1.170546e-04 | 4.839982e-05 | -0.009644 | 0.000518 | 0.000021 | -0.001504 | -0.000516 | -3.502391e-07 | -0.002098 | 0.001029 | 0.001144 | 0.000533 | -0.000870 | -0.001123 | 0.000592 | 7.500642e-06 | 2.555096e-06 | 0.000419 | -6.738440e-06 | -2.380042e-06 | -0.000434 | -5.685113e-04 | 5.261152e-05 | -0.000126 | -0.000218 | 1.820164e-05 | -2.088111e-05 | -0.000953 | 0.000064 | 1.204021e-05 | -0.000177 | -0.000044 | 3.503789e-06 | -8.183241e-06 | 2.445740e-06 | -0.000402 | -1.818258e-06 | 1.087441e-06 | -0.000262 | -3.362350e-05 | -0.000272 | -1.105071e-06 | 9.168319e-05 | 3.695557e-06 | 3.619691e-05 | -2.575684e-03 | 0.004069 | -0.000494 |
L2.e(ACTIVE).ACTIVE | -2.043027e-05 | 2.622421e-05 | -0.005781 | -0.006150 | 0.000230 | 0.008111 | 0.005690 | -4.349374e-04 | 0.008104 | 0.000493 | -0.000512 | -0.000374 | -0.003111 | -0.000608 | -0.000405 | -3.003505e-05 | 1.667931e-05 | -0.003924 | 1.647861e-05 | -2.192770e-05 | 0.003997 | 6.384495e-03 | -3.329107e-04 | -0.000258 | 0.013487 | -5.648254e-04 | -1.990757e-04 | -0.000119 | 0.002767 | 1.657263e-05 | 0.000492 | 0.006420 | 3.523715e-05 | 2.906431e-05 | -9.734233e-06 | 0.004293 | 5.772229e-05 | 8.491337e-06 | 0.003396 | 2.388254e-03 | 0.019042 | 8.615056e-05 | 3.214125e-05 | -2.524328e-05 | 1.550790e-04 | 5.134088e-03 | -0.031656 | 0.008128 |
L2.e(RECOVERED).ACTIVE | 3.524639e-05 | -1.405477e-05 | 0.002779 | 0.000461 | -0.000016 | 0.000102 | -0.000480 | 9.507403e-06 | 0.000199 | -0.000451 | -0.000203 | -0.000162 | 0.000405 | 0.000173 | -0.000170 | 5.891434e-07 | -2.413368e-06 | 0.000313 | -7.105425e-07 | 2.251916e-06 | -0.000313 | -5.709181e-04 | -4.996871e-04 | 0.000073 | -0.000560 | 6.754621e-04 | 6.831636e-05 | -0.000209 | -0.006766 | -3.514551e-05 | 0.000822 | 0.007154 | 2.731363e-05 | -3.318134e-06 | -2.809619e-05 | -0.000276 | 1.838703e-06 | 3.308777e-05 | -0.000344 | -2.544118e-05 | -0.001130 | -4.737864e-06 | -2.763893e-05 | 2.998833e-07 | -1.892043e-05 | 4.510952e-04 | 0.000701 | 0.000340 |
L2.e(DEATH).ACTIVE | -1.827327e-04 | 7.635029e-05 | -0.015260 | 0.000346 | 0.000375 | 0.001409 | -0.000157 | -3.566835e-04 | 0.000461 | 0.002700 | 0.002175 | 0.000413 | -0.000398 | -0.001875 | 0.000496 | 1.262305e-05 | 9.643159e-06 | 0.000102 | -2.521690e-06 | -8.345360e-06 | -0.000094 | -1.144052e-04 | -1.361206e-04 | -0.000228 | -0.000201 | 4.598703e-05 | 3.793023e-05 | -0.001506 | -0.001647 | 1.162726e-05 | 0.000266 | 0.000404 | 1.357753e-06 | -7.546022e-06 | -6.815197e-06 | -0.000070 | 1.083694e-07 | 2.188232e-06 | -0.000081 | -7.670816e-04 | -0.008718 | -3.819878e-05 | 1.478278e-04 | 3.446458e-06 | 6.945118e-05 | -3.604463e-03 | 0.003914 | -0.000507 |
L1.e(ACTIVE).RECOVERED | -1.635429e-04 | 6.792413e-05 | -0.013542 | 0.001211 | -0.000586 | -0.007039 | -0.001242 | 6.574818e-04 | -0.007659 | 0.001638 | 0.001011 | 0.001280 | -0.002312 | -0.001101 | 0.001334 | 9.823995e-06 | 7.870772e-06 | -0.001019 | -1.302701e-05 | -7.952070e-06 | 0.000979 | -1.437743e-03 | 7.545968e-04 | -0.000291 | 0.000134 | -4.835246e-04 | -1.966257e-04 | -0.000243 | 0.007773 | 5.507510e-05 | 0.000395 | -0.006281 | -8.292879e-06 | -3.472459e-06 | 3.049112e-05 | 0.000818 | 1.273322e-06 | -3.020526e-05 | 0.000654 | -6.243240e-05 | 0.001297 | 4.873667e-06 | 1.311307e-04 | -1.394347e-05 | 1.510072e-04 | 7.011847e-04 | -0.016920 | 0.000853 |
