ଜାତୀୟ ବିଜ୍ଞାନ ଶିକ୍ଷା ଏବଂ ଗବେଷଣା ପ୍ରତିଷ୍ଠାନ
ପରମାଣୁ ଶକ୍ତି ବିଭାଗ, ଭାରତ ସରକାରଙ୍କ ଏକ ସ୍ବୟଂଶାସିତ ପ୍ରତିଷ୍ଠାନ

राष्ट्रीय विज्ञान शिक्षा एवं अनुसंधान संस्थान
परमाणु ऊर्जा विभाग, भारत सरकार का एक स्वयंशासित संस्थान

National Institute of Science Education and Research
AN AUTONOMOUS INSTITUTE UNDER DAE, GOVT. OF INDIA

 

Rajkumar Misra

Assistant Professor
 
 

rajkumarmisraniser.ac.in
-

Professional Experience

  • Assistant Professor (2025-Present)

 School of Chemical Sciences, NISER Bhubaneswar

  • DST Inspire Faculty (2022-2025)

Department of Medicinal Chemistry, NIPER Mohali

Education

  • Postdoctoral Researcher (2019-2022)

Department of Oral Biology, Tel Aviv University, Israel.

Advisor: Prof. Lihi Adler-Abramovich

  • Postdoctoral Researcher (2018-2019)

Department of Material Science and Engineering, University of Delaware, Delaware, USA.

Advisor: Prof. Darrin Pochan

  •  Ph. D (2012-2018)

Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India. 

 Advisor: Prof. H. N. Gopi

  • Master of Science (Chemistry) (2010-2012)

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India.

  • Bachelor of Science (Chemistry) (2006-2010)

Midnapore College, West Bengal, India.  

Extensive experience in enantiopure synthesis of unnatural amino acids, solution/ solid phase peptide synthesis, peptide purification, structural analysis of peptides. Strong expertise in design and synthesis of various protein secondary and super-secondary structures and peptide biomaterials for functional applications.

DST Inspire Faculty Award, India (2021)

The PBC Fellowship Award, Israel (2020) for Outstanding Chinese and Indian Postdoctoral students to pursue their research in Israel.

Tel Aviv University Postdoctoral fellowship for outstanding achievement (2019)

Council of Scientific and Industrial Research (CSIR) Fellowship and National Eligibility Test (NET) Award, India (2011)

Graduate Aptitude Test in Engineering (GATE) Award, India (2011)

Publications from Independent Career

  1. Metal-Directed Self-Assembly of Minimal Heterochiral Peptides into Metallo-Supramolecular β-Helical Tubules for Artificial Transmembrane Water Channels. S. Pophali, D. Su, R. Ata, T. Vijayakanth, S. Nandi, R. Jain, L. JW Shimon, R. Misra,* M. Barboiu; J. Am. Chem. Soc., 2025, 147, 20, 17404–17415. Impact Factor: 15.6
  2. Engineered noncanonical amino acids-based hydrogels for biomedical applications. S. Pophali, V. Shrivastava, R. Misra,* R. Jain; Drug Discov. Today, 2025, 104398. Impact Factor: 7.5
  3. Peptide Hydrogen-bonded Organic Frameworks. T. Vijayakanth, * S. Dasgupta, P. Ganatra, S. Rencus-Lazar, A. V. Desai, S. Nandi, R. Jain, S. Bera, A. I. Nguyen, * E. Gazit, * R. Misra*; Chem Soc Rev, 2024, 53, 3640-3655 Impact Factor: 46.2
  4. Metal-driven folding and assembly of a minimal β-sheet into 3D Porous honeycomb framework. N. Bajpayee, S. Pophali, T. Vijayakanth, S. Nandi, A. V. Desai, V. Kumar, R. Jain, S. Bera, L. J. W. Shimon, R. Misra*; Chem. Commun., 2024, 60, 2621-2624. Impact Factor: 6.290
  5. Conformation Controlled Hydrogelation of Minimalistic α, γ Hybrid Peptide. S. Dasgupta, S. Sen, R. Y. Sathe, S. Pophali, A. Kadu, R. Jain, S. Bera, S. Roy, R. Misra*; Biomacromolecules, 2024, 25, 3715–3723. Impact Factor: 6.09
  6. Exploring Helical Peptides and Foldamers for the Design of Metal Helix Frameworks: Current Trends and Future Perspectives. N. Bajpayee, T. Vijayakanth, S. R.-Lazar, S. Dasgupta, A. V. Desai, R. Jain, E. Gazit, R. Misra*; Angew. Chem. Int. Ed Engl., 2023, 135, e202214583. Impact Factor: 16.83
  7. Organic Catalysts and Ligands Derived from Amino Acids and Peptides. L. Kaur, K. Thakare, A. S. Barahdia, S. Pophali, R. Misra, R. Jain; Tetrahedron, 2025, 134671. Impact Factor: 2.2
  8. Exploring cross-α amyloids: from functional roles to design innovations. S. Dey, R. Kumar, R. Misra, S. Bera; Trends Biochem Sci, 2024, 19, 1097-1110. Impact Factor: 12.9
  9. Peptide-based therapeutics targeting genetic disorders. S. Subramanian, M. Jain, R. Misra, R. Jain; Drug Discov. Today, 2024, 29 (12), 104209. Impact Factor: 7.5

