ଜାତୀୟ ବିଜ୍ଞାନ ଶିକ୍ଷା ଏବଂ ଗବେଷଣା ପ୍ରତିଷ୍ଠାନ
ପରମାଣୁ ଶକ୍ତି ବିଭାଗ, ଭାରତ ସରକାରଙ୍କ ଏକ ସ୍ବୟଂଶାସିତ ପ୍ରତିଷ୍ଠାନ

राष्ट्रीय विज्ञान शिक्षा एवं अनुसंधान संस्थान
परमाणु ऊर्जा विभाग, भारत सरकार का एक स्वयंशासित संस्थान

National Institute of Science Education and Research
AN AUTONOMOUS INSTITUTE UNDER DAE, GOVT. OF INDIA

 

Ramanujam Srinivasan

Associate Professor
 
 

rsrininiser.ac.in
+91-674-2494213

  • Biological Sciences
  • IRINS Profile
  • Since: 29-Oct-2014
  • Office: 414

PhD, 2006, Indian Institute of Science, Bangalore, India

MS Biological Sciences, 2000, Indian Institute of Science, Bangalore, India

B.Sc Microbiology, 1997 Saurashtra College, Madurai, India

Singapore Millennium Fellowship (SMF): 2007- 2009

Publications:

  • Mitra N*, Mishra D*, Puthethu IA, Srinivasan R*. (2024). Mutational analysis of the F plasmid partitioning protein ParA reveals novel residues required for oligomerisation and plasmid maintenance. bioRxiv 2024.03.17.585406; doi: https://doi.org/10.1101/2024.03.17.585406.
  • Mishra D, Puthethu IA, Mitra N*, Srinivasan R*. (2023). WORLD WAR II, SEX AND ANTIBIOTICS – II. Resonance. August; 28(8), 1209-1220. doi: https://www.ias.ac.in/article/fulltext/reso/028/08/1209-1220 (*co-corresponding authors).
  • Mishra D, Puthethu IA, Mitra N*, Srinivasan R*. (2023). WORLD WAR II, SEX AND ANTIBIOTICS. Resonance. July; 28(7), 1093-1105. doi: https://www.ias.ac.in/article/fulltext/reso/028/07/1093-1105 (*co-corresponding authors).
  • Sharma AK, Poddar SM, Chakraborty J, Nayak BS, Kalathil S, Mitra N, Gayathri P*, Srinivasan R*. (2023). A mechanism of salt bridge-mediated resistance to FtsZ inhibitor PC190723 revealed by a cell-based screen. Mol Biol Cell. Mar 1;34(3):ar16. doi: 10.1091/mbc.E22-12-0538. (*co-corresponding authors)
  • Mishra, D*. & Srinivasan, R*. Catching a Walker in the Act – DNA Partitioning by ParA Family of Proteins. (2022) Front Microbiol. 13, 856547. doi: 10.3389/fmicb.2022.856547. (*co-corresponding authors).
  • Pande, V., Mitra, N., Bagde, S. R., Srinivasan, R.* & Gayathri, P.* (2022). Filament organization of the bacterial actin MreB is dependent on the nucleotide state. J. Cell. Biol. 221(5), e202106092 doi: https://doi.org/10.1083/jcb.202106092 . (*co-corresponding authors)
  • Mishra, D., Jakhmola, A., Srinivasan, R. (2022). A role for the last C-terminal helix of the F plasmid segregating protein SopA in nucleoid binding and plasmid maintenance. Plasmid 119-120:102617 doi: https://doi.org/10.1016/j.plasmid.2022.102617
  • Jena, P.*, Bhattacharya, M., Bhattacharjee, G., Sapati, B., Mukhaerjee, P., Senapati, D.*, Srinivasan, R.* (2020) Bimetallic gold–silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. Nanoscale 12, 3731-3749. doi: https://doi.org/10.1039/c9nr10700b *co-corresponding authors
  • Palani S*, Srinivasan, R.*, Zambon P, Kamnev A, Pananghat G, Balasubramanian M.K. (2018). Evidence that a steric clash in the upper 50KDa domain of the motor Myo2p leads to cytokinesis defects in fission yeast. (*equal contribution). J. Cell Sci. 131(1), jcs205625 doi: https://doi.org/10.1242/jcs.205625
  • Palani, S, Chew, T. G, Ramanujam, S., Kamnev, A, Harne, S, Chapa-y-Lazo, B, Hogg, R, Sevugan, M, Mishra, M, Gayathri, P and Balasubramanian, M. K. (2017) Motor Activity Dependent and Independent Functions of Myosin II Contribute to Actomyosin Ring Assembly and Contraction in Schizosaccharomyces pombeCurr. Biol. 27: 751-757.