L1.e(RECOVERED).RECOVERED | -6.898061e-04 | 3.087427e-04 | -0.061903 | -0.004094 | -0.003634 | -0.028060 | 0.000724 | 3.499805e-03 | -0.029947 | -0.013184 | -0.001639 | 0.007006 | -0.030722 | -0.003902 | 0.007288 | -6.292719e-05 | -1.932380e-05 | 0.000292 | -1.288748e-04 | -3.459923e-06 | -0.000501 | 1.928609e-03 | 9.448526e-03 | -0.001236 | 0.002629 | -6.727781e-03 | -2.323391e-03 | 0.001715 | 0.120674 | 6.423499e-04 | -0.015383 | -0.078028 | -1.600600e-04 | 1.037690e-05 | 5.307832e-04 | -0.001002 | -6.851775e-05 | -3.448616e-04 | 0.000830 | 1.282267e-02 | 0.167632 | 7.302365e-04 | 5.107520e-04 | -1.033137e-05 | 4.094650e-04 | -6.971801e-03 | -0.026010 | -0.004557 |
L1.e(DEATH).RECOVERED | 7.734463e-06 | -3.122543e-06 | 0.000622 | -0.000052 | -0.000021 | 0.000035 | 0.000039 | 1.863119e-05 | 0.000081 | -0.000154 | -0.000110 | -0.000021 | -0.000039 | 0.000084 | -0.000024 | -5.463279e-07 | -8.294308e-07 | 0.000077 | -2.718868e-07 | 7.143262e-07 | -0.000077 | 3.728542e-05 | 3.969698e-05 | 0.000008 | 0.000013 | -3.050831e-05 | -7.453716e-06 | 0.000092 | 0.000535 | 2.091471e-06 | -0.000070 | -0.000343 | -8.948610e-07 | 2.138084e-07 | 2.724951e-06 | -0.000084 | -3.083516e-07 | -1.332728e-06 | -0.000037 | 6.045005e-05 | 0.000782 | 3.408357e-06 | -6.268857e-06 | -1.559192e-07 | -2.717979e-06 | 1.556496e-04 | -0.000228 | -0.000014 |
L2.e(ACTIVE).RECOVERED | -7.876081e-04 | 3.325533e-04 | -0.066615 | 0.002995 | 0.000568 | -0.005048 | -0.002124 | -3.849160e-04 | -0.008891 | 0.013634 | 0.008754 | 0.002814 | -0.002928 | -0.007402 | 0.003106 | 5.536114e-05 | 6.090880e-05 | -0.004608 | -9.633086e-06 | -5.473752e-05 | 0.004622 | -2.128593e-03 | -9.042187e-04 | -0.001231 | 0.000435 | 7.753819e-04 | 1.159508e-05 | -0.005462 | -0.013538 | 2.291897e-05 | 0.006218 | 0.008252 | 5.068563e-05 | -1.486833e-05 | -7.923608e-05 | 0.004332 | 2.797526e-05 | 2.512272e-05 | 0.002504 | -4.116954e-03 | -0.048436 | -2.129567e-04 | 6.519481e-04 | -3.790372e-05 | 5.751506e-04 | -3.825806e-03 | -0.044095 | 0.003844 |
L2.e(RECOVERED).RECOVERED | 6.103610e-04 | -2.259523e-04 | 0.044118 | -0.003884 | 0.001530 | 0.024389 | 0.003308 | -1.962539e-03 | 0.026465 | -0.006708 | -0.004242 | -0.004471 | 0.004238 | 0.002979 | -0.004680 | -3.977372e-05 | -2.042070e-05 | 0.001276 | 2.853014e-05 | 1.354752e-05 | -0.001107 | 4.152347e-03 | -6.633596e-03 | 0.000898 | 0.006504 | 7.148996e-03 | 8.067798e-04 | -0.001609 | -0.078576 | -4.220307e-04 | 0.009146 | 0.090533 | 3.360726e-04 | 5.345263e-06 | -3.422784e-04 | -0.000353 | 7.263122e-05 | 4.006423e-04 | -0.001500 | 1.892445e-03 | 0.001750 | 1.345705e-05 | -4.603463e-04 | -9.135713e-06 | -2.322029e-04 | 1.071597e-02 | -0.008562 | 0.010749 |
L2.e(DEATH).RECOVERED | 1.805404e-05 | -7.443271e-06 | 0.001484 | -0.000032 | -0.000029 | -0.000033 | 0.000016 | 2.557511e-05 | 0.000056 | -0.000246 | -0.000200 | -0.000054 | 0.000066 | 0.000172 | -0.000061 | -9.706481e-07 | -1.109417e-06 | 0.000045 | 1.944615e-07 | 9.828772e-07 | -0.000046 | 9.254667e-06 | -1.753823e-05 | 0.000024 | 0.000035 | 2.959577e-05 | 9.672831e-07 | 0.000121 | -0.000229 | -2.763912e-06 | 0.000024 | 0.000377 | 1.511312e-06 | 3.909911e-07 | -7.803245e-07 | -0.000045 | 2.963248e-07 | 1.773917e-06 | -0.000030 | 6.561810e-05 | 0.000658 | 2.912346e-06 | -1.446235e-05 | -3.374220e-07 | -6.835843e-06 | 3.519425e-04 | -0.000373 | 0.000080 |