Publications from Postdoctoral Experience 

  1. Effect of solvent-induced packing transitions on N-capped diphenylalanine peptide crystal growth. Y. Dan, Z. A. Arnon, Y. Tang, M. Kravikass, Y. Zhou, R. Misra, O. S. Tiwari, L. J. W. Shimon, R. Beck, E. Gazit, G. Wei, L. A. Abramovich; Nat. Commun., 2025, 16(1), 6106. Impact Factor: 14.7 
  2. Exploiting Minimalistic Backbone Engineered γ-Phenylalanine for the Formation of Supramolecular Co-Polymer. R. Misra, Y. Tang, Y. Chen, P. Chakraborty, F. Netti, L. J. W. Shimon, G. Wei, L. A. Abramovich; Macromol. Rapid Commun., 2022, 23, 2200223. Impact Factor: 5.73
  3. Computational Design of Homotetrameric Peptide Bundle Variants Spanning a Wide Range of Charge States. R. Guo, N. J. Sinha, R. Misra, Y. Tang, M. Langenstein, K.  Kim, J. A. Fagan, C. J. Kloxin, G. Jensen, D. J. Pochan, J. G. Saven; Biomacromolecules, 2022, 23, 1652–1661. Impact Factor: 6.98  
  4. Colloid-like solution behavior of computationally designed coiled coil bundlemers. N. J.Sinha, R, Guo, R. Misra, J. Fagan, A. Faraone, C. J.Kloxin, J. G.Saven, G. V.Jensen, D. J.Pochan; J. Colloid Interface Sci., 2022, 606, 1974-1982. Impact Factor: 8.128
  5. An Atomistic View of Rigid Crystalline Supramolecular Polymers Derived from Short Amphiphilic, α, β Hybrid Peptide. R. Misra, F. Netti, G. Koren, Y. Dan, P. Chakraborty, S. R Cohen, L. J. W. Shimon R. Beck, L. A, Abramovich; Polym. Chem., 2022, 13, 6223-6228. Impact Factor: 5.58
  6. Atomic Insight of Short Helical Peptide Comprised of Consecutive Multiple Aromatic Residues. R. Misra, T. Vijayakanth, L. J. W. Shimon and L. A. Abramovich; Chem. Commun., 2022, 58, 6445-6448. Impact Factor: 6.290
  7. Disordered Protein Stabilization by Co-Assembly of Short Peptides Enables Formation of Robust Membranes. M. Ghosh, A. Majkowska, R. Mirsa, S. Bera, J. C. Rodríguez-Cabello, A. Mata, L. A. Abramovich; ACS Appl. Mater. Interfaces, 2022, 14(1), 464–473. Impact Factor: 9.229
  8. Modification of a Single Atom Affects the Physical Properties of Double Fluorinated Fmoc-Phe Derivatives. M. Aviv, D. Cohen-Gerassi, A. A. Orr, R. Misra, Z. A. Arnon, L. J. W. Shimon, Y. Shacham-Diamand, P. Tamamis, L. A. Abramovich; Int. J. Mol. Sci., 2021, 22(17), 9634. Impact Factor: 5.913
  9. From Folding to Assembly: Functional Supramolecular Architectures of Peptides Comprised of Non-Canonical Amino Acid. R. Misra, S. Rudnick-Glick, L.A. Abramovich; Macromol. Biosci., 2021, 21, 2100090. Impact Factor: 4.979. (Selected as a front cover)