  • Jiang, S., Narita, A., Popp, D., Ghoshdastider, U., Lee, L. J., Srinivasan, R., Balasubramanian, M.K., Oda, T., Koh, F., Larsson, M.E., Robinson, R. C. (2015). Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation. Proc. Natl. Acad. Sci. USA. 113 (9): E1200-E1205. doi: 10.1073/pnas.1600129113.
  • Srinivasan R.* and Balasubramanian, M. K.* (2014). Bacteria Spring a Surprise. Elife. Jun24;3:e03435. Doi: 10.7554/elife.03435. *Corresponding authors
  • Ng, K-H., Srinivas, V., Srinivasan, R., and Balasubramanian, M. K. (2013). The Nitrosopumilus maritimus ESCRT-III/CdvB, not the FtsZ, Assembles into Linear Polymer. Archaea 104147 doi: 10.1155/2013/104147.
  • Mishra, M.*, Kashiwazaki, J.*, Takagi, T, Srinivasan, R., Huang, Y, Balasubramanian, M. K. and Mabuchi, I. (2013). In vitro contraction of cytokinetic ring depends on myosin II but not on actin dynamics. Nat. Cell Biol. 15: 853-859. (*equal authors).
  • Balasubramanian, M. K, Srinivasan, R., Huang, Y. and Ng, K-H. (2012). Comparing Contractile Apparatus Driven Cytokinesis Mechanisms across Kingdoms. Cytoskeleton (Hoboken). 69:942-956. (Review Article in Rappaport Special Issue)
  • Mishra, M.*, Huang, Y.*, Srivastava, P.*, Srinivasan, R.,* Sevugan, M., Shlomovitz, R., Gov, N., Rao, M., and Balasubramanian, M. K. (2012). Cylindrical Cellular Geometry Ensures Fidelity of Division Site Placement in Fission Yeast. J. Cell Sci. 125:3850-3857. (*Equal authorship)
  • Srinivasan, R.*, Mishra, M.*, Leong, F. W., Chiam, K. H. and Balasubramanian, M. K. (2011) Bacillus anthracis tubulin-related protein Ba-TubZ assembles force generating polymers. Cytoskeleton (Hoboken). 68:501-511. doi: 10.1002/cm.20526 (*Equal authorship)
  • Srinivasan, R., and Mishra, M. (2009) Cell Polarization: It’s all about Being in Shape. Curr. Biol. 19:R205-206.
  • Srinivasan, R.*, Mishra, M.*, Wu, L., Yin, Z., and Balasubramanian, M. K. (2008) The Bacterial Cell Division Protein FtsZ Assembles into Cytoplasmic Rings in Fission Yeast. Genes & Dev. 22:1741-1746. (*Equal authorship)
  • Srinivasan, R. and Ajitkumar, P. (2007) Bacterial cell division protein FtsZ is stable against degradation by AAA family protease FtsH in Escherichia coli cells. J Basic Microbiol. 47: 251-259. 
  • Srinivasan, R., Rajeswari, H., Bhatt, B. N., Indi, S. and Ajitkumar, P. (2007) GTP/GDP binding stabilizes bacterial cell division protein FtsZ against degradation by FtsH protease. Biochem Biophys Res Commun. 357: 38-43.
  • Srinivasan, R., Mishra, M., Murata-Hori, M., and Balasubramanian, M. K. (2007) Filament formation of the Escherichia coli actin-related protein, MreB, in fission yeast. Curr. Biol. 17: 266-272. 
  • Srinivasan, R., Anilkumar, G., Rajeswari, H., and Ajitkumar, P. (2006) Functional characterization of the AAA family FtsH protease from Mycobacterium tuberculosis. FEMS Microbiol Lett. 259: 97-105.
  • Srinivasan, R., Rajeswari, H., and Ajitkumar, P. (2006) Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc metalloprotease FtsH in vitro. Microbiol Res. 163: 21-30. (epub 2006, April 25) doi:10.1016/j.micres.2006.03.001 
  • Kumar, P., Krishna, K., Srinivasan, R., Ajitkumar, P. and Varshney, U. (2004) Mycobacterium tuberculosis and Escherichia coli nucleoside diphosphate kinases lack multifunctional activities to process uracil containing DNA. DNA Repair (Amst) 3: 1483-1492. 
  • Anilkumar, G.*, Srinivasan, R.* and Ajitkumar, P. (2004) Genomic organization and in vivo characterization of proteolytic activity of FtsH of Mycobacterium smegmatis SN2. Microbiology150: 2629-2639. (*Equal authorship) 