L1.e(ACTIVE).DEATH | 1.459495e-06 | -4.480730e-07 | 0.000084 | -0.000078 | 0.000017 | 0.000199 | 0.000076 | -1.889472e-05 | 0.000206 | -0.000009 | -0.000011 | -0.000022 | -0.000015 | 0.000010 | -0.000024 | -8.333189e-07 | 6.056637e-07 | -0.000132 | 7.037584e-07 | -6.216609e-07 | 0.000135 | 1.022875e-04 | -6.643217e-06 | -0.000002 | 0.000030 | -4.562859e-06 | -2.632963e-07 | 0.000013 | 0.000035 | -2.342573e-07 | 0.000014 | -0.000016 | -3.314868e-07 | 1.120492e-06 | -5.315569e-07 | 0.000132 | 2.159418e-07 | -4.221140e-07 | 0.000075 | 9.748470e-07 | -0.000014 | -6.352582e-08 | -9.132881e-07 | -2.794600e-07 | 8.776588e-07 | 8.036518e-05 | -0.000331 | 0.000046 |
L1.e(RECOVERED).DEATH | -2.054157e-06 | 8.913855e-07 | -0.000177 | 0.000003 | -0.000023 | -0.000133 | -0.000016 | 2.214913e-05 | -0.000137 | -0.000070 | -0.000015 | 0.000027 | -0.000108 | -0.000009 | 0.000029 | 1.770512e-07 | -7.005879e-07 | 0.000127 | -9.229823e-07 | 6.027684e-07 | -0.000129 | -2.584631e-05 | 4.485391e-05 | -0.000002 | -0.000010 | -2.793702e-05 | -9.099195e-06 | 0.000012 | 0.000530 | 3.063400e-06 | -0.000086 | -0.000340 | -5.496566e-07 | -6.069015e-07 | 2.966255e-06 | -0.000133 | -4.857034e-07 | -1.170417e-06 | -0.000068 | 5.788442e-05 | 0.000761 | 3.325916e-06 | 1.351139e-06 | 1.923897e-07 | 7.635314e-08 | -6.767923e-05 | 0.000161 | -0.000061 |
L1.e(DEATH).DEATH | -2.518911e-04 | 1.141441e-04 | -0.023099 | -0.002922 | 0.001115 | -0.002945 | 0.002542 | -1.087459e-03 | -0.004128 | 0.002863 | 0.001982 | 0.001316 | -0.005778 | -0.001993 | 0.001195 | -8.385333e-05 | 1.262295e-04 | -0.025701 | 6.470076e-05 | -1.263065e-04 | 0.025909 | 5.420961e-03 | -5.840186e-04 | -0.000808 | 0.004256 | -2.730227e-04 | -2.465795e-04 | -0.001186 | -0.000786 | -4.998428e-05 | 0.003930 | -0.000338 | -2.708480e-05 | 1.235093e-04 | -1.323439e-04 | 0.026320 | 3.788572e-05 | -6.892932e-05 | 0.014648 | -4.052679e-04 | -0.006115 | -2.866840e-05 | 2.211489e-04 | -4.888318e-05 | 3.759040e-04 | 6.912941e-03 | -0.056342 | 0.008579 |
L2.e(ACTIVE).DEATH | -2.408280e-06 | 1.072410e-06 | -0.000217 | -0.000011 | 0.000001 | 0.000002 | 0.000013 | -1.458723e-06 | -0.000010 | 0.000050 | 0.000026 | 0.000008 | -0.000015 | -0.000024 | 0.000008 | 5.025458e-08 | 3.009329e-07 | -0.000039 | 8.426372e-08 | -2.939714e-07 | 0.000039 | 1.524558e-05 | -6.091438e-06 | -0.000005 | 0.000058 | 1.617806e-06 | -2.812545e-07 | -0.000016 | -0.000061 | -3.844659e-08 | 0.000030 | 0.000069 | 3.400323e-07 | 1.220607e-07 | -4.603753e-07 | 0.000040 | 3.937551e-07 | 1.711930e-07 | 0.000024 | -8.265543e-06 | -0.000143 | -6.135748e-07 | 2.073733e-06 | -2.644377e-07 | 2.570565e-06 | 2.047409e-05 | -0.000311 | 0.000055 |