Publications from PhD

  1. Metal Coordinated Polymers from the Minimalistic Hybrid Peptide Foldamers. S. Dey,#  R. Misra,#  A. Saseendran, S. Pahan, H. N. Gopi; Angew. Chem. Int. Ed., 2021, 133, 9951-9956. Impact Factor: 16.83
  2. Structural insight into hybrid peptide ε-helices. R. Misra, G. George, R. M. Reja, S. Dey, S. Raghothama, H. N. Gopi; Chem. Commun., 2020, 56, 2171-2173. Impact Factor: 6.290
  3. Ambidextrous α,γ-Hybrid Peptide Foldamers with Reversal of Helix Directionality. R. Misra, G. George, A. Saseendran, S. Raghothama, H. N. Gopi; Chem.Asian J., 2019,14, 4408-4414. Impact Factor: 4.465
  4. Metal-Helix Frameworks from Short Hybrid Peptide Foldamers. R. Misra, A. Saseendran, S. Dey, and H. N. Gopi; Angew. Chem. Int. Ed Engl., 2019, 58, 2251. Impact Factor: 16.83. (Selected as hot paper) 
  5. Engineering two-helix motifs through NDI Linker: A modular approach for charge transferable conductive foldamers design. R.M. Reja, R. Misra and H. N. Gopi, ChemNanoMat., 2019, 5,51-54. Impact Factor: 3.154
  6. Artificial β-Double Helices from Achiral γ-Peptides. R. Misra, S. Dey, and H. N. Gopi; Angew. Chem. Int. Ed Engl., 2018, 130, 1069. Impact Factor: 16.83 (Selected as Va IP paper)
  7. Modulating the structural properties of alpha,gamma-hybrid peptides by alpha-amino acid residues Uniform 12-helix versus "mixed" 12/10-helix. R. Misra, K. M. P. Raja, H. J. Hofmann, and H. N. Gopi; Chem. Eur. J., 2017, 23, 16644. Impact Factor: 5.160
  8. Backbone Engineered γ-Peptide Amphitropic Gels for Immobilization of Semiconductor Quantum dots and 2D Cell Culture. R. Misra, A. Sharma, A. Shiras, and H. N Gopi; Langmuir, 2017, 33, 7762. Impact Factor: 3.789
  9. Structural Dimorphism of Achiral α,γ-Hybrid Peptide Foldamers: Coexistence of 12- and 15/17-Helices. R. Misra, A. Saseendran, G. George, K. Veeresh, K. M. P. Raja, S. Raghothama, H.-J Hofmann, and H. N. Gopi; Chem. Eur. J., 2017, 23, 3764. Impact Factor: 5.160
  10. pH sensitive coiled coils: a strategy for enhanced liposomal drug delivery. R. M Reja, M. Khan, S. K Singh, R. Misra, A. Shiras and H. N Gopi. Nanoscale, 2016, 8, 5139. Impact Factor: 7.233
  11. Structural features and molecular aggregations of designed triple-stranded β-sheets in single crystals. A. Bandyopadhyay, R. Misra and H. N. Gopi; Chem. Commun., 2016, 52, 4938. Impact Factor: 6.290
  12. Exploring structural features of folded peptide architectures in the construction of nanomaterials. R. Misra, R. M. Reja, L. V. Narendra, G. George, S. Raghothama and H. N. Gopi; Chem. Commun., 2016, 52, 9597. Impact Factor: 6.290
  13. Foldamers to nanotubes: influence of amino acid side chains in the hierarchical assembly of α, γ4-hybrid peptide helices. S. V. Jadhav, R. Misra and H. N. Gopi; Chem. Eur. J., 2014, 20, 16523. Impact Factor: 5.160
  14. Efficient access to enantiopure γ4- amino acids with proteinogenic sidechains and structural investigation of γ4-Asn and γ4- Ser in hybrid peptide helices. S.V. Jadhav, R. Misra, S. K. Singh, and H. N. Gopi; Chem. Eur. J., 2013, 19, 1625. Impact Factor: 5.160

  • Synthetic modification and molecular engineering of peptides, with various synthesized, diverse non-canonical residues, backbone, sidechain and site-selective modifications to expand the conformational and topological space of peptides that enables precise folding, bioactivity, access to functional domains and enhanced resistance to proteolysis.
  • Design and Synthesis of Foldamers, with engineered amino acid residues for tunable folding and topology, allowing access to stable, intricate conformations with tailored bioactivity enabling applications in therapeutics, molecular recognition, catalysis, and functional biomaterials.
  • Bioinspired smart and responsive materials, that harnesses the controlled self-assembly attributes of peptides to create soft, functional biomaterials for translational applications, including tissue engineering, regenerative medicine, 3D cell culture, bioprinting, drug delivery, wound healing antimicrobial materials and catalysis.
  • Antimicrobial peptides and peptide-based materials, to overcome incidences of microbial resistance and biofilm formation. Peptides functionalization strategies including residue specific modifications, conjugation with targeting sequences and incorporation of bioactive motifs are employed to enhance selectivity, stability, membrane and target interactions.
  • Metal-chaperoned porous peptide networks and functional assemblies, that leverages the biocompatibility and tunability of various canonical and non-canonical residues to enable the metal-directed folding and assembly into intricate topologies that mimic protein structure and function. Such bioinspired materials serve as versatile platforms for applications in catalysis, biomolecular recognition, metabolite transport, separation, energy generation and therapeutics.
  • Liquid-liquid phase separation and biomolecular condensates, investigating how peptide sequence and conformation govern dynamic assembly and biological function in condensates, providing insights into the regulation of biomolecular organization and activity.