For a full publication list:

List of publications

 What I cannot create, I do not understand

                                                      - Richard Feynman

So is true for Life. For nearly a century, it was believed that Humans and its close relatives such as yeast and other eukaryotes were the sole owners of the Cytoskeleton, a mechanical framework that supports cells and carries almost all essential process within. However, recent discoveries have proved this to be a myth and shown us that the cytoskeleton was an innovation of our distant ancestors - 'Bacteria'. The bacterial cytoskeleton provides the most simplistic framework to understand the mechanical basis of all cellular process such as spatial organization and compartmentalization, cell shape establishment, cell movement, DNA segregation and cell division that are vital to the propogation of life. One of the most fascinating aspects of the cytoskeleton is their remarkable ability to self-organize and assemble into a great diversity of dynamic structures.

Broadly, our research interests lie in evolution of self-organisation, form and function in biological systems and in understanding the means by which bacterial pathogens have exploited this organization in pathogenesis for their survival and reproduction. In our research laboratory, we aim to understand how tiny cells such as bacteria achieve cellular organization and how the mechanical properties of their cytoskeleton allow them to perform the cellular functions.

We pursue these research interests through studying the following process in life:

• Cell division and Spatial organization in Bacteria - Bacterial cytoskeleton dynamics, Cytokinetic ring assembly, Regulation of cell division control and anti-bacterials targeting bacterial cytoskeleton.
• Bacterial Metabolism & Biofilms - Molecular pathways by which Bacterial proteases regulate lipid metabolism & biofilm formation.
• Bacterial Pathogenesis - Molecular Mechanisms of Bacterial effectors that target and affect Eukaryotic Cytoskeleton and Cell Cycle.
• Synthetic Biology - Synthetic Protein Polymers: Evolution of synthetic cytomotive proteins for use in biological & artificial cell systems.

Given the rapid increase in the rate of multi-drug resistance, there is a resurgence of the once conquered infectious diseases. There is an urgent need for a new class of antibiotics and bacterial cell division has proved to be an attractive target. Thus we are currently actively focused on regulation of cell division and spatial organization in bacteria. We also have an ongoing effort on creating "synthetic cytomotive proteins" for use in artificial cells.

B101 - Biology I : The Science of Life

B102 - Biology II : Cellular & Genetic Basis of Life

B201 - Microbiology

BL561 - Concepts in Mechanobiology