L2.e(RECOVERED).DEATH | 3.136914e-06 | -1.218307e-06 | 0.000240 | -0.000004 | 0.000004 | 0.000105 | 0.000003 | -6.021865e-06 | 0.000116 | -0.000037 | -0.000022 | -0.000022 | 0.000033 | 0.000017 | -0.000022 | 6.145841e-08 | -4.091665e-07 | 0.000073 | -6.337203e-08 | 3.823451e-07 | -0.000073 | -1.935291e-07 | -2.758726e-05 | 0.000006 | 0.000009 | 3.305876e-05 | 4.294473e-06 | -0.000006 | -0.000348 | -1.745340e-06 | 0.000030 | 0.000401 | 1.559160e-06 | -3.141222e-07 | -1.182458e-06 | -0.000069 | 1.925512e-07 | 1.964790e-06 | -0.000048 | 8.109507e-06 | 0.000013 | 8.729116e-08 | -2.453167e-06 | 1.100770e-07 | -2.034668e-06 | 2.112202e-05 | 0.000137 | 0.000019 |
L2.e(DEATH).DEATH | -1.316469e-04 | 6.155318e-05 | -0.012511 | -0.002146 | 0.000470 | -0.001184 | 0.001957 | -4.650074e-04 | -0.001752 | 0.001853 | 0.000913 | 0.000694 | -0.003296 | -0.001002 | 0.000616 | -4.776004e-05 | 7.038920e-05 | -0.014645 | 3.785288e-05 | -7.078372e-05 | 0.014762 | 3.323432e-03 | -2.551425e-04 | -0.000478 | 0.003376 | -3.420128e-04 | -1.774289e-04 | -0.000405 | 0.000931 | -1.905635e-05 | 0.002279 | -0.001483 | -2.008921e-05 | 7.015344e-05 | -6.782896e-05 | 0.014644 | 2.331407e-05 | -4.787308e-05 | 0.008995 | -9.708273e-05 | -0.001971 | -9.767192e-06 | 1.185250e-04 | -3.237012e-05 | 2.337198e-04 | 5.108848e-03 | -0.037651 | 0.005731 |
beta.Active Tested.ACTIVE | 2.278402e-04 | -7.979971e-05 | 0.015608 | -0.002213 | -0.001452 | -0.007725 | 0.000323 | 1.248136e-03 | -0.006393 | -0.012154 | -0.005383 | 0.000792 | -0.009406 | 0.002445 | 0.000713 | -5.733883e-05 | -3.085336e-05 | 0.000399 | -3.712186e-05 | 1.813282e-05 | -0.000446 | 7.932959e-04 | 1.012540e-03 | 0.000284 | 0.002418 | -2.965308e-05 | -6.216736e-04 | 0.001484 | 0.012699 | 3.387451e-05 | -0.003765 | 0.001848 | 5.083349e-05 | 7.721609e-06 | 5.727913e-05 | -0.000391 | -6.744838e-06 | 7.900180e-06 | -0.000093 | 7.453257e-03 | 0.082763 | 3.643228e-04 | -1.975153e-04 | -8.155040e-07 | -9.386517e-05 | 4.083284e-03 | -0.005047 | 0.001930 |
beta.Active Tested.RECOVERED | 2.071696e-03 | -6.868373e-04 | 0.133361 | -0.018999 | -0.016351 | -0.085384 | -0.001732 | 1.417781e-02 | -0.072507 | -0.132840 | -0.056461 | 0.010763 | -0.110176 | 0.023126 | 0.010097 | -6.022145e-04 | -3.388103e-04 | 0.006270 | -4.604724e-04 | 1.951234e-04 | -0.006812 | 1.743406e-03 | 1.339546e-02 | 0.002477 | 0.019304 | -1.166018e-03 | -7.458232e-03 | 0.014719 | 0.166551 | 5.517775e-04 | -0.045380 | 0.001372 | 5.302771e-04 | 4.460843e-05 | 7.560143e-04 | -0.005995 | -1.293763e-04 | 1.147035e-05 | -0.001936 | 8.276396e-02 | 0.954032 | 4.188156e-03 | -1.833746e-03 | -2.084934e-07 | -8.607139e-04 | 3.658185e-02 | -0.049861 | 0.018112 |
beta.Active Tested.DEATH | 9.140385e-06 | -3.036266e-06 | 0.000590 | -0.000085 | -0.000072 | -0.000377 | -0.000006 | 6.225772e-05 | -0.000320 | -0.000584 | -0.000248 | 0.000047 | -0.000483 | 0.000102 | 0.000044 | -2.651237e-06 | -1.499005e-06 | 0.000029 | -2.017623e-06 | 8.675918e-07 | -0.000032 | 9.550235e-06 | 5.832834e-05 | 0.000011 | 0.000087 | -4.897309e-06 | -3.263759e-05 | 0.000064 | 0.000725 | 2.390824e-06 | -0.000199 | 0.000012 | 2.346909e-06 | 1.951855e-07 | 3.302597e-06 | -0.000028 | -5.553512e-07 | 7.942949e-08 | -0.000010 | 3.643326e-04 | 0.004188 | 1.839086e-05 | -8.090861e-06 | 8.223087e-09 | -3.849995e-06 | 1.592905e-04 | -0.000208 | 0.000081 |
