ଜାତୀୟ ବିଜ୍ଞାନ ଶିକ୍ଷା ଏବଂ ଗବେଷଣା ପ୍ରତିଷ୍ଠାନ
ପରମାଣୁ ଶକ୍ତି ବିଭାଗ, ଭାରତ ସରକାରଙ୍କ ଏକ ସ୍ବୟଂଶାସିତ ପ୍ରତିଷ୍ଠାନ

राष्ट्रीय विज्ञान शिक्षा एवं अनुसंधान संस्थान
परमाणु ऊर्जा विभाग, भारत सरकार का एक स्वयंशासित संस्थान

National Institute of Science Education and Research
AN AUTONOMOUS INSTITUTE UNDER DAE, GOVT. OF INDIA

 

Sumedha

Associate Professor
 
 

sumedhaniser.ac.in
+91-674-2494241

  • Physical Sciences
  • IRINS Profile
  • Since: 03-May-2010
  • Office: 403 FC

BSc.(Phys(H)) Delhi University

MSc(Physics)  IIT Delhi

PhD Tata Institute of Fundamental Research(Mumbai) (PhD advisor : Deepak Dhar)

PostDoc:

Laboratoire de Physique Theorique et Modeles Statistiques, Universite Paris-Sud,Paris, France

Institute for Scientific Interchange, Torino,Italy

Brandeis University, Boston, USA

HRI Allahabad,India

  • Statistical mechanics and interdisciplinary applications

  PREPRINTS:

   1. Three state random energy model, Sumedha, and Matteo Marsili, arXiv:2410.13444

 PUBLISHED:

  1. Inverse transitions and disappearance of the λ - line in the asymmetric random field Ising and Blume-Capel models, Santanu Das and Sumedha, Phys. Rev. E 108, L042101 (2023), arXiv : 2310.04758
  2.   Critical behaviour near critical end points and tricritical points in disordered spin-1 ferromagnets, Soheli Mukherjee and Sumedha, Physica A 624 128905 (2023), arXiv:2305.08245
  3.   Multiple transitions in an infinite range p-spin random-crystal field Blume Capel model, Santanu Das and Sumedha, Phys Rev E 106 034134 (2022), arXiv:2205.05877
  4.   Hysteresis and return point memory in the random field Blume Capel model , B. E. Aldrin, Abdul Khaleque, and Sumedha,  Phys. Rev. E 106 014129(2022) arXiv:2111.12302.
  5.  Phase transitions in the Blume-Capel model with trimodal and Gaussian random fields, Soheli Mukherjee, and Sumedha, Journal of Statistical Physics 188 22(2022), arXiv:2203.05330.
  6.  Phase transitions in XY models with randomly oriented crystal fields, Sumedha, and Mustansir Barma, Phys. Rev. E 105,024111 (2022), arXiv:2201.09498
  7.  Solution of random field XY model on a fully connected graph, Sumedha, and Mustansir Barma, J. Phys. A: Math. Theor. 55 095001 (2022), arXiv:2104.06664.
  8.  Rejection free cluster Wang Landau algorithm for hard core lattice gases, A. A. A Jaleel, J. E. Thomas, D. Mandal, Sumedha, and R. Rajesh, Phys. Rev. E 104, 045310 (2021), arXiv:2108:01402
  9.  Phase diagram of the repulsive Blume-Emery-Griffiths model in the presence of external magnetic field on a complete graph , Soheli Mukherjee, Raj Kumar Sadhu and Sumedha,   J. Stat. Mech. (2021) 043209arXiv:2012.15557
  10. Emergence of a bicritical end point in the random crystal field Blume-Capel model, Sumedha and Soheli Mukherjee, Phys. Rev. E, 101,042125(2020) , arXiv:1907.06454
  11.  Conformal Bootstrap Signatures of the Tricritical Ising Universality Class, Chethan N Gowdigere, Jagannath Santara and Sumedha,    Phys. Rev. D 101, 116020(2020) , arXiv:1811.11442
  12.  Effect of ring topology in a stochastic model for Z-ring dynamics in bacteria,Arabind Swain, A.V. Anil Kumar and Sumedha,  The European Physical Journal E volume 43, Article number: 43 (2020),   arXiv:1810.03371
  13.  Absence of first order transition in random crystal field Blume-Capel model on a fully connected graph, Sumedha and Nabin K Jana, J. Phys. A: Math. Theor. 50 015003 (2017).
  14.  Effect of random field disorder on the first order transition in p-spin interaction model, Sumedha and Sushant K singh, Physica A, 276(2016).
  15.  Exact satisfiability threshold for k-satisfiability problems on a Bethe lattice, Supriya Krishnamurthy and Sumedha, Phys. Rev. E ,92, 042144(2015)
  16.  Some results for k-sat on trees, Sumedha and Supriya Krishnamurthy, J. Phys. Conf. Series(2015).
  17.  Balanced k-satisfiability and biased random k-satisfiability on trees, Sumedha, Supriya Krishnamurthy and Sharmistha Sahoo, Phys. Rev. E, 87, 042130(2013).
  18.  On the behaviour of random k-SAT on trees, Supriya Krishnamurthy and Sumedha, J. Stat. Mech. P05009 (2012)
  19.  Prolonging assembly through dissocaition : A self assembly paradigm in microtubules,Sumedha, Michael F Hagan and Bulbul Chakraborty, Phys. Rev. E , 83, 051904 (2011)
  20.  A thermodynamic model for agglomeration of DNA-looping proteins, Sumedha and Martin Weigt, J. Stat. Mech. P11005(2008).
  21. Unsupervised and semi-supervised clustering by message passing:Soft-constraint affinity propagation, Michele Leone, Sumedha, and Martin Weigt, European Physics Journal B,vol. 66, 125(2008).
  22.  Clustering by soft-constraint affinity propagation:Applications to gene-expression data, Michele Leone, Sumedha and Martin Weigt, Bioinformatics vol. 23, 2708 (2007).
  23.  New structural variation in evolutionary searches of RNA neutral networks, Sumedha, Olivier C Martin and Andreas Wagner,Biosystems, vol. 90, 475-485 (2007).
  24.  Population size effects in evolutionary dynamics on neutral networks and toy landscapes, Sumedha, Olivier C Martin and Luca Peliti, J. Stat. Mech. P05011(2007).
  25. Quenched averages for self-avoiding walks and polygons on a deterministic fractal, Sumedha and Deepak Dhar, J. Stat. Phys., Vol. 125, 55-76(2006).
  26.  Rooted Spiral Lattice Trees on Hyper-cubic lattices, Sumedha, J. Stat. Phys., Vol. 120, 101-123(2005).
  27. Efficiency of the Incomplete Enumeration algorithm for Monte-Carlo simulation of linear and branched polymers, Sumedha and Deepak Dhar, J. Stat. Phys., Vol. 120, 71-100(2005).
  28. Directed Branched Polymer near an Attractive Line,Sumedha, J. Phys. A:Math. Gen., Vol.  37, 3673(2004). 
  29. Distribution of Transverse Distances in Directed Animals,Sumedha and Deepak Dhar, J. Phys. A:Math. Gen., Vol. 36,3701(2003)
  30.  Transition curves for the variance of the nearest neighbor spacing distribution for Poisson to Gaussian orthogonal and unitary ensemble transitions, V. K. B. Kota and S. Sumedha, Phys.Rev. E, Vol.  60, 3405-3408(1999).

Complete list: https://arxiv.org/find/grp_q-bio,cond-mat/1/au:+sumedha/0/1/0/all/0/1

 

 

1. Disordered spin systems.

2. Stochastic processes in biology

3. Lattice models of polymers

4. Entropy driven phase transitions

5. Conformal bootstrap and critical phenomena.

6. Nonequilibrium Statistical Mechanics

7. Constraint Satisfaction problems from theoretical computer science.

 

Courses Taught:

P-101 Introductory Physics

P-141 Physics Laboratory I

P 204. Electricity and Magnetism I

P 205 Mathematical Methods II

P 206 Quantum Mechanics l

P-302 Statistical Mechanics

P 455 Phase Transitions and Critical Phenomena

P 452 Computational Physics

P-476/776 Non Equilibrium Statistical Mechanics

P 614 Statistical Mechanics for PhD students

P-602 Mathematical Methods for PhD Students