ଜାତୀୟ ବିଜ୍ଞାନ ଶିକ୍ଷା ଏବଂ ଗବେଷଣା ପ୍ରତିଷ୍ଠାନ
ପରମାଣୁ ଶକ୍ତି ବିଭାଗ, ଭାରତ ସରକାରଙ୍କ ଏକ ସ୍ବୟଂଶାସିତ ପ୍ରତିଷ୍ଠାନ

राष्ट्रीय विज्ञान शिक्षा एवं अनुसंधान संस्थान
परमाणु ऊर्जा विभाग, भारत सरकार का एक स्वयंशासित संस्थान

National Institute of Science Education and Research
AN AUTONOMOUS INSTITUTE UNDER DAE, GOVT. OF INDIA

 

Tridib Mahata

Assistant Professor
 
 

tridibmahataniser.ac.in
-

  • Biological Sciences
  • IRINS Profile
  • Since: 03-Nov-2025
  • Office: 422

Postdoc. Tel Aviv University, Tel Aviv, Israel (2019-2025)
Ph.D. Biochemistry. Calcutta University (CSIR-IICB), Kolkata, India (2012-2018)
M.Sc. Applied Microbiology. Banaras Hindu University, Varanasi, India (2009-2011)
B.Sc. Microbiology. University of Burdwan, Burdwan, India (2006-2009)

Molecular Biology, Microbiology, Biochemistry, Bacterial and Phage Genetics

  1. Mahata T, Kanarek K, Goren MG, Ragavan RM, Haldar A, Shur G, Yehia R, Burstein D, Haitin Y, Qimron U, Salomon D. Phage-encoded homing endonucleases attenuate bacterial immunity. BioRxiv 2025. 
  2. Mahata T, Kanarek K, Goren MG, Ragavan RM, Bosis E, Qimron U, Salomon D. Gamma-Mobile-Trio systems are mobile elements rich in bacterial defensive and offensive tools. Nature Microbiology 2024, 9, 3268–3283
  3. Yosef I, Mahata T, Chen Y, Bar-joseph H, Shalgi R, Munitz A, Gerlic M, Qimron U. Engineering mice for female-biased progeny without impacting genetic integrity and litter size. BioRxiv 2023. 
  4. Goren MG, Mahata T, Qimron U. An efficient, scarless, selection-free technology for phage engineering. RNA Biology 2023, 20(1), 830-835.
  5. Mahata T, Molshanski-Mor S, Goren MG, Kohen-Manor M, Yosef I, Avram O, Salomon D, Qimron U. Inhibition of Host Cell Division by T5 protein 008 (Hdi). Microbiology Spectrum 2023, 11(6), e01697-23.
  6. Yosef I,Mahata T, Goren MG, Degany OJ, Ben-Shem A, Qimron U.  Highly active CRISPR adaptation proteins revealed by a robust enrichment technology. Nucleic Acid Research 2023, 51(14), 7552-7562. († equal contributions)
  7. MahataT, Qimron U. Thou shalt not cleave DNA—only repress transcription: A compact Cas protein representing a new CRISPR-Cas subtype. Molecular Cell 2022, 82(23), 4403-4404.
  8. Mandi CS, Mahata T, Patra D, Chakraborty J, Bora A, Pal R, Dutta S. Cleavage of Abasic Sites in DNA by an Aminoquinoxaline Compound. Augmented Cytotoxicity and DNA Damage in Combination with an Anticancer Drug Chlorambucil in Human Colorectal Carcinoma Cells. ACS Omega 2022, 7(8), 6488–650.
  9. Mahata T, Molshanski-Mor S, Goren MG, Jana B, Kohen-Manor M, Yosef I, Avram  O, Pupko T, Salomon D, Qimron U. A phage mechanism for selective nicking of dUMP-containing DNA. PNAS 2021, 118(23), e2026354118.
  10. Palit S, Banerjee S,  Mahata T, Niyogi S, Das T, Mandi CS, Chakrabarty P, Dutta S. Interaction of a Triantennary Quinoline Glycoconjugate with the Asialoglycoprotein ReceptorChemMedChem 2021, 16(14), 2211-2216. († equal contributions)
  11. Chakraborty J, Kanungo A, Mahata T, Kumar K, Sharma G, Pal R, Ahammed SK, Patra D, Majhi B, Chakrabarti S, Das S, and Dutta S. Quinoxaline derivatives disrupt the base stacking of hepatitis C virus-internal ribosome entry site RNA: Reduce translationand replication. Chem. Commun. 2019, 55, 14027-14030.
  12. Mahata T, Chakraborty J, Kanungo A, Patra D, Basu G, Dutta S. Intercalator induced DNA superstructure formation: Doxorubicin and a synthetic quinoxaline derivative. Biochemistry 2018, 57(38), 5557–5563.
  13. Mahata T, Kanungo A, Ganguly S, Modugula EK, Choudhury S, Pal SK, Basu G, Dutta S. The Benzyl Moiety in a Quinoxaline-Based Scaffold Acts as a DNA Intercalation Switch. Angewandte Chemie 2016, 55(27), 7733-7736.
  14. Kanungo A, Patra D, Mukherjee S, Mahata T, Maulik PR, Dutta S. Synthesis of a visibly emissive 9-nitro-2, 3-dihydro-1 H-pyrimido [1, 2-a] quinoxalin-5-amine scaffold with large stokes shift and live cell imaging. RSC Advances 2015, 5(87), 70958-70967.

Our lab explores the fascinating molecular conflict between bacteria and bacteriophages - a never-ending evolutionary arms race that has been ongoing for billions of years. Our aim is to uncover fundamental mechanism of microbial warfare - how phages take over their bacterial hosts and how bacteria defend themselves against phage attack. Using a combination of microbial genetics, molecular biology, genomics, and biochemistry, we investigate these interactions and translate our discoveries into innovative tools for biotechnology and medicine.

Our research focuses on three major themes:

  1. Discovery of novel bacterial immune systems

we are focusing on exploring a recently discovered mobile genomic island (GMT island) - a hotspot of bacterial immune systems - along with other defense islands and environmental microbiome to discover new anti-phage defense systems. Understanding how these systems function not only deepens our knowledge of bacterial immunity but may also reveal evolutionary parallels to human immune pathways.

  2. Unravelling phage counter-defense strategy

Phages have evolved remarkable strategies to overcome bacterial defenses, including phage encoded direct inhibitors that block bacterial immune systems. Our goal is to understand these phage-encoded counter defense mechanisms, uncover how phages neutralize host defenses, and harness these molecular tools for biotechnological and therapeutic applications.

 3. Exploring phage-encoded antimicrobials

Phages encode a vast repertoire of proteins that target diverse bacterial metabolic processes. Our goal is to identify phage-encoded proteins with antimicrobial activity, determine their molecular targets, elucidate their mechanisms of action, and explore their potential to combat multidrug-resistant bacteria.

By delving into phage–bacteria interactions, our research aims to uncover proteins with unique functions that can be harnessed for biotechnological and therapeutic applications.