sqrt.var.ACTIVE | -1.182769e-05 | 5.047251e-06 | -0.001012 | 0.000008 | 0.000025 | 0.000130 | 0.000004 | -2.392453e-05 | 0.000072 | 0.000180 | 0.000136 | 0.000025 | -0.000048 | -0.000119 | 0.000030 | 6.967962e-07 | 7.720862e-07 | -0.000025 | -1.200972e-07 | -7.011294e-07 | 0.000027 | 1.082305e-05 | -6.611084e-06 | -0.000017 | 0.000003 | -4.194132e-07 | 4.758944e-07 | -0.000088 | -0.000059 | 1.066117e-06 | 0.000035 | -0.000002 | 1.208644e-07 | -2.531324e-07 | -3.828482e-07 | 0.000025 | 1.389131e-07 | -7.674968e-08 | 0.000015 | -4.803901e-05 | -0.000537 | -2.363296e-06 | 9.728719e-06 | -1.135684e-07 | 6.340766e-06 | -1.598912e-04 | -0.000152 | 0.000010 |
sqrt.cov.ACTIVE.RECOVERED | -2.968577e-05 | 1.253911e-05 | -0.002508 | 0.000062 | 0.000032 | -0.000025 | -0.000060 | -3.047226e-05 | -0.000175 | 0.000278 | 0.000300 | 0.000104 | -0.000236 | -0.000294 | 0.000118 | 1.476587e-06 | 1.117384e-06 | 0.000037 | -1.285772e-06 | -1.085358e-06 | -0.000038 | -5.232638e-05 | 7.919650e-06 | -0.000036 | -0.000027 | -1.652392e-06 | -5.457971e-06 | -0.000238 | 0.000064 | 3.361949e-06 | -0.000034 | -0.000046 | 6.068288e-07 | -1.412810e-06 | 4.554656e-07 | -0.000032 | -3.184743e-07 | -8.566416e-08 | -0.000023 | -1.522432e-05 | -0.000125 | -5.423656e-07 | 2.362822e-05 | 6.726644e-07 | 1.079097e-05 | -6.011060e-04 | 0.000699 | -0.000082 |
sqrt.var.RECOVERED | 8.654803e-06 | -3.122834e-06 | 0.000606 | -0.000050 | -0.000042 | -0.000173 | 0.000045 | 4.154643e-05 | -0.000112 | -0.000014 | -0.000129 | -0.000006 | -0.000068 | 0.000115 | -0.000014 | -9.560941e-07 | 7.584339e-07 | -0.000276 | 5.356306e-07 | -8.182658e-07 | 0.000278 | 5.326894e-05 | 6.039274e-07 | -0.000007 | 0.000139 | -2.071368e-06 | -1.175061e-05 | 0.000139 | 0.000040 | -2.561798e-07 | 0.000214 | 0.000054 | 1.168230e-06 | 1.844659e-06 | -1.068302e-06 | 0.000253 | 1.472077e-06 | -5.506541e-07 | 0.000169 | 5.566104e-07 | -0.000042 | -2.327687e-07 | -5.863606e-06 | -3.029888e-06 | 1.202538e-05 | 7.998654e-04 | -0.003550 | 0.000355 |
sqrt.cov.ACTIVE.DEATH | 7.206985e-03 | -3.045945e-03 | 0.609218 | -0.014658 | -0.008055 | 0.003201 | 0.013870 | 7.629799e-03 | 0.039464 | -0.069013 | -0.073056 | -0.024879 | 0.056290 | 0.071359 | -0.028249 | -3.603081e-04 | -2.798232e-04 | -0.007810 | 3.031797e-04 | 2.707954e-04 | 0.007899 | 1.194234e-02 | -1.703117e-03 | 0.008875 | 0.006151 | 3.950251e-04 | 1.279647e-03 | 0.057565 | -0.013725 | -8.107033e-04 | 0.006976 | 0.010782 | -1.462480e-04 | 3.344602e-04 | -9.673613e-05 | 0.006706 | 6.981351e-05 | 2.217691e-05 | 0.004878 | 4.642701e-03 | 0.041388 | 1.803664e-04 | -5.744559e-03 | -1.516452e-04 | -2.682195e-03 | 1.434651e-01 | -0.156455 | 0.018630 |
sqrt.cov.RECOVERED.DEATH | -2.949703e-04 | -7.480436e-06 | 0.005808 | 0.007467 | 0.009520 | 0.057070 | -0.004989 | -9.536313e-03 | 0.051350 | -0.004697 | 0.015564 | -0.006741 | 0.038689 | -0.010445 | -0.005751 | 1.663611e-04 | -2.198196e-04 | 0.061633 | -3.701418e-06 | 2.412785e-04 | -0.061920 | -7.305441e-03 | -1.884400e-03 | 0.003646 | -0.031708 | 7.231029e-04 | 3.656907e-03 | -0.018783 | -0.026244 | -1.937097e-04 | -0.044889 | -0.008215 | -3.470348e-04 | -3.378942e-04 | 1.604707e-04 | -0.056485 | -3.139222e-04 | 1.390774e-04 | -0.037722 | -4.950659e-03 | -0.049023 | -2.040960e-04 | 1.429858e-05 | 6.678430e-04 | -3.437261e-03 | -1.522014e-01 | 0.791018 | -0.078483 |
sqrt.var.DEATH | 2.242475e-04 | -7.408849e-05 | 0.014170 | -0.001037 | -0.000065 | -0.001107 | 0.000538 | -8.693661e-05 | 0.000362 | -0.001996 | -0.003643 | -0.000311 | -0.002666 | 0.002225 | -0.000499 | -4.688794e-05 | 8.338323e-06 | -0.006809 | 2.499596e-05 | -1.501090e-05 | 0.006914 | 2.207216e-03 | -4.517386e-04 | -0.000150 | 0.008161 | 3.347985e-04 | -3.484035e-04 | 0.002523 | -0.004684 | -4.301253e-05 | 0.004230 | 0.010696 | 6.382988e-05 | 5.350031e-05 | -6.211821e-05 | 0.008596 | 5.622327e-05 | 1.845470e-05 | 0.005736 | 1.928014e-03 | 0.018094 | 8.111191e-05 | -1.509560e-04 | -6.626762e-05 | 2.527860e-04 | 1.795964e-02 | -0.078585 | 0.050387 |
print(model_fit.mse)
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-122-2bd19a1963b9> in <module>() ----> 1 print(model_fit.mse) /usr/local/lib/python3.7/dist-packages/statsmodels/base/wrapper.py in __getattribute__(self, attr) 33 pass 34 ---> 35 obj = getattr(results, attr) 36 data = results.model.data 37 how = self._wrap_attrs.get(attr) AttributeError: 'VARMAXResults' object has no attribute 'mse'
from sklearn import metrics
metrics.mean_squared_error(test['Active cases'], y['Active cases pred'])
1443436507.881272
metrics.mean_absolute_error(test['ACTIVE'], y['ACTIVE pred'])
model_fit.self.mse
# en = train.drop(['TESTED'], axis=1)
ens = ['Recovered', 'Deceased', 'Total Doses Administered', 'Active Tested']
del ens[3:]
en = train[['Active cases'] + ens]
exs = ['Active Tested']
ex= train[exs]
ext = test[exs]
en
Active cases | Recovered | Deceased | Total Doses Administered | |
---|---|---|---|---|
Date | ||||
2020-02-02 | 2.0 | 0.0 | 0.0 | 0.0 |
2020-02-03 | 3.0 | 0.0 | 0.0 | 0.0 |
2020-02-14 | 0.0 | 3.0 | 0.0 | 0.0 |
2020-03-02 | 0.0 | 3.0 | 0.0 | 0.0 |
2020-03-03 | 0.0 | 3.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... |
2021-07-19 | 122202.0 | 3033258.0 | 15408.0 | 17059082.0 |
2021-07-20 | 126894.0 | 3045310.0 | 15512.0 | 17329411.0 |
2021-07-21 | 130138.0 | 3059441.0 | 15618.0 | 17427963.0 |
2021-07-22 | 129381.0 | 3072895.0 | 15739.0 | 17709527.0 |
2021-07-23 | 135700.0 | 3083962.0 | 15871.0 | 17976323.0 |
512 rows × 4 columns
MODEL
model = VARMAX(en, order=(5, 9), exog = ex)
model_fit = model.fit()
/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/statespace/varmax.py:159: EstimationWarning: Estimation of VARMA(p,q) models is not generically robust, due especially to identification issues. EstimationWarning) /usr/local/lib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:219: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting. ' ignored when e.g. forecasting.', ValueWarning) /usr/local/lib/python3.7/dist-packages/statsmodels/base/model.py:512: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals "Check mle_retvals", ConvergenceWarning)
y = model_fit.forecast(steps=len(test), exog = ext)
/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/statespace/varmax.py:159: EstimationWarning: Estimation of VARMA(p,q) models is not generically robust, due especially to identification issues. EstimationWarning) /usr/local/lib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:576: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`. ValueWarning)
model_fit.get_forecast(len(test), exog = ext)
/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/statespace/varmax.py:159: EstimationWarning: Estimation of VARMA(p,q) models is not generically robust, due especially to identification issues. EstimationWarning) /usr/local/lib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:576: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`. ValueWarning)
<statsmodels.tsa.statespace.mlemodel.PredictionResultsWrapper at 0x7f8f3fa29110>
print(f)
<statsmodels.tsa.statespace.mlemodel.PredictionResultsWrapper object at 0x7f8f442d8290>
y.index = test.index
y.columns += [' pred']*y.shape[1]
y
Active cases pred | Recovered pred | Deceased pred | Total Doses Administered pred | |
---|---|---|---|---|
Date | ||||
2021-07-24 | 120722.295746 | 2.936559e+06 | 15251.444337 | 1.799726e+07 |
2021-07-25 | 136279.926804 | 3.087144e+06 | 15943.610878 | 1.903589e+07 |
2021-07-26 | 116821.951333 | 2.869757e+06 | 15017.063522 | 1.770858e+07 |
2021-07-27 | 128265.631180 | 2.947657e+06 | 15390.719040 | 1.753981e+07 |
2021-07-28 | 139531.853199 | 3.028345e+06 | 15772.208342 | 1.749127e+07 |
... | ... | ... | ... | ... |
2021-10-16 | 107030.922107 | 1.416993e+06 | 8284.166900 | 6.897209e+06 |
2021-10-17 | 103154.849162 | 1.399609e+06 | 8216.596288 | 6.864710e+06 |
2021-10-18 | 98439.651819 | 1.373752e+06 | 8112.219620 | 6.784352e+06 |
2021-10-19 | 97233.958201 | 1.379015e+06 | 8146.156181 | 6.801438e+06 |
2021-10-20 | 98351.791926 | 1.403967e+06 | 8267.528219 | 6.829014e+06 |
89 rows × 4 columns
plt.matshow(y.corr())
plt.colorbar()
plt.show()
# train['ACTIVE'].plot(legend = True)
test['Active cases'].plot(legend = True)
y['Active cases pred'].plot(legend = True)
<matplotlib.axes._subplots.AxesSubplot at 0x7f8f3f8da6d0>
test['Recovered'].plot(legend = True)
y['Recovered pred'].plot(legend = True)
<matplotlib.axes._subplots.AxesSubplot at 0x7f6cca16bc10>
pr = model_fit.predict(2, len(df)-2, exog = ext)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-1-c8da972cea17> in <module>() ----> 1 pr = model_fit.predict(2, len(df)-2, exog = ext) NameError: name 'model_fit' is not defined
pr.index = df.iloc[1:len(df)-2].index
# pr.columns += [' pred']*pr.shape[1]
train['Active cases'].plot(label = 'Active cases', legend = True)
test['Active cases'].plot(legend = True, label = 'Actual')
pr['Active cases'].iloc[:-l].plot(style = '--',label = 'Fit', legend = True)
pr['Active cases'].iloc[-l:].plot(style = '--',label = 'Forecast', legend = True)
# y['ACTIVE pred'].plot(legend = True)
<matplotlib.axes._subplots.AxesSubplot at 0x7f6cc9fa6e90>
# /pr.index = df.iloc[1:len(df)-2].index
# pr.columns += [' pred']*pr.shape[1]
train['Recovered'].plot(label = 'Active cases', legend = True)
test['Recovered'].plot(legend = True, label = 'Actual')
pr['Recovered'].iloc[:-l].plot(style = '--',label = 'Fit', legend = True)
pr['Recovered'].iloc[-l:].plot(style = '--',label = 'Forecast', legend = True)
plt.show()
# y['ACTIVE pred'].plot(legend = True)
train['Deceased'].plot(label = 'Active cases', legend = True)
test['Deceased'].plot(legend = True, label = 'Actual')
pr['Deceased'].iloc[:-l].plot(style = '--',label = 'Fit', legend = True)
pr['Deceased'].iloc[-l:].plot(style = '--',label = 'Forecast', legend = True)
<matplotlib.axes._subplots.AxesSubplot at 0x7f6cc99b0690>
model_fit.plot_diagnostics(variable=0, lags=20, fig=None, figsize= (9,7))
metrics.mean_squared_error(test['Active cases'], y['Active cases pred'])
210008334.1936363
plt.matshow(model_fit.cov_params())
plt.show()
model_fit.summary().tables[4]
/usr/local/lib/python3.7/dist-packages/statsmodels/base/model.py:1286: RuntimeWarning: invalid value encountered in sqrt bse_ = np.sqrt(np.diag(self.cov_params()))
coef | std err | z | P>|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
intercept | -95.7981 | 0.709 | -135.027 | 0.000 | -97.189 | -94.408 |
L1.Active cases | 0.0190 | 0.002 | 9.141 | 0.000 | 0.015 | 0.023 |
L1.Recovered | -0.0045 | 0.002 | -2.503 | 0.012 | -0.008 | -0.001 |
L1.Deceased | 1.2488 | 0.326 | 3.833 | 0.000 | 0.610 | 1.887 |
L2.Active cases | -0.0662 | 0.004 | -17.511 | 0.000 | -0.074 | -0.059 |
L2.Recovered | -0.0470 | 0.002 | -20.906 | 0.000 | -0.051 | -0.043 |
L2.Deceased | 12.0318 | 0.293 | 41.039 | 0.000 | 11.457 | 12.606 |
L3.Active cases | 0.0642 | 0.003 | 19.737 | 0.000 | 0.058 | 0.071 |
L3.Recovered | 0.0752 | 0.003 | 29.573 | 0.000 | 0.070 | 0.080 |
L3.Deceased | -18.2712 | 0.449 | -40.662 | 0.000 | -19.152 | -17.391 |
L4.Active cases | -0.0175 | 0.002 | -8.700 | 0.000 | -0.021 | -0.014 |
L4.Recovered | -0.0238 | 0.002 | -14.815 | 0.000 | -0.027 | -0.021 |
L4.Deceased | 5.9133 | 0.312 | 18.934 | 0.000 | 5.301 | 6.525 |
L1.e(Active cases) | -0.0190 | 0.002 | -8.887 | 0.000 | -0.023 | -0.015 |
L1.e(Recovered) | -0.0031 | 0.003 | -0.953 | 0.341 | -0.009 | 0.003 |
L1.e(Deceased) | 1.0837 | 0.329 | 3.296 | 0.001 | 0.439 | 1.728 |
L2.e(Active cases) | 0.0229 | 0.003 | 8.491 | 0.000 | 0.018 | 0.028 |
L2.e(Recovered) | 0.0292 | 0.002 | 15.877 | 0.000 | 0.026 | 0.033 |
L2.e(Deceased) | -7.1395 | 0.301 | -23.680 | 0.000 | -7.730 | -6.549 |
L3.e(Active cases) | -0.0104 | 0.002 | -6.608 | 0.000 | -0.013 | -0.007 |
L3.e(Recovered) | -0.0109 | 0.002 | -5.392 | 0.000 | -0.015 | -0.007 |
L3.e(Deceased) | 2.6659 | 0.211 | 12.627 | 0.000 | 2.252 | 3.080 |
L4.e(Active cases) | 0.0107 | 0.001 | 11.074 | 0.000 | 0.009 | 0.013 |
L4.e(Recovered) | 0.0085 | 0.002 | 5.079 | 0.000 | 0.005 | 0.012 |
L4.e(Deceased) | -2.2079 | 0.176 | -12.549 | 0.000 | -2.553 | -1.863 |
L5.e(Active cases) | -0.0057 | 0.001 | -5.863 | 0.000 | -0.008 | -0.004 |
L5.e(Recovered) | -0.0085 | 0.001 | -7.788 | 0.000 | -0.011 | -0.006 |
L5.e(Deceased) | 1.9984 | 0.057 | 35.037 | 0.000 | 1.887 | 2.110 |
L6.e(Active cases) | 0.0080 | 0.000 | 29.846 | 0.000 | 0.007 | 0.008 |
L6.e(Recovered) | 0.0130 | 0.001 | 9.614 | 0.000 | 0.010 | 0.016 |
L6.e(Deceased) | -3.1298 | 0.063 | -49.759 | 0.000 | -3.253 | -3.007 |
L7.e(Active cases) | -0.0043 | 0.000 | -9.020 | 0.000 | -0.005 | -0.003 |
L7.e(Recovered) | 0.0074 | 0.001 | 8.138 | 0.000 | 0.006 | 0.009 |
L7.e(Deceased) | -0.8855 | 0.055 | -16.224 | 0.000 | -0.992 | -0.779 |
L8.e(Active cases) | 0.0347 | 0.001 | 26.203 | 0.000 | 0.032 | 0.037 |
L8.e(Recovered) | -0.0078 | 0.003 | -2.940 | 0.003 | -0.013 | -0.003 |
L8.e(Deceased) | 1.0492 | 0.087 | 12.019 | 0.000 | 0.878 | 1.220 |
beta.Active Tested | 0.0096 | 0.001 | 6.635 | 0.000 | 0.007 | 0.012 |